Adsorption of Cobalt onto Zeolitic and Carbonaceous Materials: A Review
Abstract
:1. Introduction
2. Cobalt Adsorption
3. Cobalt Adsorption onto Zeolitic Materials
3.1. Overview
3.2. Cobalt Adsorption onto Zeolitic Materials
4. Cobalt Adsorption onto Carbonaceous Materials
4.1. Overview
4.2. Cobalt Adsorption onto Commercially Activated Carbon
4.3. Adsorption of Cobalt onto Activated Carbon Derived from Various Organic Wastes
4.4. Cobalt Adsorption onto Other Carbonaceous Materials
5. Conclusions and Final Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Grohol, M.; Vee, C. Study on the Critical Raw Materials for the EU 2023—Final Report; European Commission: Brussels, Belgium, 2023. [Google Scholar]
- European Comission. Critical Raw Materials Resilience: Charting a Path towards Greater Security and Sustainability; European Comission: Brussels, Belgium, 2020. [Google Scholar]
- Li, W.; Li, Z.; Wang, N.; Gu, H. Selective Extraction of Rare Earth Elements from Red Mud Using Oxalic and Sulfuric Acids. J. Environ. Chem. Eng. 2022, 10, 108650. [Google Scholar] [CrossRef]
- Zhang, D.R.; Chen, H.R.; Nie, Z.Y.; Xia, J.L.; Li, E.P.; Fan, X.L.; Zheng, L. Extraction of Al and Rare Earths (Ce, Gd, Sc, Y) from Red Mud by Aerobic and Anaerobic Bi-Stage Bioleaching. Chem. Eng. J. 2020, 401, 125914. [Google Scholar] [CrossRef]
- Basturkcu, H. Extraction of Lanthanum and Yttrium from Red Mud Following Elimination of Ionic Impurities. Sep. Sci. Technol. 2021, 56, 2243–2252. [Google Scholar] [CrossRef]
- Zhu, X.; Li, W.; Xing, B.; Zhang, Y. Extraction of Scandium from Red Mud by Acid Leaching with CaF2 and Solvent Extraction with P507. J. Rare Earths 2020, 38, 1003–1008. [Google Scholar] [CrossRef]
- Rychkov, V.N.; Kirillov, E.V.; Kirillov, S.V.; Semenishchev, V.S.; Bunkov, G.M.; Botalov, M.S.; Smyshlyaev, D.V.; Malyshev, A.S. Recovery of Rare Earth Elements from Phosphogypsum. J. Clean. Prod. 2018, 196, 674–681. [Google Scholar] [CrossRef]
- Antonick, P.J.; Hu, Z.; Fujita, Y.; Reed, D.W.; Das, G.; Wu, L.; Shivaramaiah, R.; Kim, P.; Eslamimanesh, A.; Lencka, M.M.; et al. Bio- and Mineral Acid Leaching of Rare Earth Elements from Synthetic Phosphogypsum. J. Chem. Thermodyn. 2019, 132, 491–496. [Google Scholar] [CrossRef]
- Cánovas, C.R.; Chapron, S.; Arrachart, G.; Pellet-Rostaing, S. Leaching of Rare Earth Elements (REEs) and Impurities from Phosphogypsum: A Preliminary Insight for Further Recovery of Critical Raw Materials. J. Clean. Prod. 2019, 219, 225–235. [Google Scholar] [CrossRef]
- de Oliveira, R.P.; Benvenuti, J.; Espinosa, D.C.R. A Review of the Current Progress in Recycling Technologies for Gallium and Rare Earth Elements from Light-Emitting Diodes. Renew. Sustain. Energy Rev. 2021, 145, 111090. [Google Scholar] [CrossRef]
- Chen, W.S.; Chung, Y.F.; Tien, K.W. Recovery of Gallium and Indium from Waste Light Emitting Diodes. In Proceedings of the 15th International Symposium on East Asian Resources Recycling Technology, EARTH 2019, Pyeongchang, Gangwon-do, Republic of Korea, 13–17 October 2020; Volume 29, pp. 81–88. [Google Scholar] [CrossRef]
