Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (496)

Search Parameters:
Keywords = Chinese medicine quality

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2092 KiB  
Article
Predicting Adsorption Performance Based on the Properties of Activated Carbon: A Case Study of Shenqi Fuzheng System
by Zhilong Tang, Bo Chen, Wenhua Huang, Xuehua Liu, Xinyu Wang and Xingchu Gong
Chemosensors 2025, 13(8), 279; https://doi.org/10.3390/chemosensors13080279 - 1 Aug 2025
Viewed by 132
Abstract
This work aims to solve the problem of product quality fluctuations caused by batch-to-batch variations in the adsorption capacity of activated carbon during the production of traditional Chinese medicine (TCM) injections. In this work, Shenqi Fuzheng injection was selected as an example. Diluted [...] Read more.
This work aims to solve the problem of product quality fluctuations caused by batch-to-batch variations in the adsorption capacity of activated carbon during the production of traditional Chinese medicine (TCM) injections. In this work, Shenqi Fuzheng injection was selected as an example. Diluted Shenqi Extract (DSE), an intermediate in the production process of Shenqi Fuzheng injection, was adsorbed with different batches of activated carbon. The adsorption capacities of adenine, adenosine, calycosin-7-glucoside, and astragaloside IV in DSE were selected as evaluation indices for activated carbon absorption. Characterization methods such as nitrogen adsorption, X-ray photoelectron spectrum (XPS), and Fourier transform infrared (FTIR) were chosen to explore the quantitative relationships between the properties of activated carbon (i.e., specific surface area, pore volume, surface elements, and spectrum) and the adsorption capacities of these four components. It was found that the characteristic wavelengths from FTIR characterization, i.e., 1560 cm−1, 2325 cm−1, 3050 cm−1, and 3442 cm−1, etc., showed the strongest correlation with the adsorption capacities of these four components. Prediction models based on the transmittance at characteristic wavelengths were successfully established via multiple linear regression. In validation experiments of models, the relative errors of predicted adsorption capacities of activated carbon were mostly within 5%, indicating good predictive ability of the models. The results of this work suggest that the prediction method of adsorption capacity based on the mid-infrared spectrum can provide a new way for the quality control of activated carbon. Full article
(This article belongs to the Section Analytical Methods, Instrumentation and Miniaturization)
Show Figures

Figure 1

14 pages, 8505 KiB  
Article
Overexpression of Ent-Kaurene Synthase Genes Enhances Gibberellic Acid Biosynthesis and Improves Salt Tolerance in Anoectochilus roxburghii (Wall.) Lindl.
by Lin Yang, Fuai Sun, Shanyan Zhao, Hangying Zhang, Haoqiang Yu, Juncheng Zhang and Chunyan Yang
Genes 2025, 16(8), 914; https://doi.org/10.3390/genes16080914 - 30 Jul 2025
Viewed by 262
Abstract
Background: Anoectochilus roxburghii (Wall.) Lindl. (A. roxburghii) was widely used in traditional Chinese medicine and also as a health food in China. Gibberellins (GAs) are plant hormones that regulate various aspects of growth and development in A. roxburghii. Ent-kaurene [...] Read more.
Background: Anoectochilus roxburghii (Wall.) Lindl. (A. roxburghii) was widely used in traditional Chinese medicine and also as a health food in China. Gibberellins (GAs) are plant hormones that regulate various aspects of growth and development in A. roxburghii. Ent-kaurene synthase (KS) plays a crucial role in the biosynthesis of GAs in plants. However, there is limited functional analysis of KS in GA biosynthesis and its effect on salt tolerance, especially in A. roxburghii. Methods: The ArKS genes were cloned from A. roxburghii, and its salt tolerance characteristics were verified by prokaryotic expression. Under salt stress, analyze the regulation of KS gene on GA and active ingredient content by qRT-PCR and HPLC-MS/MS, and explore the mechanism of exogenous GAs promoting active ingredient enrichment by regulating the expression level of the KS under salt stress. Results: The ArKS protein was highly homologous to KSs with other plant species; subcellular localization of KS protein was lacking kytic vacuole. The transformants displayed a significant increase in salt tolerance under the stress conditions of 300 mM NaCl. And the expression of ArKS genes and the GAs accumulation was downregulated under the salt stress; among them, the contents of GA3, GA7, GA8, GA24, and GA34 showed a significant decrease. It was further found that there was an increase (1.36 times) in MDA content and a decrease (0.84 times) in relative chlorophyll content under the salt conditions from A. roxburghii. However, the content of active constituents was elevated from A. roxburghii under the NaCl stress, including polysaccharides, total flavonoids, and free amino acids, which increased by 1.14, 1.23, and 1.44 times, respectively. Interestingly, the ArKS gene expression and the chlorophyll content was increased, MDA content showed a decrease from 2.02 μmoL·g−1 to 1.74 μmoL·g−1 after exogenous addition of GAs, and the elevation of active constituents of polysaccharides, total flavonoids, and free amino acids were increased by 1.02, 1.09, and 1.05 times, implying that GAs depletion mitigated the damage caused by adversity to A. roxburghii. Conclusions: The ArKS gene cloned from A. roxburghii improved the salt tolerance of plants under salt stress by regulating GA content. Also, GAs not only alleviate salt tolerance but also play a key role in the synthesis of active components in A. roxburghii. The functions of KS genes and GAs were identified to provide ideas for improving the salt tolerance and quality of ingredients in artificial cultivation from A. roxburghii. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

