Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (165)

Search Parameters:
Keywords = Co/Al2O3-CeO2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3118 KB  
Article
Geochemical Signatures and Economic Evaluation of Rare Earth Element Enrichment in the Şahinali Coals, Western Anatolia
by Neslihan Ünal-Kartal
Minerals 2026, 16(2), 167; https://doi.org/10.3390/min16020167 - 31 Jan 2026
Viewed by 191
Abstract
The horst and graben system in Western Anatolia lies on the eastern boundary of the Aegean extensional system, one of the most active extensional zones in the world. The Şahinali coal basin is located south of the Büyük Menderes Graben, which is part [...] Read more.
The horst and graben system in Western Anatolia lies on the eastern boundary of the Aegean extensional system, one of the most active extensional zones in the world. The Şahinali coal basin is located south of the Büyük Menderes Graben, which is part of this system. This study examines the rare earth elements and yttrium (REY) geochemistry, accumulation conditions, and economic potential of the Şahinali coals. Compared to world coals, the REE concentration in Şahinali coals (208.3 ppm) is quite high, and all REY groups are slightly enriched. Light REY (LREY) is dominant compared to medium REY (MREY) and heavy REY (HREY). The most abundant element in this group is Ce, reaching a concentration of 123.3 ppm. REY distribution patterns indicate H-type enrichment in most samples and, to a lesser extent, M-H-type enrichment. Element ratios (Al2O3/TiO2, TiO2/Zr, La/Sc, Co/Th) and REY anomalies (Ce, Eu, Gd) indicate that the sedimentary input is predominantly derived from felsic rocks, with limited intermediate to mafic contributions. SEM-EDS findings and correlation analyses indicate that REY are predominantly associated with aluminosilicate minerals. LREY-Th and MREY/HREY-Y relationships are supported by monazite and Y-rich illitic K-aluminosilicates. Paleoenvironmental indicators (V/Cr, Ni/Co, U/Th, Sr/Cu, Rb/Sr, Sr/Ba) indicate that the coal accumulated under oxic–suboxic, warm and humid conditions. The average REY oxide (REO) content slightly exceeds the commonly cited 1000 ppm screening threshold for coal ash. The majority of samples contain elevated proportions of critical REY (30.7%–54.3%) and show promising outlook coefficients (Coutl: 0.8–1.7). Together, these results indicate a favourable compositional signature for preliminary REY resource screening in the Şahinali coals, particularly with respect to elements relevant for high-technology applications. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

29 pages, 5641 KB  
Article
Origin of Black Shale-Hosted Dagangou Vanadium Deposit, East Kunlun Orogenic Belt, NW China: Evidence from Mineralogy and Geochemistry
by Tao Tian, Fengyue Sun, Guang Xu, Guowen Miao, Ye Qian, Jianfeng Qiao, Shukuan Wu and Zhian Wang
Minerals 2026, 16(2), 163; https://doi.org/10.3390/min16020163 - 30 Jan 2026
Viewed by 218
Abstract
Little is known of a large black shale belt within the Naij Tal Group in the East Kunlun region, which hosts polymetallic deposits, including manganese, vanadium, and cobalt. The recently discovered Dagangou vanadium mineralization is the first black rock series-type vanadium deposit in [...] Read more.
Little is known of a large black shale belt within the Naij Tal Group in the East Kunlun region, which hosts polymetallic deposits, including manganese, vanadium, and cobalt. The recently discovered Dagangou vanadium mineralization is the first black rock series-type vanadium deposit in the East Kunlun region and Qinghai Province and represents a significant find owing to its intermediate scale. This study investigated the mineralogy, major and trace elements, rare earth elements, and platinum group element geochemistry of the Dagangou vanadium deposit. Scanning electron microscopy and energy-dispersive X-ray spectroscopy revealed that the main vanadium-bearing minerals are micas, followed by limonite, clay minerals, feldspar, and jarosite. The SiO2/Al2O3, Co/Zn, Sr/Ba, and Pd/Ir ratios, as well as the Ir content of the ores, indicated strong involvement of hydrothermal activity in the mineralization process. The V/Cr, Ni/Co, and U/Th ratios, as well as the δU values and significant negative δCe anomalies, suggested that the vanadium-bearing black rock series formed in a strongly anoxic reducing environment. The Al2O3/(Al2O3 + Fe2O3) and MnO/TiO2 ratios, along with weak positive δEu anomalies and strong enrichment of heavy rare earth elements, indicated that mineralization occurred in an extensional tectonic setting. The black shale-hosted vanadium polymetallic deposit formed in a setting that transitioned from an open oceanic deep-sea environment to a progressively shallower continental margin. Full article
Show Figures