- Maarefvand, M.; Sheibani, S.; Rashchi, F. Recovery of Gallium from Waste LEDs by Oxidation and Subsequent Leaching. Hydrometallurgy 2020, 191, 105230. [Google Scholar] [CrossRef]
- Purnomo, C.W.; Kesuma, E.P.; Perdana, I.; Aziz, M. Lithium Recovery from Spent Li-Ion Batteries Using Coconut Shell Activated Carbon. Waste Manag. 2018, 79, 454–461. [Google Scholar] [CrossRef]
- Song, Y.; Zhao, Z. Recovery of Lithium from Spent Lithium-Ion Batteries Using Precipitation and Electrodialysis Techniques. Sep. Purif. Technol. 2018, 206, 335–342. [Google Scholar] [CrossRef]
- Botelho Junior, A.B.; Stopic, S.; Friedrich, B.; Tenório, J.A.S.; Espinosa, D.C.R. Cobalt Recovery from Li-ion Battery Recycling: A Critical Review. Metals 2021, 11, 1999. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, B.; Cheng, Q.; Li, X.; Li, Z. Removal of Toxic Heavy Metal Ions (Pb, Cr, Cu, Ni, Zn, Co, Hg, and Cd) from Waste Batteries or Lithium Cells Using Nanosized Metal Oxides: A Review. J. Nanosci. Nanotechnol. 2020, 20, 7231–7254. [Google Scholar] [CrossRef] [PubMed]
- Xavier, L.H.; Ottoni, M.; Abreu, L.P.P. A Comprehensive Review of Urban Mining and the Value Recovery from E-Waste Materials. Resour. Conserv. Recycl. 2023, 190, 106840. [Google Scholar] [CrossRef]
- Velázquez-Martínez, O.; Valio, J.; Santasalo-Aarnio, A.; Reuter, M.; Serna-Guerrero, R. A Critical Review of Lithium-Ion Battery Recycling Processes from a Circular Economy Perspective. Batteries 2019, 5, 68. [Google Scholar] [CrossRef]
- Hannis, S.; Bide, T. Cobalt. Definition, Mineralogy and Deposits Definition and Characteristics; British Geological Survey: Nottingham, UK, 2009. [Google Scholar]
- Fu, F.; Wang, Q. Removal of Heavy Metal Ions from Wastewaters: A Review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.A.; Morton, D.W.; Johnson, B.B.; Pramanik, B.K.; Mainali, B.; Angove, M.J. Opportunities and Constraints of Using the Innovative Adsorbents for the Removal of Cobalt(II) from Wastewater: A Review. Environ. Nanotechnol. Monit. Manag. 2018, 10, 435–456. [Google Scholar] [CrossRef]
- Mossali, E.; Picone, N.; Gentilini, L.; Rodrìguez, O.; Pérez, J.M.; Colledani, M. Lithium-Ion Batteries towards Circular Economy: A Literature Review of Opportunities and Issues of Recycling Treatments. J. Environ. Manag. 2020, 264, 110500. [Google Scholar] [CrossRef] [PubMed]
- Vieceli, N.; Ottink, T.; Stopic, S.; Dertmann, C.; Swiontek, T.; Vonderstein, C.; Sojka, R.; Reinhardt, N.; Ekberg, C.; Friedrich, B.; et al. Solvent Extraction of Cobalt from Spent Lithium-Ion Batteries: Dynamic Optimization of the Number of Extraction Stages Using Factorial Design of Experiments and Response Surface Methodology. Sep. Purif. Technol. 2023, 307, 122793. [Google Scholar] [CrossRef]
- Scheele, F.; De Haan, E.; Kiezebrink, V. Cobalt Blues Environmental Pollution and Human Rights Violations in Katanga’s Copper and Cobalt Mines; Stichting Onderzoek Multinationale Ondernemingen (SOMO): Amsterdam, The Netherlands, 2016; ISBN 9789462070943. [Google Scholar]
- National Minerals Information Center Cobalt Statitics and Information. Available online: https://minerals.usgs.gov/minerals/pubs/commodity/cobalt/ (accessed on 19 July 2024).