22 pages, 5830 KiB  
Article
Design of and Experimental Study on Drying Equipment for Fritillaria ussuriensis
by Liguo Wu, Jiamei Qi, Liping Sun, Sanping Li, Qiyu Wang and Haogang Feng
Appl. Sci. 2025, 15(15), 8427; https://doi.org/10.3390/app15158427 - 29 Jul 2025
Viewed by 138
Abstract
To address the problems of the time consumption, labor intensiveness, easy contamination, uneven drying, and impact on the medicinal efficacy of Fritillaria ussuriensis in the traditional drying method, the hot-air-drying characteristics of Fritillaria ussuriensis were studied. The changes in the moisture ratio and [...] Read more.
To address the problems of the time consumption, labor intensiveness, easy contamination, uneven drying, and impact on the medicinal efficacy of Fritillaria ussuriensis in the traditional drying method, the hot-air-drying characteristics of Fritillaria ussuriensis were studied. The changes in the moisture ratio and drying rate of Fritillaria ussuriensis under different hot-air-drying conditions (45 °C, 55 °C, 65 °C) were compared and analyzed. Six common mathematical models were used to fit the moisture change law, and it was found that the cubic model was the most suitable for describing the drying characteristics of Fritillaria ussuriensis. The R2 values after fitting under the three temperature conditions were all greater than 0.99, and the maximum was achieved at 45 °C. Based on the principle of hot-air drying, a drying device for Fritillaria ussuriensis with a processing capacity of 15 kg/h was designed. It adopted a thermal circulation structure of inner and outer drying ovens, with the heating chamber separated from the drying chamber. The structural parameters were optimized based on Fluent simulation analysis. After optimization, the temperature of each layer was stable at 338 K ± 2 K, and the pressure field and velocity field were evenly distributed. The drying process parameters of Fritillaria ussuriensis were optimized based on response surface analysis, and the optimal process parameters were obtained as follows: inlet temperature: 338 K (65 °C), inlet air velocity: 3 m/s, and drying time: 10 h. The simulation results showed that the predicted moisture content of Fritillaria ussuriensis under the optimal working conditions was 12.58%, the temperature difference of Fritillaria ussuriensis at different positions was within 0.8 °C, and the humidity deviation was about 1%. A prototype of the drying device was built, and the drying test of Fritillaria ussuriensis was carried out. It was found that the temperature and moisture content of Fritillaria ussuriensis were consistent with the simulation results and met the design requirements, verifying the rationality of the device structure and the reliability of the simulation model. This design can significantly improve the distribution of the internal flow field and temperature field of the drying device, improve the drying quality and production efficiency of Fritillaria ussuriensis, and provide a technical reference for the Chinese herbal medicine-drying industry. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