Figure 1

20 pages, 3087 KB  
Article
Catalytic Combustion Characteristics for Removal of High-Concentration Volatile Organic Compounds (VOCs)
by Tae-Jin Kang, Hyun-Ji Kim, Jieun Lee, Jin-Hee Lee, Hyo-Sik Kim, Jin-Ho Kim, No-Kuk Park, Soo Chool Lee and Suk-Hwan Kang
Atmosphere 2026, 17(2), 137; https://doi.org/10.3390/atmos17020137 - 27 Jan 2026
Viewed by 209
Abstract
The conventional treatment of high-concentration volatile organic compounds (VOCs) relies on energy-intensive dilution to avoid explosion risks. This study proposes an efficient catalytic combustion process treating VOCs directly within the explosive range while recovering reaction heat using Pt/γ-Al2O3-based catalysts [...] Read more.
The conventional treatment of high-concentration volatile organic compounds (VOCs) relies on energy-intensive dilution to avoid explosion risks. This study proposes an efficient catalytic combustion process treating VOCs directly within the explosive range while recovering reaction heat using Pt/γ-Al2O3-based catalysts promoted with La and Ce. Catalysts (0.05–0.5 wt% Pt) were synthesized via impregnation and characterized using FE-SEM, BET, and XRD. Catalytic combustion experiments at VOC concentrations up to 13,000 ppm showed combustion initiation below 200 °C, achieving 83–99% conversions at 300 °C with complete oxidation to CO2. Although 5 vol.% moisture significantly inhibited low-temperature activity through competitive adsorption, La and Ce promoters (10 wt%) effectively overcame this limitation by increasing surface area (up to 194.93 m2/g) and oxygen mobility. The Ce-promoted catalyst demonstrated superior water tolerance, achieving complete conversion at 200–210 °C due to its high Oxygen Storage Capacity (OSC). Bench-scale validation using a 1 Nm3/h system confirmed industrial feasibility. Operating at 220 °C with 13,000 ppm toluene for 100 h, the catalyst maintained >99.98% conversion with negligible deactivation and THC emissions below 2 ppm. The double-jacket heat exchanger effectively managed reaction heat (limiting temperature rise to ~20 °C) and recovered it as steam. Compared to Regenerative Thermal Oxidation, this Regenerative Catalytic Oxidation approach reduced emissions and energy consumption. This work demonstrates a robust “combustion-with-recovery” strategy for high-concentration VOC treatment, offering a sustainable alternative with high efficiency, stability, and safe energy-integrated operation. Full article
Show Figures

Graphical abstract

15 pages, 2433 KB  
Article
Investigation of Biogas Dry Reforming over Ru/CeO2 Catalysts and Pd/YSZ Membrane Reactor
by Omid Jazani and Simona Liguori
Membranes 2026, 16(1), 34; https://doi.org/10.3390/membranes16010034 - 5 Jan 2026
Viewed by 523
Abstract
The biogas dry reforming reaction offers a promising route for syngas production while simultaneously mitigating greenhouse gas emissions. Membrane reactors have proven to be an excellent option for hydrogen production and separation in a single unit, where conversion and yield can be enhanced [...] Read more.
The biogas dry reforming reaction offers a promising route for syngas production while simultaneously mitigating greenhouse gas emissions. Membrane reactors have proven to be an excellent option for hydrogen production and separation in a single unit, where conversion and yield can be enhanced over conventional processes. In this study, a Pd/YSZ membrane integrated with a Ru/CeO2 catalyst was evaluated for biogas reaction under varying operating conditions. The selective removal of hydrogen through the palladium membrane improved reactant conversion and suppressed side reactions such as methanation and the reverse water–gas shift. Experiments were performed at temperatures ranging from 500 to 600 °C, pressures of 1–6 bar, and a gas hourly space velocity (GHSV) of 800 h−1. Maximum conversions of CH4 (43%) and CO2 (46.7%) were achieved at 600 °C and 2 bar, while the maximum hydrogen recovery of 78% was reached at 6 bar. The membrane reactor outperformed a conventional reactor, offering up to 10% higher CH4 conversion and improved hydrogen production and yield. Also, a comparative analysis between Ru/CeO2 and Ni/Al2O3 catalysts revealed that while the Ni-based catalyst provided higher CH4 conversion, it also promoted methane decomposition reaction and coke formation. In contrast, the Ru/CeO2 catalyst exhibited excellent resistance to coke formation, attributable to ceria’s redox properties and oxygen storage capacity. The combined system of Ru/CeO2 catalyst and Pd/YSZ membrane offers an effective and sustainable approach for hydrogen-rich syngas production from biogas, with improved performance and long-term stability. Full article
(This article belongs to the Special Issue Advanced Membrane Design for Hydrogen Technologies)
Show Figures

