Evolution of Recrystallization Texture in A286 Iron-Based Superalloy Thin Plates Rolled via Various Routes
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
3.1. Recrystallization Microstructure and Texture under Various Rolling Routes
3.2. The Origin of the Recrystallization Texture of A286 Superalloy
- (1)
- Recrystallization texture inherited from deformation texture
- (2)
- Recrystallization texture depended on deformation twins
4. Conclusions
- (1)
- Goss, Brass, S, Copper and R-Goss textures dominate the recrystallized plates. Moreover, similar recrystallization textures develop under different rolling routes including one- and two-stage cold rolling.
- (2)
- Under various rolling routes, the recrystallization grain size is similar. The growth of recrystallized grains is slow in the thin plates annealed at 980 °C, and the grain size only increases from 4.6 μm to 5.3 μm, as the annealing time extends from 5 min to 60 min.
- (3)
- The route of two-stage cold rolling that can weaken work hardening also helps to decrease the recrystallization texture, thereby reducing the anisotropy of the recrystallized thin plates.
- (4)
- The recrystallization texture of A286 superalloy plates develops through two independent mechanisms related to different deformation microstructures. The formation of textures of Goss, Brass, S and Copper relies on the heredity of deformation texture, while the R-Goss recrystallization texture is more dependent on deformation twins.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Geddes, B.; Leon, H.; Huang, X. Superalloys. In Alloying and Performance; ASM International: Almere, The Netherlands, 2010; pp. 71–72. [Google Scholar]
- Liu, S.C.; Gao, Y.; Lin, Z.L.; Guo, S.S.; Zhang, X.B.; Yin, X.J. Microstructure and properties after deformation and aging process of A286 superalloy. Rare Met. 2019, 38, 864–870. [Google Scholar] [CrossRef]
- Wei, L.; Zhao, H.; Sun, Y.; Zhang, Y.; Zhao, B.; Liu, Z.; Yang, Z. Microstructure evolution and stress rupture properties of A286 superalloy in the 600 to 750 °C temperature range. Mater. Res. Express 2021, 8, 026521. [Google Scholar] [CrossRef]
- Zhao, M.J.; Guo, Z.F.; Liang, H.; Rong, L.J. Effect of boron on the microstructure, mechanical properties and hydrogen performance in a modified A286. Mater. Sci. Eng. A 2010, 527, 5844–5851. [Google Scholar] [CrossRef]
- Günen, L.; Keddam, M.; Alkan, S.; Erdoğan, A.; Çetin, M. Microstructural characterization, boriding kinetics and tribo-wear behavior of borided Fe-based A286 superalloy. Mater. Charact. 2022, 186, 111778. [Google Scholar] [CrossRef]
- Rho, B.S.; Nam, S.W. Fatigue-induced precipitates at grain boundary of Nb-A286 alloy in high temperature low cycle fatigue. Mater. Sci. Eng. A 2000, 291, 54–59. [Google Scholar] [CrossRef]
- De Cicco, H.; Luppo, M.I.; Gribaudo, L.M.; Ovejero-Garcıa, J. Microstructural development and creep behavior in A286 superalloy. Mater. Charact. 2004, 52, 85–92. [Google Scholar] [CrossRef]
- Cissé, S.; Laffont, L.; Lafont, M.C.; Tanguy, B.; Andrieu, E. Influence of localized plasticity on oxidation behaviour of austenitic stainless steels under primary water reactor. J. Nucl. Mater. 2013, 433, 319–328. [Google Scholar] [CrossRef]
- Bulloch, J.H.; Younes, C.M.; Bernard, P.J.; Heard, P. A detailed fitness-for-purpose assessment of turbine valve spindles. Eng. Fail. Anal. 2006, 13, 747–766. [Google Scholar] [CrossRef]
- Shahedi, R.; Kheirandish, S.; Shirazi, F.; Seifollahi, M. The effect of solid solution treatment parameters on the microstructure and mechanical properties of A286 superalloy. Metall. Res. Technol. 2021, 118, 10. [Google Scholar] [CrossRef]
- Shan, N.; Liu, J.; Sha, Y.; Zhang, F.; Zuo, L. Development of Through-Thickness Cube Recrystallization Texture in Non-oriented Electrical Steels by Optimizing Nucleation Environment. Metall. Mater. Trans. A 2019, 50, 2486–2494. [Google Scholar] [CrossRef]
- Liu, J.L.; Sha, Y.H.; Zhang, F.; Li, J.C.; Yao, Y.C.; Zuo, L. Development of {2 1 0}<0 0 1> recrystallization texture in Fe-6.5 wt.% Si thin sheets. Scr. Mater. 2011, 65, 292–295. [Google Scholar]
- Akhiani, H.; Nezakat, M.; Szpunar, J.A. Evolution of deformation and annealing textures in Incoloy 800H/HT via different rolling paths and strains. Mater. Sci. Eng. A 2014, 614, 250–263. [Google Scholar] [CrossRef]