14 pages, 10838 KiB  
Article
Transcription Factor LjWRKY50 Affects Jasmonate-Regulated Floral Bud Duration in Lonicera japonica
by Yanfei Li, Yutong Gan, Guihong Qi, Wenjie Xu, Tianyi Xin, Yuanhao Huang, Lianguo Fu, Lijun Hao, Qian Lou, Xiao Fu, Xiangyun Wei, Lijun Liu, Chengming Liu and Jingyuan Song
Plants 2025, 14(15), 2328; https://doi.org/10.3390/plants14152328 - 27 Jul 2025
Viewed by 367
Abstract
Lonicera japonica Thunb. is a traditional Chinese medicinal herb whose floral buds are the primary source of pharmacological compounds that require manual harvesting. As a result, its floral bud duration, determined by the opening time, is a key determinant of both quality and [...] Read more.
Lonicera japonica Thunb. is a traditional Chinese medicinal herb whose floral buds are the primary source of pharmacological compounds that require manual harvesting. As a result, its floral bud duration, determined by the opening time, is a key determinant of both quality and economic value. However, the genetic mechanisms controlling floral bud duration remain poorly understood. In this study, we employed population structure analysis and molecular experiments to identify candidate genes associated with this trait. The improved cultivar Beihua No. 1 (BH1) opens its floral buds significantly later than the landrace Damaohua (DMH). Exogenous application of methyl jasmonate (MeJA) to BH1 indicated that jasmonate acts as a negative regulator of floral bud duration by accelerating floral bud opening. A genome-wide selection scan across 35 germplasms with varying floral bud durations identified the transcription factor LjWRKY50 as the causative gene influencing this trait. The dual-luciferase reporter assay and qRT-PCR experiments showed that LjWRKY50 activates the expression of the jasmonate biosynthesis gene, LjAOS. A functional variant within LjWRKY50 (Chr7:24636061) was further developed into a derived cleaved amplified polymorphic sequence (dCAPS) marker. These findings provide valuable insights into the jasmonate-mediated regulation of floral bud duration, offering genetic and marker resources for molecular breeding in L. japonica. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

16 pages, 4338 KiB  
Article
The First Report on Agarwood Formation of Aquilaria sinensis (Lour.) Spreng Induced by Fusarium equiseti
by Libao Zhang, Jianglongze Yang, Ruiling Yuan, Dan Feng and Peng Chen
Plants 2025, 14(15), 2272; https://doi.org/10.3390/plants14152272 - 23 Jul 2025
Viewed by 342
Abstract
Aquilaria sinensis (Lour.) Gilg, the exclusive botanical source of Chinese agarwood, holds significant medicinal value. This study investigated the agarwood-inducing potential of a Fusarium strain obtained through prior isolation work. Through integrated morphological characterization and molecular phylogenetic analysis, the strain was conclusively identified [...] Read more.
Aquilaria sinensis (Lour.) Gilg, the exclusive botanical source of Chinese agarwood, holds significant medicinal value. This study investigated the agarwood-inducing potential of a Fusarium strain obtained through prior isolation work. Through integrated morphological characterization and molecular phylogenetic analysis, the strain was conclusively identified as Fusarium equiseti. GC-MS analysis revealed that fungal inoculation induced the synthesis of characteristic sesquiterpenes and aromatic compounds consistent with natural agarwood profiles. Quantitative determination demonstrated progressive accumulation of agarotetrol, a key quality marker, reaching 0.034%, 0.039%, and 0.038% at 2, 4, and 6 months post-inoculation, respectively—significantly exceeding levels from physical wounding (p < 0.05) and PDA control treatments. Histological examination showed characteristic yellow-brown oleoresin deposits concentrated in the inner phloem, mirroring the anatomical features of wild-type agarwood. Critical quality parameters measured in December-harvested samples included ethanol extractives (17.69%), chromone derivatives 2-[2-(4-methoxyphenyl) ethyl] chromone, and 2-(2-phenylethyl) chromone (2.13%), all meeting or surpassing the specifications outlined in the National Standard for Agarwood Classification (LY/T 3223-2020). These comprehensive findings establish F. equiseti as a promising microbial agent for sustainable agarwood production in A. sinensis plantations. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

19 pages, 1854 KiB  
Article
Non-Destructive Discrimination and Traceability of Exocarpium Citrus grandis Aging Years via Feature-Optimized Hyperspectral Imaging and Broad Learning System
by Wenqi Liu and Shihua Zhong
Photonics 2025, 12(7), 737; https://doi.org/10.3390/photonics12070737 - 19 Jul 2025
Viewed by 316
Abstract
Exocarpium Citrus grandis is a traditional Chinese medicinal and edible herb whose pharmacological efficacy is closely tied to its aging duration. The accurate discrimination of aging years is essential for quality control but remains challenging due to limitations in current analytical techniques. This [...] Read more.
Exocarpium Citrus grandis is a traditional Chinese medicinal and edible herb whose pharmacological efficacy is closely tied to its aging duration. The accurate discrimination of aging years is essential for quality control but remains challenging due to limitations in current analytical techniques. This study proposes a novel feature-optimized classification framework that integrates hyperspectral imaging (HSI) with a Broad Learning System (BLS). Bilateral spectral data (side A and side B) were collected to capture more comprehensive sample information. A combination of normalization (NOR) preprocessing and the Iterative Variable Importance for Spectral Subset Selection Algorithm (iVISSA) was found to be optimal. The NOR–iVISSA–BLS model achieved classification accuracies of 94.09 ± 1.01% (side A) and 95.10 ± 0.82% (side B). Furthermore, cross-validation between the two sides (A→B: 94.92%, B→A: 94.11%) confirmed the model’s robustness and generalizability. This dual-side spectral validation strategy offers a rapid, nondestructive, and reliable solution for the vintage authentication of Exocarpium Citrus grandis, contributing to the modernization of quality control in medicinal foodstuffs. Full article
Show Figures