Graphical abstract

18 pages, 5185 KB  
Article
LDH-Derived Preparation of Ce-Modified MnCoAl Layered Double Oxides for NH3-SCR: Performance and Reaction Process Study
by Xin Liu, Jinshan Zhang, Tao Sun, Hisahiro Einaga, Hajime Hojo and Pengwei Huo
Catalysts 2026, 16(1), 55; https://doi.org/10.3390/catal16010055 - 3 Jan 2026
Viewed by 448
Abstract
A series of novel Ce-modified MnCoAl layered double oxides (Ce/MCA LDOs) were prepared using solvothermal and impregnation methods for NH3-SCR denitration. Various characterizations, such as X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and [...] Read more.
A series of novel Ce-modified MnCoAl layered double oxides (Ce/MCA LDOs) were prepared using solvothermal and impregnation methods for NH3-SCR denitration. Various characterizations, such as X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and H2 temperature-programmed reduction (H2-TPR) were used to investigate their structural properties and the mechanism of ammonia selective catalytic reduction (NH3-SCR). The incorporation of Ce was found to effectively integrate into the LDO framework and enhance the catalytic activity over a wide temperature window. Moreover, the thermal stability and resistance of H2O and SO2 were evaluated. In situ DRIFTS studies revealed that the reaction follows both the “Langmuir–Hinshelwood” (L–H) and “Eley–Rideal” (E–R) mechanisms. This work provides systematic insights into the design of LDO-based catalysts, demonstrating their potential for practical application in denitration. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

21 pages, 3392 KB  
Article
Effect of Ba/Ce Ratio on the Structure and Performance of Pt-Based Catalysts: Correlation Between Physicochemical Properties and NOx Storage–Reduction Activity
by Dongxia Yang, Yanxing Sun, Tingting Zheng, Lv Guo, Yao Huang, Junchen Du, Xinyue Wang and Ping Ning
Catalysts 2026, 16(1), 21; https://doi.org/10.3390/catal16010021 - 26 Dec 2025
Viewed by 406
Abstract
The continuous tightening of emission regulations and the escalating costs of palladium (Pd) and rhodium (Rh) have renewed interest in platinum (Pt)-based three-way catalysts (TWCs) as cost-effective alternatives for gasoline aftertreatment. However, despite extensive studies on Pt/CeO2 and Pt/Ba-based formulations, the cooperative [...] Read more.
The continuous tightening of emission regulations and the escalating costs of palladium (Pd) and rhodium (Rh) have renewed interest in platinum (Pt)-based three-way catalysts (TWCs) as cost-effective alternatives for gasoline aftertreatment. However, despite extensive studies on Pt/CeO2 and Pt/Ba-based formulations, the cooperative roles of Ba and Ce and, in particular, the fundamental influence of the Ba/Ce ratio on oxygen mobility, NOx storage behavior, and Pt–support interactions remain poorly understood. In this work, we address this gap by systematically tuning the Ba/Ce molar ratio in a series of Pt–Ba–Ce/Al2O3 catalysts prepared from Ba(CH3COO)2 and CeO2 precursors, and evaluating their structure–function relationships in both fresh and hydrothermally aged states. Through comprehensive characterization (N2 physisorption, XRD, XPS, H2-TPR, NOx-TPD, SEM, CO pulse adsorption, and dynamic light-off testing), we establish previously unrecognized correlations between Ba/Ce ratio–dependent structural evolution and TWC performance. The results reveal that the Ba/Ce ratio exerts a decisive control over catalyst textural properties, Pt dispersion, and interfacial Pt–CeO2 oxygen species. Low Ba/Ce ratios uniquely promote Pt–Ce interfacial oxygen and O2 spillover—providing a new mechanistic basis for enhanced low-temperature oxidation and reduction reactions—while higher Ba loading selectively drives BaCO3 formation and boosts NOx storage capacity. A clear volcano-type dependence of NOx storage on the Ba/Ce ratio is demonstrated for the first time. Hydrothermal aging at 850 °C induces PtOx decomposition, BaCO3–Al2O3 solid-state reactions forming inactive BaAl2O4, and Pt sintering, collectively suppressing Pt–Ce interactions and reducing TWC activity. Importantly, an optimized Ba/Ce ratio is shown to mitigate these degradation pathways, offering a new design principle for thermally durable Pt-based TWCs. Overall, this study provides new mechanistic insight into Ba–Ce cooperative effects, establishes the Ba/Ce ratio as a critical and previously overlooked parameter governing Pt–support interactions and NOx storage, and presents a rational strategy for designing cost-effective, hydrothermally robust Pt-based alternatives to Pd/Rh commercial TWCs. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