- Dehaine, Q.; Tijsseling, L.T.; Glass, H.J.; Törmänen, T.; Butcher, A.R. Geometallurgy of Cobalt Ores: A Review. Miner. Eng. 2021, 160, 106656. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry. Public Health Statement—Cobalt; Atlanta, 2004. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp33.pdf (accessed on 19 July 2024).
- Napgal, N.K. Technical Report—Water Quality Guidelines for Cobalt; Water, Air and Climate Change Branch, Ministry of Water, Land and Air Protection: Victoria, BC, Canada, 2004. [Google Scholar]
- Erdem, E.; Karapinar, N.; Donat, R. The Removal of Heavy Metal Cations by Natural Zeolites. J. Colloid Interface Sci. 2004, 280, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Deliyanni, E.A.; Kyzas, G.Z.; Triantafyllidis, K.S.; Matis, K.A. Activated Carbons for the Removal of Heavy Metal Ions: A Systematic Review of Recent Literature Focused on Lead and Arsenic Ions. Open Chem. 2015, 13, 699–708. [Google Scholar] [CrossRef]
- Structure Commission of the International Zeolite Association Database of Zeolite Structures. Available online: http://www.iza-structure.org/databases/ (accessed on 8 May 2023).
- McCusker, L.B.; Baerlocher, C. Zeolite Structures. Stud. Surf. Sci. Catal 2001, 137, 37–67. [Google Scholar] [CrossRef]
- Chmielewská-Horváthová, E.; Lesný, J. Adsorption of Cobalt on Some Natural Zeolites Occurring in ČSFR. J. Radioanal. Nucl. Chem. Lett. 1992, 166, 41–53. [Google Scholar] [CrossRef]
- Dávila-Rangel, J.I.; Solache-Ríos, M. Sorption of Cobalt by Two Mexican Clinoptilolite Rich Tuffs Zeolitic Rocks and Kaolinite. J. Radioanal. Nucl. Chem. 2006, 270, 465–471. [Google Scholar] [CrossRef]
- Qiu, W.; Zheng, Y. Removal of Lead, Copper, Nickel, Cobalt, and Zinc from Water by a Cancrinite-Type Zeolite Synthesized from Fly Ash. Chem. Eng. J. 2009, 145, 483–488. [Google Scholar] [CrossRef]
- Mthombo, T.S.; Mishra, A.K.; Mishra, S.B.; Mamba, B.B. The Adsorption Behavior of Cu(II), Pb(II), and Co(II) of Ethylene Vinyl Acetate-Clinoptilolite Nanocomposites. J. Appl. Polym. Sci. 2011, 121, 3414–3424. [Google Scholar] [CrossRef]
- Seliman, A.F.; Borai, E.H. Utilization of Natural Chabazite and Mordenite as a Reactive Barrier for Immobilization of Hazardous Heavy Metals. Environ. Sci. Pollut. Res. 2011, 18, 1098–1107. [Google Scholar] [CrossRef]
- Gupta, N.; Kushwaha, A.K.; Chattopadhyaya, M.C. Adsorption of Cobalt(II) from Aqueous Solution onto Hydroxyapatite/Zeolite Composite. Adv. Mater. Lett. 2011, 2, 309–312. [Google Scholar] [CrossRef]
- Çiçek, E.; Aras, E.; Dede, B.; Klllç, A. The Modeling of Cobalt Ions Adsorption on Molecular Sieves and Zeolite AW-300. AIP Conf. Proc. 2013, 1569, 146–149. [Google Scholar] [CrossRef]
- Jin, Y.; Wu, Y.; Cao, J.; Wu, Y. Adsorption Behavior of Cr(VI), Ni(II), and Co(II) onto Zeolite 13x. Desalination Water Treat 2015, 54, 511–524. [Google Scholar] [CrossRef]