Figure 1

22 pages, 3439 KiB  
Article
Metabolomics Analysis Reveals the Influence Mechanism of Different Growth Years on the Growth, Metabolism and Accumulation of Medicinal Components of Bupleurum scorzonerifolium Willd. (Apiaceae)
by Jialin Sun, Jianhao Wu, Weinan Li, Xiubo Liu and Wei Ma
Biology 2025, 14(7), 864; https://doi.org/10.3390/biology14070864 - 16 Jul 2025
Viewed by 230
Abstract
Bupleurum scorzonerifolium Willd. is a perennial herbaceous plant of the genus Bupleurum in the Apiaceae family. Also known as red Bupleurum, it is mainly distributed in Northeast China, North China and other regions and is a commonly used medicinal plant. It is [...] Read more.
Bupleurum scorzonerifolium Willd. is a perennial herbaceous plant of the genus Bupleurum in the Apiaceae family. Also known as red Bupleurum, it is mainly distributed in Northeast China, North China and other regions and is a commonly used medicinal plant. It is difficult for the wild plant resources of Bupleurum scorzonerifolium Willd. to meet the market demand. In artificial cultivation, there are problems such as a low yield per plant, low quality, weakened stress resistance and variety degradation. The contents of bioactive components and metabolites in traditional Chinese medicinal materials vary significantly across different growth years. The growth duration directly impacts their quality and clinical efficacy. Therefore, determining the optimal growth period is one of the crucial factors in ensuring the quality of traditional Chinese medicinal materials. In this study, Gas Chromatography–Mass Spectrometry (GC-MS) and High-performance liquid chromatography (HPLC) were comprehensively applied to analyze the metabolically differential substances in different parts of Bupleurum scorzonerifolium Willd. By comparing the compositions and content differences of chemical components in different growth years and different parts, the chemical components with significant differences were accurately screened out. In order to further explore the dynamic change characteristics and internal laws of metabolites, a metabolic network was constructed for a visual analysis and, finally, to see the optimal growth years of Bupleurum scorzonerifolium Willd. This result showed that with the accumulation of the growth cycle, the height, root width, fresh mass and saikosaponins content of Bupleurum scorzonerifolium Willd. increased year by year. Except for sodium and calcium elements in the main shoot, the other elements were significantly reduced. In addition, 59 primary metabolites were identified by GC-MS, with the accumulation of the growth cycle, the contents of organic acids, sugars, alcohols and amino acids gradually decreased, while the contents of alkyl, glycosides and other substances gradually increased. There were 53 positive correlations and 18 negative correlations in the triennial Bupleurum scorzonerifolium Willd. grid, all of which were positively correlated with saikosaponins. Therefore, the triennial Bupleurum scorzonerifolium Willd. was considered to be the suitable growth year. It not only provided a new idea and method for the quality evaluation of Bupleurum scorzonerifolium Willd., but also provided a scientific basis for the quality control of Chinese herbs. Full article
Show Figures