15 pages, 2162 KB  
Article
New Polyfunctional Nanocatalysts for the Hydrogen-Free Processing of N-Alkanes and Gasoline Fractions
by Saule B. Nurzhanova, Galymzhan T. Saidilda, Annas Nurlan, Arlan Z. Abilmagzhanov, Aizada S. Nagashybayeva and Svetlana A. Tungatarova
Processes 2025, 13(12), 3841; https://doi.org/10.3390/pr13123841 - 27 Nov 2025
Viewed by 399
Abstract
Studies were conducted on the hydrogen-free processing of model alkanes, straight-run gasoline, and catalytic cracking gasoline using a new synthesized Co-Mo-Ce/ZSM + Al2O3 nanocatalyst, which demonstrated high activity in desulfurization. Thus, the mass fraction of sulfur in the resulting gasoline [...] Read more.
Studies were conducted on the hydrogen-free processing of model alkanes, straight-run gasoline, and catalytic cracking gasoline using a new synthesized Co-Mo-Ce/ZSM + Al2O3 nanocatalyst, which demonstrated high activity in desulfurization. Thus, the mass fraction of sulfur in the resulting gasoline was reduced by almost three times compared to the initial value of 0.0776% to 0.0354% as a result of hydrogen-free processing of straight-run gasoline. The amount of sulfur in the resulting product was reduced by almost an order of magnitude with hydrogen-free processing of catalytic cracked gasoline: from 0.1650 in the original gasoline to 0.0123%. The octane number of the refined straight-run gasoline was 77.9–80.9 according to the research method (RM) and 61.13–65.8 with the motor method (MM). Physical and chemical methods of analysis (BET, TPD-NH3, TEM, SEM, and XRD) revealed that nano-structured acid sites coexist with nano-dispersed metallic sites on the surface of the Co-Mo-Ce/ZSM + Al2O3 catalyst. The functioning of these two types of nano-active sites (metallic and acidic) ensures the polyfunctionality of the catalytic action of the nanoparticles. The following reactions occur simultaneously in the hydrogen-free processing: isomerization, dehydrogenation, dehydrocyclization. Hydrogen-free processing of low-octane gasoline fractions on nanosized zeolite-containing catalysts is one of the most promising methods to obtain high-octane motor gasoline. Full article
(This article belongs to the Special Issue Advances in Supported Nanoparticle Catalysts (Volume II))
Show Figures

Figure 1

15 pages, 4422 KB  
Article
Ni-Based Catalysts Coupled with SERP for Efficient Power-to-X Conversion
by Marina Pedrola, Roger Miró, Isabel Vicente and Aitor Gual
Catalysts 2025, 15(11), 1082; https://doi.org/10.3390/catal15111082 - 15 Nov 2025
Cited by 1 | Viewed by 827
Abstract
The industrial application of CO2 methanation in Power-to-X (P2X) systems requires the development of highly active catalysts capable of operating at milder temperatures to ensure energy efficiency, while exhibiting high activity, stability and selectivity. This study reports the synthesis and optimization of [...] Read more.
The industrial application of CO2 methanation in Power-to-X (P2X) systems requires the development of highly active catalysts capable of operating at milder temperatures to ensure energy efficiency, while exhibiting high activity, stability and selectivity. This study reports the synthesis and optimization of Ni-based catalysts on Al2O3 supports, guided by a Design of Experiments (DoE, 24 factorial design) approach. Initial optimization afforded a robust catalyst achieving 80% CO2 conversion and >99% CH4 selectivity at 325 °C. Remarkably, the incorporation of CeO2 traces to the Ni-based catalyst substantially boosted catalytic activity, enabling higher conversions at temperatures up to 75 °C lower than the unpromoted catalyst. This improvement is attributed to Ni–CeOx synergy, which facilitates CO2 activation and Ni reducibility. Both formulations exhibited exceptional long-term stability over 100 h. Furthermore, process intensification via the Sorption-Enhanced Reaction Process (SERP) with the Ni-based catalyst demonstrated even superior efficiency, rapidly increasing CO2 conversion beyond 95% with the same selectivity range. Our findings establish a clear and consistent pathway for industrial CO2 valorization through next-generation P2X technology for high-purity synthetic natural gas (SNG) production. This process offers an efficient and sustainable route toward industrial defossilization by converting captured CO2 and green H2 into SNG that is readily usable within the existing energy infrastructure. Full article
Show Figures