- Deravanesiyan, M.; Beheshti, M.; Malekpour, A. Alumina Nanoparticles Immobilization onto the NaX Zeolite and the Removal of Cr (III) and Co (II) Ions from Aqueous Solutions. J. Ind. Eng. Chem. 2015, 21, 580–586. [Google Scholar] [CrossRef]
- Zhao, X.; Luo, Y.; He, C.; Zong, P.; Zhang, K.; Kebwaro, J.M.; Li, K.; Fu, B.; Zhao, Y. Evaluation of Permutite for Removal of Radiocobalt from Nuclear Wastewater. J. Radioanal. Nucl. Chem. 2015, 303, 837–844. [Google Scholar] [CrossRef]
- Solache-Ríos, M.; Olguín, M.T.; Martínez-Miranda, V.; Ramírez-García, J.; Zárate-Montoya, N. Removal Behavior of Cobalt from Aqueous Solutions by a Sodium-Modified Zeolitic Tuff. Water Air Soil Pollut. 2015, 226, 420. [Google Scholar] [CrossRef]
- Ltaief, O.O.; Siffert, S.; Fourmentin, S.; Benzina, M. Synthesis of Faujasite Type Zeolite from Low Grade Tunisian Clay for the Removal of Heavy Metals from Aqueous Waste by Batch Process: Kinetic and Equilibrium Study. Comptes Rendus Chim. 2015, 18, 1123–1133. [Google Scholar] [CrossRef]
- Ansari, M.; Raisi, A.; Aroujalian, A.; Dabir, B.; Irani, M. Synthesis of Nano-NaX Zeolite by Microwave Heating Method for Removal of Lead, Copper, and Cobalt Ions from Aqueous Solution. J. Environ. Eng. 2015, 141, 04014088. [Google Scholar] [CrossRef]
- Mužek, M.N.; Svilović, S.; Zelić, J. Kinetic Studies of Cobalt Ion Removal from Aqueous Solutions Using Fly Ash-Based Geopolymer and Zeolite NaX as Sorbents. Sep. Sci. Technol. 2016, 51, 2868–2875. [Google Scholar] [CrossRef]
- Gulieva, A.A.; Geidarov, A.A.; Makhmudov, M.K.; Kasumova, N.M. Sorption Recovery of Cobalt, Copper, Zinc, and Manganese Ions from Technical Solutions by Modified Natural Zeolites. Russ. Metall. (Met.) 2018, 2018, 605–613. [Google Scholar] [CrossRef]
- Belova, T.P. Adsorption of Heavy Metal Ions (Cu2+, Ni2+, Co2+ and Fe2+) from Aqueous Solutions by Natural Zeolite. Heliyon 2019, 5, e02320. [Google Scholar] [CrossRef]
- Rodríguez, A.; Sáez, P.; Díez, E.; Gómez, J.M.; García, J.; Bernabé, I. Highly Efficient Low-Cost Zeolite for Cobalt Removal from Aqueous Solutions: Characterization and Performance. Environ. Prog. Sustain. Energy 2018, 38, 352–365. [Google Scholar] [CrossRef]
- Araissi, M.; Elaloui, E.; Moussaou, Y. The Removal of Cadmium, Cobalt, and Nickel by Adsorption with Na-Y Zeolite. Iran. J. Chem. Chem. Eng. 2020, 39, 169–179. [Google Scholar] [CrossRef]
- Nourmohammadi, H.; Fazlavi, A.; Keyvan, S. Modeling Cobalt Ion Adsorption with Synthesized Magnetite Bentonite (SMB) Nano-Absorbent: By CCD. Iran. J. Chem. Chem. Eng. 2021, 40, 1532–1540. [Google Scholar] [CrossRef]
- Conte, N.; Gómez, J.M.; Díez, E.; Sáez, P.; Monago, J.I.; Espinosa, A.; Rodríguez, A. Sequential Separation of Cobalt and Lithium by Sorption: Sorbent Set Selection. Sep. Purif. Technol. 2022, 303, 122199. [Google Scholar] [CrossRef]
- Wang, J.; Huo, X.; Zhang, F.; Wang, L.; Wang, X.; Li, J.; Yang, J. Separation of Cobalt and Lithium from Spent LiCoO2 Batteries Using Zeolite NaA and the Resulting Ion Exchange Product for N2/O2 Separation. Sep. Purif. Technol. 2023, 313, 123449. [Google Scholar] [CrossRef]