- Gervasyeva, I.V.; Beaugnon, E.; Milyutin, V.A.; Volkova, E.G.; Rodionov, D.P.; Khlebnikova, Y.V.; Shishkin, D.A. Formation of structure and crystallographic texture in Fe-50% Ni thin tapes under high magnetic field annealing. Phys. B Condens. Matter 2015, 468, 66–71. [Google Scholar] [CrossRef]
- Saleh, A.A.; Pereloma, E.V.; Gazder, A.A. Texture evolution of cold rolled and annealed Fe–24Mn–3Al–2Si–1Ni–0.06C TWIP steel. Mater. Sci. Eng. A 2011, 528, 4537–4549. [Google Scholar] [CrossRef]
- Nabizada, A.; Zarei-Hanzaki, A.; Abedi, H.R.; Barati, M.H.; Asghari-Rad, P.; Kim, H.S. The high temperature mechanical properties and the correlated microstructure/ texture evolutions of a TWIP high entropy alloy. Mater. Sci. Eng. A 2021, 802, 140600. [Google Scholar] [CrossRef]
- Wang, S.W.; Song, H.W.; Chen, Y.; Zhang, S.H.; Li, H.H. Evolution of Annealing Twins and Recrystallization Texture in Thin-Walled Copper Tube During Heat Treatment. Acta Metall. Sin. 2022, 33, 1618–1626. [Google Scholar] [CrossRef]
- Vercammen, S. Processing and Tensile Behaviour of TWIP Steels, Microstructural and Textural Analysis; Katholieke Universiteit Leuven: Leuven, Belgium, 2004. [Google Scholar]
- De las Cuevas, F.; Reis, M.; Ferraiuolo, A.; Pratolongo, G.; Karjalainen, L.P.; García Navas, V.; Gil Sevillano, J. Kinetics of recrystallization and grain growth of cold rolled TWIP steel. Adv. Mater. Res. 2010, 89, 153–158. [Google Scholar] [CrossRef]
- Zeng, M.T.; Yang, Y.; Tan, Y.B.; Zhang, W.W.; Xiang, S.; Ma, M.; Zhao, F. Recrystallization behavior and texture evolution of cryo-rolled GH159 superalloy with an ultra-high strength. Mater. Charact. 2023, 197, 112656. [Google Scholar] [CrossRef]
- Wang, G.Q.; Li, H.B.; Chen, M.S.; Lin, Y.C.; Zeng, W.D.; Ma, Y.Y.; Chen, Q.; Jiang, Y.Q. Effect of initial mixed grain microstructure state of deformed Ni-based superalloy on its refinement behavior during two-stage annealing treatment. Mater. Charact. 2021, 176, 111130. [Google Scholar] [CrossRef]
- Wang, J.Q.; Cheng, S.H.; Wu, Y.S.; Wang, T.T.; Qin, X.Z.; Zhou, L.Z. Effect of cold rolling on microstructure, texture, and tensile properties of a Ni-Fe-based superalloy. J. Alloys Compd. 2023, 937, 68383. [Google Scholar] [CrossRef]
- Tripathy, B.; Saha, R.; Bhattacharjee, P.P. Microstructure and unusually strong recrystallization texture of the FCC phase of a cost-effective high-strength dualphase AlCrFe2Ni2 high entropy alloy. Intermetallics 2022, 145, 107559. [Google Scholar] [CrossRef]
- Bracke, L.; Verbeken, K.; Kestens, L.; Penning, J. Microstructure and texture evolution during cold rolling and annealing of a high Mn TWIP steel. Acta Mater. 2009, 57, 1512–1524. [Google Scholar] [CrossRef]
- Sharma, N.K.; Shekhar, S. New insights into the evolution of twin boundaries during recrystallization and grain growth of low-SFE FCC alloys. Mater. Charact. 2020, 159, 110015. [Google Scholar] [CrossRef]
- Huang, H.; Li, X.; Dong, Z.; Li, W.; Huang, S.; Meng, D.; Lai, X.; Liu, T.; Zhu, S.; Vitos, L. Critical stress for twinning nucleation in CrCoNi-based medium and high entropy alloys. Acta Mater. 2018, 149, 388–396. [Google Scholar] [CrossRef]
C | Mn | P | S | Si | Ni | Cr | Ti | V | Mo | Cu | Al | B | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.05 | 1.23 | 0.012 | 0.004 | 0.14 | 25.36 | 15.25 | 2.03 | 0.26 | 1.24 | 0.03 | 0.26 | 0.004 | Bal |
Components | Miller Indices | Euler Angles (φ1, Φ, φ2) |
---|---|---|
Goss | {110} <100> | (90, 90, 45) |
R-Goss | {110} <110> | (0, 90, 45) |
Copper | {112} <111> | (90, 35, 45) |
Brass | {110} <112> | (55, 90, 45) |
S | {123} <634> | (59, 29, 63) |
α-fiber | <110> parallel to ND | |
β-fiber | <110> tilted 60° from ND towards RD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Zhang, C.; Wang, Z.; Liu, J. Evolution of Recrystallization Texture in A286 Iron-Based Superalloy Thin Plates Rolled via Various Routes. Metals 2023, 13, 1527. https://doi.org/10.3390/met13091527
Zhang R, Zhang C, Wang Z, Liu J. Evolution of Recrystallization Texture in A286 Iron-Based Superalloy Thin Plates Rolled via Various Routes. Metals. 2023; 13(9):1527. https://doi.org/10.3390/met13091527
Chicago/Turabian StyleZhang, Renjie, Chi Zhang, Zeyu Wang, and Jinlong Liu. 2023. "Evolution of Recrystallization Texture in A286 Iron-Based Superalloy Thin Plates Rolled via Various Routes" Metals 13, no. 9: 1527. https://doi.org/10.3390/met13091527