Figure 1

18 pages, 8789 KB  
Article
Optimization of Plasma-Sprayed CeScYSZ Thermal Barrier Coating Parameters and Investigation of Their CMAS Corrosion Resistance
by Rongbin Li, Keyu Wang and Ziyan Li
Materials 2025, 18(22), 5114; https://doi.org/10.3390/ma18225114 - 11 Nov 2025
Viewed by 554
Abstract
Thermal barrier coatings (TBCs) are critical for protecting hot-section components in gas turbines and aero-engines. Traditional yttria-stabilized zirconia (YSZ) coatings are prone to phase transformation and sintering-induced failure at elevated temperatures. This study fabricated CeScYSZ (4 mol% CeO2 and 6 mol% Sc [...] Read more.
Thermal barrier coatings (TBCs) are critical for protecting hot-section components in gas turbines and aero-engines. Traditional yttria-stabilized zirconia (YSZ) coatings are prone to phase transformation and sintering-induced failure at elevated temperatures. This study fabricated CeScYSZ (4 mol% CeO2 and 6 mol% Sc2O3 co-doped YSZ)/NiCrAlY TBCs using atmospheric plasma spraying (APS). A five-factor, four-level orthogonal experimental design was employed to optimize spraying parameters, investigating the influence of powder feed rate, spray distance, current, hydrogen flow rate and primary gas flow rate on the coating’s microstructure and mechanical properties. The resistance to calcium–magnesium–alumino–silicate (CMAS) corrosion was compared between CeScYSZ and YSZ coatings. The results indicate that the optimal parameters are a spray distance of 100 mm, current of 500 A, argon flow rate of 30 L/min, hydrogen flow rate of 6 L/min, and powder feed rate of 45 g/min. Coatings produced under these conditions exhibited moderate porosity and excellent bonding strength. After exposure to CMAS corrosion at 1300 °C for 2 h, the CeScYSZ coating demonstrated significantly superior corrosion resistance compared to YSZ. This enhancement is attributed to the formation of a CaZrO3 physical barrier and the synergistic effect of Ce and Sc in suppressing deleterious phase transformations. This study provides an experimental basis for the preparation and application of high-performance TBCs. Full article
(This article belongs to the Special Issue Protective Coatings for Metallic Materials)
Show Figures