- Díez, E.; Redondo, C.; Gómez, J.M.; Miranda, R.; Rodríguez, A. Zeolite Adsorbents for Selective Removal of Co(II) and Li(I) from Aqueous Solutions. Water 2023, 15, 270. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Phan, T.D.T.; Tran, N.P.L.; Luong, H.V.T.; Nguyen, D.T. Adsorption of Co(II) from the Simulated Solution by Zeolite NaX Derived from Rice Husk Ash. CTU J. Innov. Sustain. Dev. 2023, 15, 71–78. [Google Scholar] [CrossRef]
- Nakhaei, M.; Mokhtari, H.R.; Vatanpour, V.; Rezaei, K. Investigating the Effectiveness of Natural Zeolite (Clinoptilolite) for the Removal of Lead, Cadmium, and Cobalt Heavy Metals in the Western Parts of Iran’s Varamin Aquifer. Water Air Soil Pollut. 2023, 234, 746. [Google Scholar] [CrossRef]
- Worch, E. Adsorption Technology in Water Treatment; De Gruyter: Berlin, Germany, 2012. [Google Scholar]
- Rehman, A.; Park, M.; Park, S.J. Current Progress on the Surface Chemical Modification of Carbonaceous Materials. Coatings 2019, 9, 103. [Google Scholar] [CrossRef]
- Bayuo, J.; Rwiza, M.; Mtei, K. A Comprehensive Review on the Decontamination of Lead(Ii) from Water and Wastewater by Low-Cost Biosorbents. RSC Adv. 2022, 12, 11233–11254. [Google Scholar] [CrossRef]
- Netzer, A.; Hughes, D.E. Adsorption of Copper, Lead and Cobalt by Activated Carbon. Water Res. 1984, 18, 927–933. [Google Scholar] [CrossRef]
- Koshima, H.; Onishi, W. Adsorption of Metal Ions on Activated Carbon from Aqueous Solutions at PH 1-13. Talanta 1986, 33, 391–395. [Google Scholar] [CrossRef]
- Paajanen, A.; Lehto, J.; Santapakka, T.; Morneau, J.P. Sorption of Cobalt on Activated Carbons from Aqueous Solutions. Sep. Sci. Technol. 1997, 32, 813–826. [Google Scholar] [CrossRef]
- Paul Chen, J.; Lin, M. Equilibrium and Kinetics of Metal Ion Adsorption onto a Commercial H-Type Granular Activated Carbon: Experimental and Modeling Studies. Water Res. 2001, 35, 2385–2394. [Google Scholar] [CrossRef] [PubMed]
- Khope, R.U.; Halmare, S.S.; Natarajan, G.S. Study of Cobalt Adsorption from Aqueous Solution on Granular AC.Pdf. Asian J. Chem. 2004, 16, 1716–1720. [Google Scholar]
- Hete, Y.V.; Gholase, S.B.; Khope, R.U. Adsorption Study of Cobalt on Treated Granular Activated Carbon. E-J. Chem. 2012, 9, 335–339. [Google Scholar] [CrossRef]
- Gunjate, J.K. Selective Adsorption of Cobalt in Aqueous Solution Using Chemically Modified Activated Carbon. IOSR J. Environ. Sci. Toxicol. Food Technol. 2016, 10, 161–165. [Google Scholar] [CrossRef]
- Kakavandi, B.; Raofi, A.; Peyghambarzadeh, S.M.; Ramavandi, B.; Niri, M.H.; Ahmadi, M. Efficient Adsorption of Cobalt on Chemical Modified Activated Carbon: Characterization, Optimization and Modeling Studies. Desalination Water Treat 2018, 111, 310–321. [Google Scholar] [CrossRef]
- Gunjate, J.K.; Meshram, Y.K.; Khope, R.U.; Awachat, R.S. Adsorption Based Recovery of Cobalt Using Chemically Modified Activated Carbon. Mater. Today Proc. 2020, 29, 1150–1155. [Google Scholar] [CrossRef]