Figure 1

15 pages, 1186 KiB  
Article
Short-Term Anticoagulation After Cardioversion in New-Onset Atrial Fibrillation and Low Thromboembolic Risk: A Real-World International Investigation
by Alan Poggio, Andrew P. Sullivan, Lorenzo Rampa, Jason G. Andrade and Matteo Anselmino
Medicina 2025, 61(7), 1200; https://doi.org/10.3390/medicina61071200 - 30 Jun 2025
Viewed by 552
Abstract
Background and Objectives: International guidelines differ on short-term (4-week) oral anticoagulation (OAC) indication after acute cardioversion for recent-onset atrial fibrillation (AF < 12–48 h) in low-risk patients (CHA2DS2-VA = 0). While Canadian and Chinese guidelines recommend OAC for [...] Read more.
Background and Objectives: International guidelines differ on short-term (4-week) oral anticoagulation (OAC) indication after acute cardioversion for recent-onset atrial fibrillation (AF < 12–48 h) in low-risk patients (CHA2DS2-VA = 0). While Canadian and Chinese guidelines recommend OAC for all, European, Australian and New Zealand, and American guidelines state that such treatment is optional due to the absence of high-quality evidence supporting its indication in this specific scenario. This study aimed to assess physicians’ management of a simple clinical case at an international level, focusing on how they balance ischemic and bleeding risks in a setting lacking any strong evidence-based recommendations. Materials and Methods: Six different AF guidelines were evaluated regarding the recommendation for and scientific evidence justifying short-term OAC in this specific setting. Following review, an international questionnaire was developed with Google Forms 2024 (Mountain View, CA, USA) and circulated among physicians working in the fields of cardiology, internal medicine, intensive care unit, geriatrics, and emergency medicine at 17 centres in Italy, France, and Canada. Results: A total of 78 responses were obtained. Younger physicians and cardiologists appeared to administer OAC more frequently compared to older physicians or those working in other specialties (95% CI Fisher’s Exact Test p = 0.049 and 0.029, respectively). Significant differences were observed in the use of periprocedural imaging, with transoesophageal echocardiogram (TOE) prior to cardioversion being performed more often in Europe vs. Canada (p = 0.006) and in long-term rhythm control, with first-line pulmonary vein isolation (PVI) being offered more frequently by European cardiologists (p = 0.013). No statistically significant association was found regarding guideline adherence for OAC administration (p = 0.120). Conclusions: The real-world antithrombotic management of low-risk (CHA2DS2-VA = 0), acutely cardioverted AF patients varies significantly among different healthcare systems. Particularly in cardiology departments, reducing the time limit for safely not prescribing OAC to < 12 h, ensuring local access to direct oral anticoagulants (DOACs) and considering regional stroke risk profiles, as well as actively preventing haemorrhage in patients receiving short-term OAC could all limit cardioversion-related complications in this low-risk population. Full article
(This article belongs to the Special Issue The Challenges and Prospects in Clinical Cardiology and Angiology)
Show Figures

Figure 1

14 pages, 1139 KiB  
Article
Comparative Transcriptome and Metabolome Analyses Provide New Insights into the Molecular Mechanisms Underlying Taproot Development and Bioactive Compound Biosynthesis in Ficus hirta vahl
by Meiqiong Tang, Chunying Liang, Yude Peng, Hong He, Fan Wei, Ying Hu, Yang Lin, Chunfeng Tang, Gang Li and Linxuan Li
Genes 2025, 16(7), 784; https://doi.org/10.3390/genes16070784 - 30 Jun 2025
Viewed by 344
Abstract
Background: F. hirta vahl is a famous Chinese medicinal plant. The root is the main organ accumulating bioactive compounds, and its development is directly related to the yield and quality of the harvested F. hirta. However, the molecular mechanisms underlying the bioactive compound [...] Read more.
Background: F. hirta vahl is a famous Chinese medicinal plant. The root is the main organ accumulating bioactive compounds, and its development is directly related to the yield and quality of the harvested F. hirta. However, the molecular mechanisms underlying the bioactive compound biosynthesis occurring during the root development of F. hirta are unknown. Method: Transcriptome and widely targeted metabolome analyses were performed to investigate gene expression and metabolite variation during the development of F. hirta taproots. Results: A total of 3792 differentially expressed genes (DEGs) were identified between the one- and three-year-old F. hirta taproots; they are related to circadian rhythm–plant, phenylpropanoid biosynthesis, starch and sucrose metabolism, and plant–pathogen interaction pathways. In total, 119 differentially accumulated metabolites (DAMs) were identified between the one- and three-year-old F. hirta taproots, including flavonols, phenolic acids, and coumarins compounds. Integrative transcriptome and metabolome analyses revealed a significant correlation between 172 DEGs and 21 DAMs; they were predominantly enriched for processes associated with phenylpropanoid biosynthesis, flavonoid biosynthesis, plant hormone signal transduction, and stilbenoid, diarylheptanoid, and ginerol biosynthesis. In addition, 26 DEGs were identified to be significantly correlated with the DAMs that accumulated in the phenylpropanoid biosynthesis pathway, and these DEGs may be the key genes for the biosynthesis of F. hirta active compounds. Conclusions: The phenylpropanoid biosynthesis pathway plays a dual role in both development and bioactive compound synthesis in F. hirta taproots. These findings provide a molecular regulatory network in the relationships between F. hirta taproot development and the accumulation of secondary metabolites. The identification of candidate genes and pathways provides a genetic resource for quality control and future molecular breeding in F. hirta. Full article
(This article belongs to the Special Issue 5Gs in Crop Genetic and Genomic Improvement: 2nd Edition)
Show Figures