Figure 1

20 pages, 10504 KB  
Article
Phase Equilibrium Relationship of CaO-Al2O3-Ce2O3-CaF2 Slag System at 1300~1500 °C
by Lifeng Sun, Jiangsheng Ye, Jiyu Qiu and Chengjun Liu
Metals 2025, 15(11), 1209; https://doi.org/10.3390/met15111209 - 30 Oct 2025
Viewed by 451
Abstract
CaO-Al2O3-Ce2O3 is a potential new-type basic metallurgical slag system for rare earth steel. To investigate the effects of CaF2 on the melting point and equilibrium phase types of this slag system, the phase equilibrium relationships [...] Read more.
CaO-Al2O3-Ce2O3 is a potential new-type basic metallurgical slag system for rare earth steel. To investigate the effects of CaF2 on the melting point and equilibrium phase types of this slag system, the phase equilibrium relationships and extent of the liquid phase region of CaO-Al2O3-Ce2O3-CaF2 slag system at 1300 °C, 1400 °C, and 1500 °C in C/CO were determined by the high-temperature phase equilibrium experiment, Scanning Electron Microscope-Energy Dispersive X-ray Spectrometer (SEM-EDX) and X-ray Diffraction (XRD), and the isothermal phase diagram was plotted. The experimental results show that within the composition range in this study, the slag system has five, seven, and six liquid–solid equilibrium coexistence regions at 1300 °C, 1400 °C, and 1500 °C. The involved multiphase equilibrium regions include five two-phase regions (i.e., Liquid + CaO, Liquid + CaO·2Al2O3, Liquid + 2CaO·Al2O3·Ce2O3, Liquid + 2CaO·3Al2O3·Ce2O3, Liquid + 11CaO·7Al2O3·CaF2), 4 three-phase regions (i.e., Liquid + CaO + 2CaO·Al2O3·Ce2O3, Liquid + 11CaO·7Al2O3·CaF2 + 2CaO·Al2O3·Ce2O3, Liquid + CaO·2Al2O3 + 2CaO·3Al2O3·Ce2O3, Liquid + 11CaO·7Al2O3·CaF2 + 2CaO·3Al2O3·Ce2O3), and 1 four-phase region (i.e., Liquid + CaO + 11CaO·7Al2O3·CaF2 + 2CaO·Al2O3·Ce2O3). Meanwhile, based on liquid phase compositions under liquid–solid multiphase equilibrium, the slag system’s liquid phase ranges at the experimental temperatures were determined as follows: at 1300 °C: w(CaO)/w(Al2O3) = 0.42~0.92, w(Ce2O3) = 1.63%~8.02%, w(CaF2) = 9.17%~21.46%; 1400 °C: 0.28~1.18, 0.9%~12.62%, 1.04%~23.34%, respectively; 1500 °C: 0.23~1.21, 0~14.42%, 0~26.32%, respectively. Full article
Show Figures

Figure 1

11 pages, 2403 KB  
Article
Separation of REs from Ca and Mg Ions by Ammonium Bicarbonate Precipitation and the Influence of Fe and Al Ions
by Yanzhu Liu, Zhenghui Zhu, Fen Nie, Lihui Liu, Jinfei Shi and Yongxiu Li
Metals 2025, 15(10), 1142; https://doi.org/10.3390/met15101142 - 14 Oct 2025
Viewed by 937
Abstract
The presence of impurities such as Ca, Mg, and Al during the precipitation of rare earths (REs) using ammonium bicarbonate directly affects product purity. It is necessary to optimize precipitation methods and conditions to improve the separation efficiency between REs and impurities. In [...] Read more.
The presence of impurities such as Ca, Mg, and Al during the precipitation of rare earths (REs) using ammonium bicarbonate directly affects product purity. It is necessary to optimize precipitation methods and conditions to improve the separation efficiency between REs and impurities. In this study, RE (La and Ce) ions were precipitated using ammonium bicarbonate solution, and the separation efficiency of REs from Al, Fe, Ca, and Mg ions was investigated with or without the addition of triammonium citrate (TAC). The results showed that as long as the precipitation yield of REs was controlled below 94%, Ca and Mg ions would not enter the precipitation in the absence of other impurities, and the purity of the obtained rare earth oxides (RE2O3) was close to 100%. The presence of Al and Fe impurities would reduce the separation efficiency of REs from Ca and Mg. Therefore, Al and Fe must be separated before the precipitation of REs. First, Fe was completely precipitated by controlling the pH value to 4.12. Then, by filtering out the isolation and adjusting the pH value to 4.6, approximately 84% of Al3+ was precipitated, with a loss of REs of about 6%. Finally, the pH value was increased to 6.43, and REs were completely precipitated, yielding rare earth carbonate. The RE2O3 purity of its calcination product was 97.8% with Al and Mg contents of 1.05% and 0.21%, respectively, and no Ca or Fe was detected. This indicated that Mg can enter the product by co-precipitation with Al. To address this, a small amount of TAC was added during the pre-removal of Fe and Al to facilitate the complete removal of Al. By controlling the precipitation yield of REs at 94%, the purity of the final RE2O3 reached 99.6% with an Al content of 0.09%. Furthermore, using a continuous precipitation crystallization method, RE2O3 purity can be achieved at 99.8% with an Al content of 0.06%. Full article
(This article belongs to the Special Issue Hydrometallurgical Processes for the Recovery of Critical Metals)
Show Figures