- Rivera-Utrilla, J.; Ferro-Garcia, M.A. Study of Cobalt Adsorption from Aqueous Solution on Activated Carbons from Almond Shells. Carbon N. Y. 1987, 25, 645–652. [Google Scholar] [CrossRef]
- Srivastava, S.K.; Tyagi, R.; Pant, N. Adsorption of Heavy Metal Ions on Carbonaceous Material Developed from the Waste Slurry Generated in Local Fertilizer Plants. Water Res. 1989, 23, 1161–1165. [Google Scholar] [CrossRef]
- Teker, M.; Saltabaş, Ö.; Imamoǧlu, M. Adsorption of Cobalt by Activated Carbon from the Rice Hulls. J. Environ. Sci. Health A Tox Hazard Subst. Environ. Eng. 1997, 32, 2077–2086. [Google Scholar] [CrossRef]
- Demirbaş, E. Adsorption of Cobalt(II) Ions from Aqueous Solution onto Activated Carbon Prepared from Hazelnut Shells. Adsorpt. Sci. Technol. 2003, 21, 951–963. [Google Scholar] [CrossRef]
- Krishnan, K.A.; Anirudhan, T.S. Kinetic and Equilibrium Modelling of Cobalt(II) Adsorption onto Bagasse Pith Based Sulphurised Activated Carbon. Chem. Eng. J. 2008, 137, 257–264. [Google Scholar] [CrossRef]
- Arifi, A.; Hanafi, H.A. Adsorption of Cesium, Thallium, Strontium and Cobalt Radionuclides Using Activated Carbon. Asian J. Chem. 2011, 23, 111–115. [Google Scholar] [CrossRef]
- Salas-Tort, D.; Marzal-Blanco, N.; Penedo-Medina, M. Estudio Preliminar de La Adsorción de Níquel y Cobalto Utilizando Carbón Vegetal de Conchas de Coco. Chem. Technol. 2012, 32, 166–176. [Google Scholar]
- Prabakaran, R.; Arivoli, S. Removal of Cobalt (II) from Aqueous Solutions by Adsorption on Low Cost Activated Carbon. Int. J. Sci. Eng. Technol. Res. (IJSETR) 2013, 2, 271–283. [Google Scholar]
- Aljundi, I.H.; Al-Dawery, S.K. Equilibrium and Thermodynamic Study of Cobalt Adsorption on Activated Carbon Derived from Date Seeds. Desalination Water Treat. 2014, 52, 4830–4836. [Google Scholar] [CrossRef]
- Abbas, M.; Kaddour, S.; Trari, M. Kinetic and Equilibrium Studies of Cobalt Adsorption on Apricot Stone Activated Carbon. J. Ind. Eng. Chem. 2014, 20, 745–751. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Deliyanni, E.A.; Matis, K.A. Activated Carbons Produced by Pyrolysis of Waste Potato Peels: Cobaltions Removal by Adsorption. Colloids Surf. A Physicochem. Eng. Asp. 2016, 490, 74–83. [Google Scholar] [CrossRef]
- Zhang, X.; Hao, Y.; Wang, X.; Chen, Z. Adsorption of Iron(III), Cobalt(II), and Nickel(II) on Activated Carbon Derived from Xanthoceras Sorbifolia Bunge Hull: Mechanisms, Kinetics and Influencing Parameters. Water Sci. Technol. 2017, 75, 1849–1861. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, Y.G.; Han, B.; Tan, Z.C.; Li, Q.H. Adsorption of Cobalt (III) by HCl and H2O2 Modified Activated Carbon. Int. J. Environ. Pollut. 2018, 63, 192–205. [Google Scholar] [CrossRef]
- Kamble, P.; Landge, R.H.; Lande, A.N.; Dhulap, V.P. A Novel Porous Activated Carbon Compound Prepared for Adsorption of Cobalt (Co (Ii)) from Aqueous Solution for Environmental Pollution Mitigation. Rasayan J. Chem. 2019, 12, 1864–1871. [Google Scholar] [CrossRef]