Figure 1

13 pages, 3506 KiB  
Article
Development of an HPTLC-MS Method for the Differentiation of Celosiae Semen: Celosia argentea Versus C. cristata
by Kyu Won Kim, Geonha Park, Sejin Ku and Young Pyo Jang
Molecules 2025, 30(13), 2786; https://doi.org/10.3390/molecules30132786 - 28 Jun 2025
Viewed by 303
Abstract
Celosiae Argentea Semen (CAS), derived from Celosia argentea L., is traditionally used in Korean and Chinese medicine to treat eye disorders and liver heat and is recognized in official Pharmacopeias. In contrast, Celosiae Cristatae Semen (CCS), despite its frequent presence in the market, [...] Read more.
Celosiae Argentea Semen (CAS), derived from Celosia argentea L., is traditionally used in Korean and Chinese medicine to treat eye disorders and liver heat and is recognized in official Pharmacopeias. In contrast, Celosiae Cristatae Semen (CCS), despite its frequent presence in the market, is not officially listed. The morphological and chemical similarities between the two pose challenges for accurate identification. This study presents an integrative method combining digital image analysis and high-performance thin-layer chromatography coupled with mass spectrometry (HPTLC-MS) to differentiate CAS from CCS. Digital microscopy and ImageJ analysis showed that CCS has a projection area over twice that of CAS. Chemically, an optimized HPTLC method using ethyl acetate, methanol, water, and formic acid revealed distinct fingerprint patterns under UV 366 nm and white light. Notably, celosin F was exclusively detected in CAS, while celosin H, J, and K were characteristic of CCS. ESI-TOF-MS analysis confirmed these markers, resolving an overlap in RF values. Repeatability tests showed total SDs of sucrose for intra-day, inter-day, and inter-analysis precision were 0.006, 0.004, and 0.005, respectively, confirming method reliability. This combined approach offers a rapid, reliable, and practical tool for distinguishing these two medicinal seeds, supporting enhanced quality control and regulatory standardization in pharmaceutical applications. Full article
Show Figures

Figure 1

13 pages, 4302 KiB  
Article
Analysis of Processing Impact on Raspberries Based on Broad-Spectrum Metabolomics
by Xiaoge Wang, Qiyuan Liao, Fan Wang, Xuelin Rui, Yushan Liu and Rui Wang
Metabolites 2025, 15(7), 435; https://doi.org/10.3390/metabo15070435 - 26 Jun 2025
Viewed by 376
Abstract
Objective: Our objective was to explore the regulatory mechanism of salt processing on the metabolome of the raspberry and its potential efficacy against diabetic nephropathy (DN), providing metabolomic and network pharmacological evidence for the scientific connotation of traditional Chinese medicine processing. Methods: Ultra-high-performance [...] Read more.
Objective: Our objective was to explore the regulatory mechanism of salt processing on the metabolome of the raspberry and its potential efficacy against diabetic nephropathy (DN), providing metabolomic and network pharmacological evidence for the scientific connotation of traditional Chinese medicine processing. Methods: Ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS)-based metabolomics was used to compare the metabolic profiles between raw and salt-processed raspberries. Network pharmacology was applied to screen the common targets of the active components in the salt-processed raspberry and DN-related pathways, followed by in vitro cell experiments to validate the regulation of the MAPK signaling pathway. Results: The metabolomic analysis identified 80 differentially expressed metabolites, among which 13 key components (VIP ≥ 1, FC ≥ 2) were significantly altered, including enriched flavonoids (e.g., luteolin-7-O-glucoside), triterpenoid saponins (Raspberryides H/F), and phenolic acids (ellagic acid). The network pharmacology revealed that the salt-processed raspberries regulated the DN-related pathways through 122 common targets, with the core nodes focusing on the signaling molecules (e.g., AKT1, EGFR) involved in the MAPK signaling pathway and apoptosis regulation. The in vitro experiments confirmed that the salt-processed raspberry extract (160–640 μg/mL) significantly inhibited the phosphorylation levels of p38/ERK/JNK in high-glucose-induced renal cells. Conclusions: This study firstly combines metabolomics and network pharmacology to reveal the regulatory mechanism of salt processing on the active components of raspberries. The salt-processing technology enhanced the inhibitory effect of raspberries on the MAPK signaling pathway, thereby ameliorating the progression of DN. These findings provide scientific support for establishing a metabolomics-based quality control system for traditional Chinese medicine processing. The current findings are primarily based on in vitro models, and in vivo validation using DN animal models is essential to confirm the therapeutic efficacy and safety of salt-processed raspberries. Full article
Show Figures