Graphical abstract

16 pages, 5043 KB  
Article
Effects of SiO2, Al2O3 and TiO2 Catalyst Carriers on CO-SCR Denitration Performance of Bimetallic CuCe Catalysts
by Dan Cui, Keke Pan, Huan Liu, Peipei Wang and Feng Yu
Catalysts 2025, 15(9), 833; https://doi.org/10.3390/catal15090833 - 1 Sep 2025
Cited by 1 | Viewed by 1275
Abstract
Nitrogen oxides (NOx) emissions pose environmental and health risks. Selective catalytic reduction (SCR) is effective for NOx removal, and using CO as a reductant can eliminate both NOx and CO. This study explores CuCe catalysts on SiO2, [...] Read more.
Nitrogen oxides (NOx) emissions pose environmental and health risks. Selective catalytic reduction (SCR) is effective for NOx removal, and using CO as a reductant can eliminate both NOx and CO. This study explores CuCe catalysts on SiO2, Al2O3, and TiO2 for CO-SCR. Results show catalytic activity relates to the synergy between lattice oxygen and CuCe species. TiO2 enhances this interaction, promoting Cu+ and lattice oxygen for NO adsorption and dissociation. The CuCe/TiO2 catalyst achieves 100% NO conversion at 300 °C and 40.2% at 100 °C, indicating excellent low-temperature performance. These findings are valuable for developing efficient SCR catalysts. Full article
(This article belongs to the Special Issue Heterogeneous Catalysis in Air Pollution Control)
Show Figures

Graphical abstract

22 pages, 10413 KB  
Article
Metallogenic Mechanisms of the Lower Triassic Dongping Sedimentary Manganese Deposit in the South China Block: Mineralogical and Geochemical Evidence
by Rong-Zhi Li, Sha Jiang, Peng Long, Tao Long, Da-Qing Ding, Ling-Nan Zhao, Yi Zhang and Qin Huang
Minerals 2025, 15(8), 847; https://doi.org/10.3390/min15080847 - 8 Aug 2025
Viewed by 783
Abstract
The Dongping manganese (Mn) deposit, located within the Lower Triassic Shipao Formation of the Youjiang Basin, is one of South China’s most significant sedimentary Mn carbonate ore deposits. To resolve longstanding debates over its metallogenic pathway, we conducted integrated sedimentological, mineralogical, and geochemical [...] Read more.
The Dongping manganese (Mn) deposit, located within the Lower Triassic Shipao Formation of the Youjiang Basin, is one of South China’s most significant sedimentary Mn carbonate ore deposits. To resolve longstanding debates over its metallogenic pathway, we conducted integrated sedimentological, mineralogical, and geochemical analyses on three drill cores (ZK5101, ZK0301, and ZK1205) spanning the Mn ore body. X-ray diffraction and backscatter electron imaging reveal that the ores are dominated by kutnohorite, with subordinate quartz, calcite, dolomite, and minor sulfides. The low enrichment of U/Al, V/Al, and Mo/Al, as well as positive Ce anomalies, consistently suggest that Mn, in the form of oxides, was deposited in an oxic water column. Carbon isotope compositions of Mn carbonate ores (δ13CVPDB: −2.3 to −6.1‰) and their negative correlation with MnO suggest that Mn carbonate, predominantly kutnohorite, show a diagenetic reduction in pre-existing Mn oxides via organic-matter oxidation in anoxic sediments pore waters. Elemental discrimination diagramms (Mn-Fe-(Co+Ni+Cu) × 10 and Co/Zn vs. Co+Cu+Ni) uniformly point to a hydrothermal Mn source. We therefore propose that hydrothermal fluids supplied dissolved Mn2+ to an oxic slope-basin setting, precipitating initially as Mn oxides, which were subsequently transformed to Mn carbonates during early diagenesis. This model reconciles both the hydrothermal and sedimentary-diagenetic processes of the Dongping Mn deposit. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