- Kolvankar, A.A. Adsorption studies of cobalt (ii) by activated carbon prepared from coconut tree root. EPRA Int. J. Res. Develop. 2019, 4, 1–10. [Google Scholar]
- Ketsela, G.; Animen, Z.; Talema, A. Adsorption of Lead (II), Cobalt (II) and Iron (II) From Aqueous Solution by Activated Carbon Prepared from White Lupine (GIBITO) HSUK. J. Thermodyn. Catal. 2020, 11, 203. [Google Scholar] [CrossRef]
- Aboli, E.; Jafari, D.; Esmaeili, H. Heavy Metal Ions (Lead, Cobalt, and Nickel) Biosorption from Aqueous Solution onto Activated Carbon Prepared from Citrus Limetta Leaves. Carbon Lett. 2020, 30, 683–698. [Google Scholar] [CrossRef]
- Lawan, I.Y.; Yamta, S.D.; Hudu, A.; Madu, K.A.; Mohammad, A.; Toma, D.D. Adsorption Capabilities of Activated Carbon Derived from Detarium Microcarpum Seeds in Removing Co2+ and Pb2+ from Wastewater. Earthline J. Chem. Sci. 2020, 3, 167–179. [Google Scholar] [CrossRef]
- Gómez, J.M.; Díez, E.; Bernabé, I.; Sáez, P.; Rodríguez, A. Effective Adsorptive Removal of Cobalt Using Mesoporous Carbons Synthesized by Silica Gel Replica Method. Environ. Process. 2018, 5, 225–242. [Google Scholar] [CrossRef]
- Bernabé, I.; Gómez, J.M.; Díez, E.; Sáez, P.; Rodríguez, A. Optimization and Adsorption-Based Recovery of Cobalt Using Activated Disordered Mesoporous Carbons. Adv. Mater. Sci. Eng. 2019, 2019, 3430176. [Google Scholar] [CrossRef]
- Conte, N.; Díez, E.; Almendras, B.; Gómez, J.M.; Rodríguez, A. Sustainable Recovery of Cobalt from Aqueous Solutions Using an Optimized Mesoporous Carbon. J. Sustain. Metall. 2023, 9, 266–279. [Google Scholar] [CrossRef]
- Conte, N.; Gómez, J.M. Improving the Sorption Properties of Mesoporous Carbons for the Removal of Cobalt, Nickel and Manganese from Spent Lithium-Ion Batteries Effluent. Sep. Purif. Technol. 2024, 328, 125095. [Google Scholar] [CrossRef]
- Ehsaninamin, P. Adsorption of Copper, Cobalt, and Manganese Ions from Aqueous Solutions Using Oxidized Multi-Walled Carbon Nanotubes. Environ. Prot. Eng. 2016, 42, 75–85. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Y.G.; Han, B.; Tan, Z.C.; Li, Q.H. Adsorption of Cobalt(III) by Graphene and Activated Carbon. Can. J. Chem. Eng. 2019, 97, 940–946. [Google Scholar] [CrossRef]
- Chai, W.S.; Cheun, J.Y.; Kumar, P.S.; Mubashir, M.; Majeed, Z.; Banat, F.; Ho, S.H.; Show, P.L. A Review on Conventional and Novel Materials towards Heavy Metal Adsorption in Wastewater Treatment Application. J. Clean. Prod. 2021, 296, 126589. [Google Scholar] [CrossRef]
Aluminium/bauxite | Coking coal | Lithium | Phosphorus |
Antimony | Feldspar | Light rare earth elements | Scandium |
Arsenic | Fluorspar | Magnesium | Silicon metal |
Baryte | Gallium | Manganese | Strontium |
Beryllium | Germanium | Natural graphite | Tantalum |
Bismuth | Hafnium | Niobium | Titanium metal |