Figure 1

15 pages, 3858 KiB  
Article
Lipotrichaibol A and Trichoderpeptides A–D: Five New Peptaibiotics from a Sponge-Derived Trichoderma sp. GXIMD 01001
by Weichan Yang, Zhenzhou Tang, Xiaowei Luo, Yuman Gan, Meng Bai, Houwen Lin, Chenghai Gao, Ling Chai and Xiao Lin
Mar. Drugs 2025, 23(7), 264; https://doi.org/10.3390/md23070264 - 24 Jun 2025
Viewed by 545
Abstract
Five previously undescribed peptaibiotics, including one 7-mer lipopeptaibol named lipotrichaibol A (1), and four 11-mer peptaibiotics named trichoderpeptides A-D (25) were isolated from the rice culture medium of the sponge-derived fungus Trichoderma sp. GXIMD 01001. Their structures [...] Read more.
Five previously undescribed peptaibiotics, including one 7-mer lipopeptaibol named lipotrichaibol A (1), and four 11-mer peptaibiotics named trichoderpeptides A-D (25) were isolated from the rice culture medium of the sponge-derived fungus Trichoderma sp. GXIMD 01001. Their structures and absolute configurations were unambiguously established by extensive spectroscopic data analysis and advanced Marfey’s method. All isolated compounds were evaluated via CCK8 bioassays to investigate their antiproliferative activity. Only compound 1 exerted potent cytotoxicity against HT-29 and DLD-1 cells with IC50 values at 10.3 ± 1.9 and 12.31 ± 1.5 μM, respectively. In further in vitro bioassay, compound 1 exhibited significant inhibition in colony formation assay, induced apoptosis and blocked the cell cycle in the G0/G1 phase. The mechanism may be related to the regulation of the Erk1/2 signaling pathway. Full article
(This article belongs to the Special Issue Bioactive Secondary Metabolites of Marine Fungi, 3rd Edition)
Show Figures

Graphical abstract

16 pages, 5978 KiB  
Article
A Chinese Herbal Compound Fertilizer Improved the Soil Bacterial Community and Promoted the Quality of Chrysanthemum morifolium ‘Huangju’
by Hongliang Li, Hongyao Qu, Huaqiang Xuan, Bei Liu, Lixiang Zhu, Xianchao Shang, Yi Xie, Li Zhang, Long Yang, Ling Yuan, Sitakanta Pattanaik, Li Xiang and Xin Hou
Agronomy 2025, 15(7), 1512; https://doi.org/10.3390/agronomy15071512 - 21 Jun 2025
Viewed by 537
Abstract
Chrysanthemum morifolium, ‘Huangju’, is a golden chrysanthemum used for making tea. Limited by land resources, the continuous cropping of Chrysanthemum morifolium ‘Huangju’ has led to serious soil issues, which affects its yield and quality. In this study, different ratios of traditional Chinese [...] Read more.
Chrysanthemum morifolium, ‘Huangju’, is a golden chrysanthemum used for making tea. Limited by land resources, the continuous cropping of Chrysanthemum morifolium ‘Huangju’ has led to serious soil issues, which affects its yield and quality. In this study, different ratios of traditional Chinese medicine compound fertilizers were used to regulate the soil environment in order to achieve the green prevention and control of continuous cropping obstacles of the golden chrysanthemum. Five treatments were set up in the experiment: the control (CK) and different proportions of the Chinese herbal compound fertilizer T1, T2, T3, and T4. After the application of the traditional Chinese medicine compound fertilizer, the physical and chemical soil properties of the golden chrysanthemum were changed to varying degrees, resulting in an increased yield of golden silk chrysanthemum and an improved tea quality. This preliminary study on the application of the traditional Chinese medicine compound fertilizer T2 and T3—that is, Sophora flavescensStemona sessilifoliaMentha haplocalyxPerilla frutescensArtemisia annua at ratios of 2:1:2:1:1.5 and 3:1:3:1:2—treatments provided the best results and can be further developed to alleviate the continuous cropping obstacles of fertilizers. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