28 pages, 4848 KB  
Article
Mineralogical and Geochemical Features of Soil Developed on Rhyolites in the Dry Tropical Area of Cameroon
by Aubin Nzeugang Nzeukou, Désiré Tsozué, Estelle Lionelle Tamto Mamdem, Merlin Gountié Dedzo and Nathalie Fagel
Standards 2025, 5(3), 20; https://doi.org/10.3390/standards5030020 - 6 Aug 2025
Cited by 2 | Viewed by 1197
Abstract
Petrological knowledge on weathering processes controlling the mobility of chemical elements is still limited in the dry tropical zone of Cameroon. This study aims to investigate the mobility of major and trace elements during rhyolite weathering and soil formation in Mobono by understanding [...] Read more.
Petrological knowledge on weathering processes controlling the mobility of chemical elements is still limited in the dry tropical zone of Cameroon. This study aims to investigate the mobility of major and trace elements during rhyolite weathering and soil formation in Mobono by understanding the mineralogical and elemental vertical variation. The studied soil was classified as Cambisols containing mainly quartz, K-feldspar, plagioclase, smectite, kaolinite, illite, calcite, lepidocrocite, goethite, sepiolite, and interstratified clay minerals. pH values ranging between 6.11 and 8.77 indicated that hydrolysis, superimposed on oxidation and carbonation, is the main process responsible for the formation of secondary minerals, leading to the formation of iron oxides and calcite. The bedrock was mainly constituted of SiO2, Al2O3, Na2O, Fe2O3, Ba, Zr, Sr, Y, Ga, and Rb. Ce and Eu anomalies, and chondrite-normalized La/Yb ratios were 0.98, 0.67, and 2.86, respectively. SiO2, Al2O3, Fe2O3, Na2O, and K2O were major elements in soil horizons. Trace elements revealed high levels of Ba (385 to 1320 mg kg−1), Zr (158 to 429 mg kg−1), Zn (61 to 151 mg kg−1), Sr (62 to 243 mg kg−1), Y (55 to 81 mg kg−1), Rb (1102 to 58 mg kg−1), and Ga (17.70 to 35 mg kg−1). LREEs were more abundant than HREEs, with LREE/HREE ratio ranging between 2.60 and 6.24. Ce and Eu anomalies ranged from 1.08 to 1.21 and 0.58 to 1.24 respectively. The rhyolite-normalized La/Yb ratios varied between 0.56 and 0.96. Mass balance revealed the depletion of Si, Ca, Na, Mn, Sr, Ta, W, U, La, Ce, Pr, Nd, Sm, Gd and Lu, and the accumulation of Al, Fe, K, Mg, P, Sc, V, Co, Ni, Cu, Zn, Ga, Ge, Rb, Y, Zr, Nb, Cs, Ba, Hf, Pb, Th, Eu, Tb, Dy, Ho, Er, Tm and Yb during weathering along the soil profile. Full article
Show Figures

Figure 1

32 pages, 7693 KB  
Article
Genesis and Evolution of the Qieliekeqi Siderite Deposit in the West Kunlun Orogen: Constraints from Geochemistry, Zircon U–Pb Geochronology, and Carbon–Oxygen Isotopes
by Yue Song, Liang Li, Yuan Gao and Yang Luo
Minerals 2025, 15(7), 699; https://doi.org/10.3390/min15070699 - 30 Jun 2025
Viewed by 957
Abstract
The Qieliekeqi siderite deposit, located in the Tashkurgan block of western Kunlun, is a carbonate-hosted iron deposit with hydrothermal sedimentary features. This study integrates whole-rock geochemistry, stable isotopes, and zircon U–Pb–Hf data to investigate its metallogenic evolution. Coarse-grained siderite samples, formed in deeper [...] Read more.
The Qieliekeqi siderite deposit, located in the Tashkurgan block of western Kunlun, is a carbonate-hosted iron deposit with hydrothermal sedimentary features. This study integrates whole-rock geochemistry, stable isotopes, and zircon U–Pb–Hf data to investigate its metallogenic evolution. Coarse-grained siderite samples, formed in deeper water, exhibit average Al2O3/TiO2 ratios of 29.14, δEu of 2.69, and δCe of 0.83, indicating hydrothermal fluid dominance with limited seawater mixing. Banded samples from shallower settings show an average Al2O3/TiO2 of 17.07, δEu of 3.18, and δCe of 0.94, suggesting stronger seawater interaction under oxidizing conditions. Both types are enriched in Mn, Co, and Ba, with low Ti and Al contents. Stable isotope results (δ13CPDB = −6.0‰ to −4.6‰; δ18OSMOW = 16.0‰ to 16.9‰) point to seawater-dominated fluids with minor magmatic and meteoric contributions, formed under open-system conditions at avg. temperatures of 53 to 58 °C. Zircon U–Pb dating yields an age of 211.01 ± 0.82 Ma, with an average εHf(t) of −3.94, indicating derivation from the partially melted ancient crust. These results support a two-stage model involving Late Cambrian hydrothermal sedimentation and Late Triassic magmatic overprinting. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

Back to TopTop