Boron/borate | Helium | Platinum group metals | Tungsten |
Cobalt | Heavy rare earth elements | Phosphate rock | Vanadium |
Copper | Nickel |
Adsorbent | Dosage (g/L) | Initial Concentration (mg/L) | qmax (mg/g) | pH | Equilibrium Time (min) | Reference |
---|---|---|---|---|---|---|
Zefran | 20 | 100–400 | 0.60 | 4–7 | 1200 | [34] |
Zecrem | 20 | 100–400 | 0.58 | 4–7 | 1200 | [34] |
Ethylene vinyl acetate-clinoptilolite | N/A | 20 | 0.7 | 7 | 1440 | [36] |
Zeolite AW-300 | 10 | 50 | 10.39 | 5.7 | 1440 | [39] |
NaX | 10 | 20 | 19.96 | 5–6.5 | 1440 | [43] |
NaY-faujasite | 0.5 | 50 | 92 | 5.5 | 60 | [44] |
Clinoptilolite | 12 | 40 | 2.9 | 5.5–6 | 45 | [49] |
13X | 5 | 40 | 23 | 9–10 | 20 | [54] |
NaY | 5 | 40 | 24.2 | 8–9.5 | 20 | [54] |
Adsorbent | Dosage (g/L) | Initial Concentration (mg/L) | qmax (mg/g) (mg/mmol) * | pH | Equilibrium Time (min) | Reference |
---|---|---|---|---|---|---|
Commercially activated carbon | 10 | 10 | N/A | 4 | 120 | [60] |
Commercially activated carbon | 1 | 0.1–10 | N/A | 11.8 | 1200 | [61] |
Rice hulls | 30 | 15 | 40 | [71] | ||
Hazelnut shells | 13.30 | 13.88 | 6 | [72] | ||
F-200 | 2.5 | 0.5 | 2.75 * | 5 | 360 | [64] |
F-400 | 2.5 | 0.5 | 2.13 * | 5 | 360 | [64] |
Bagasse pit | 2–15 | 50–100 | 22.58–40.50 | 6 | 240 | [73] |
F 200 D | 2.5 | N/A | 0.0612 * | 5 | 360 | [65] |
F 300 D | 2.5 | N/A | 0.1059 * | 5 | 360 | [65] |
Coconut shells | 20 | 0.1–1 | N/A | 3 | 360 | [75] |
Apricot stone | 5 | 80 | 111.11 | 9 | 20 | [78] |
Waste potato peels (PoP400) | 1 | 10–1000 | 373 | 6 | 180 | [79] |
Waste potato peels (PoP600) | 1 | 10–1000 | 405 | 6 | 180 | [79] |
Xanthoceras sorbifolia Bunge Hull | N/A | 550–800 | 126.05 | 2.0–6.5 | 20–120 | [80] |
Sodium docecyl sulfate granular activated carbon | 1.2 | 20 | 51 | N/A | N/A | [67] |
Mesoporous activated carbon | 12.5 | 20 | 1.6 | 6 | 15 | [88] |
Mesoporous activated carbon | 10 | 20 | 5.8 | 3.5 | 15 | [89] |
Mesoporous carbon doubly activated | 7.5 | 200 | 22.3 | 4.9 | 15 | [90] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díez, E.; Miranda, R.; López, J.M.; Jiménez, A.; Conte, N.; Rodríguez, A. Adsorption of Cobalt onto Zeolitic and Carbonaceous Materials: A Review. Separations 2024, 11, 232. https://doi.org/10.3390/separations11080232
Díez E, Miranda R, López JM, Jiménez A, Conte N, Rodríguez A. Adsorption of Cobalt onto Zeolitic and Carbonaceous Materials: A Review. Separations. 2024; 11(8):232. https://doi.org/10.3390/separations11080232
Chicago/Turabian StyleDíez, Eduardo, Rubén Miranda, Juan Manuel López, Arturo Jiménez, Naby Conte, and Araceli Rodríguez. 2024. "Adsorption of Cobalt onto Zeolitic and Carbonaceous Materials: A Review" Separations 11, no. 8: 232. https://doi.org/10.3390/separations11080232
APA StyleDíez, E., Miranda, R., López, J. M., Jiménez, A., Conte, N., & Rodríguez, A. (2024). Adsorption of Cobalt onto Zeolitic and Carbonaceous Materials: A Review. Separations, 11(8), 232. https://doi.org/10.3390/separations11080232