19 pages, 4128 KiB  
Article
Integrating Metabolomics and Machine Learning to Analyze Chemical Markers and Ecological Regulatory Mechanisms of Geographical Differentiation in Thesium chinense Turcz
by Cong Wang, Ke Che, Guanglei Zhang, Hao Yu and Junsong Wang
Metabolites 2025, 15(7), 423; https://doi.org/10.3390/metabo15070423 - 20 Jun 2025
Viewed by 471
Abstract
Background: The relationship between medicinal efficacy and the geographical environment in Thesium chinense Turcz. (T. chinense Turcz.), a traditional Chinese herb, remains systematically unexplored. This study integrates metabolomics, machine learning, and ecological factor analysis to elucidate the geographical variation patterns and regulatory [...] Read more.
Background: The relationship between medicinal efficacy and the geographical environment in Thesium chinense Turcz. (T. chinense Turcz.), a traditional Chinese herb, remains systematically unexplored. This study integrates metabolomics, machine learning, and ecological factor analysis to elucidate the geographical variation patterns and regulatory mechanisms of secondary metabolites in T. chinense Turcz. from Anhui, Henan, and Shanxi Provinces. Methods: Metabolomic profiling was conducted on T. chinense Turcz. samples collected from three geographical origins across Anhui, Henan, and Shanxi Provinces. Machine learning algorithms (Random Forest, LASSO regression) identified region-specific biomarkers through intersection analysis. Metabolic pathway enrichment employed MetaboAnalyst 5.0 with target prediction. Antioxidant activity (DPPH/hydroxyl radical scavenging) was quantified spectrophotometrically. Environmental correlation analysis incorporated 19 WorldClim variables using redundancy analysis, Mantel tests, and Pearson correlations. Results: We identified 43 geographical marker compounds (primarily flavonoids and alkaloids). Random forest and LASSO regression algorithms determined core markers for each production area: Anhui (4 markers), Henan (6 markers), and Shanxi (3 markers). Metabolic pathway enrichment analysis revealed these markers exert pharmacological effects through neuroactive ligand–receptor interaction and PI3K-Akt signaling pathways. Redundancy analysis demonstrated Anhui samples exhibited significantly higher antioxidant activity (DPPH and hydroxyl radical scavenging rates) than other regions, strongly correlating with stable low-temperature environments (annual mean temperature) and precipitation patterns. Conclusions: This study established the first geo-specific molecular marker system for T. chinense Turcz., demonstrating that the geographical environment critically influences metabolic profiles and bioactivity. Findings provide a scientific basis for quality control standards of geo-authentic herbs and offer insights into plant–environment interactions for sustainable cultivation practices. Full article
(This article belongs to the Special Issue Metabolomics in Plant Natural Products Research, 2nd Edition)
Show Figures

Figure 1

14 pages, 1915 KiB  
Article
Parameter Optimization Considering the Variations Both from Materials and Process: A Case Study of Scutellaria baicalensis Extract
by Xuecan Zhang, Zhilong Tang, Bo Chen and Xingchu Gong
Separations 2025, 12(6), 165; https://doi.org/10.3390/separations12060165 - 17 Jun 2025
Viewed by 576
Abstract
The Quality by Design (QbD) concept has been widely applied to the optimization of traditional Chinese medicine production processes recently. This work focused on optimizing the critical purification process of Scutellaria baicalensis extract used in the preparation of Zhusheyong Shuanghuanglian. Considering the impact [...] Read more.
The Quality by Design (QbD) concept has been widely applied to the optimization of traditional Chinese medicine production processes recently. This work focused on optimizing the critical purification process of Scutellaria baicalensis extract used in the preparation of Zhusheyong Shuanghuanglian. Considering the impact of noise parameters and changes in herbal properties, an experimental design method was employed for optimization. Multiple batches of Scutellaria baicalensis decoction were prepared in this research, and quantitative models of Scutellaria baicalensis herbal properties, critical process parameters (CPPs), and process evaluation indicators were established. The R2 of the quantitative models were all higher than 0.80. According to the model, the yield of baicalin was identified as a critical material property (CMA). The pH of first acid precipitation (X1), first temperature holding time (X2), pH of alkalization (X3), ethanol amount (X4), and end pH of ethanol washing (X5) were CPPs. Considering the difficulty in controlling the end pH of the ethanol washing, it was considered to be a noise parameter. The Monte Carlo probability-based method was used to calculate the design space, determining the range of controllable parameters, which was successfully validated through experiments. Normal operation ranges for controllable parameters are recommended as follows: X1 of 0.8–2.2, X2 of 25–35 min, X3 of 6.5–7.5, and X4 of 0.8–1.2 g/g. Full article
(This article belongs to the Section Purification Technology)
Show Figures

Graphical abstract

Back to TopTop