Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = Camellia chekiangoleosa

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2363 KiB  
Article
Influence of Environmental Conditions Associated with Low and High Altitudes on Economic and Quality Characteristics of Fruit Ripening of Camellia chekiangoleosa Hu
by Teng Wei, Shengyue Zhong, Bin Huang, Kang Zha, Jing Li and Qiang Wen
Foods 2025, 14(13), 2266; https://doi.org/10.3390/foods14132266 - 26 Jun 2025
Cited by 1 | Viewed by 337
Abstract
Camellia chekiangoleosa Hu. (C. chekiangoleosa) is a typical high-altitude oil-tea Camellia species. Due to altitude being an important factor affecting crop growth and quality, the influence of environmental conditions associated with low (60 m) and high (600 m) altitudes on the [...] Read more.
Camellia chekiangoleosa Hu. (C. chekiangoleosa) is a typical high-altitude oil-tea Camellia species. Due to altitude being an important factor affecting crop growth and quality, the influence of environmental conditions associated with low (60 m) and high (600 m) altitudes on the economic and quality characteristics of fruit ripening was assessed in this study. Our investigations showed that altitude has no influence on the growth pattern of C. chekiangoleosa fruit shells and seed oils, and the differences in samples between different altitudes gradually decreased with the ripening of C. chekiangoleosa. Nevertheless, mature C. chekiangoleosa fruit shells and seed oils from low and high altitudes showed some differences. Specifically, the fruit shells of C. chekiangoleosa cultivated in low-altitude areas contained more soluble sugar, protein, total polyphenols, total flavonoids, and tea saponin. Meanwhile, low-altitude cultivation elevated the abundance of α-tocopherol, β-sitosterol, β-amyrinol, flavonoids, and polyphenols in mature seed oils but decreased the oil yield. Moreover, few effects of altitude on fatty acid composition were observed in mature seed oils. Cluster and receiver operating characteristic (ROC) analysis indicated that the influence of altitude on the quality of mature seed oils was strongly associated with oil yield and α-tocopherol. Taken together, the present study suggests that when cultivating C. chekiangoleosa in low-altitude regions, more energy should be devoted to improving oil yield. The results of the fruiting process and quality trait variation in C. chekiangoleosa during the low-altitude introduction process can provide an important theoretical basis for the introduction and cultivation of this oil-tea species. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

19 pages, 8535 KiB  
Article
Genome-Wide Characterization of WRKY Gene Family in Camellia chekiangoleosa Identifies Potential Regulatory Components in Pigment Biosynthesis Pathways
by Zhenyu Liu, Yixuan Peng, Yanshu Qu, Bin Huang, Chun Gong and Qiang Wen
Int. J. Mol. Sci. 2025, 26(10), 4622; https://doi.org/10.3390/ijms26104622 - 12 May 2025
Viewed by 423
Abstract
The WRKY gene family is essential for controlling a variety of plant physiological functions, yet the involvement of specific WRKY members in pigment biosynthesis and accumulation in Camellia chekiangoleosa remains unexplored, particularly in anthocyanins and carotenoids, which play crucial roles in the pigmentation [...] Read more.
The WRKY gene family is essential for controlling a variety of plant physiological functions, yet the involvement of specific WRKY members in pigment biosynthesis and accumulation in Camellia chekiangoleosa remains unexplored, particularly in anthocyanins and carotenoids, which play crucial roles in the pigmentation of C. chekiangoleosa. This study systematically identified 87 WRKY genes across 15 chromosomes in C. chekiangoleosa through bioinformatic approaches. Further structural and phylogenetic analyses of these TFs enabled their classification into six different subgroups. WRKY family expansion was shown to be mostly driven by tandem duplication. W-box elements, which can be binding sites for WRKY transcription factors, were present in a number of biosynthetic genes in the pigment production pathway. Yeast one-hybrid assay confirmed that five WRKY transcription factors (CchWRKY15/24/33/47/76) directly bind to the promoter regions of two key biosynthetic genes, CchPSY1 and Cch4CL1. Intriguingly, among the five WRKYs tested, the expression levels of CchWRKY15, CchWRKY33, and CchWRKY47 showed the strongest positive associations with flavonoid accumulation (p < 0.05, Pearson correlation analysis).These findings provide novel insights into the evolutionary patterns, transcriptional regulation, and functional characteristics of CchWRKYs, while elucidating their possible regulatory mechanisms in the fruit coloration of C. chekiangoleosa. Full article
(This article belongs to the Special Issue Molecular Research in Bamboo, Tree, Grass, and Other Forest Products)
Show Figures

Figure 1

25 pages, 21059 KiB  
Article
Cytological, Physiological, and Transcriptome Analysis of Leaf-Yellowing Mutant in Camellia chekiangoleosa
by Bin Huang, Wenyin Huang, Zhenyu Liu, Yixuan Peng, Yanshu Qu, Wencai Zhou, Jianjian Huang, Huili Shu and Qiang Wen
Int. J. Mol. Sci. 2025, 26(1), 132; https://doi.org/10.3390/ijms26010132 - 27 Dec 2024
Cited by 1 | Viewed by 920
Abstract
Color variation in plant leaves has a significant impact on their photosynthesis and plant growth. Camellia chekiangoleosa yellow-leaf mutants are ideal materials for studying the mechanisms of pigment synthesis and photosynthesis, but their mechanism of leaf variation is not clear. We systematically elucidated [...] Read more.
Color variation in plant leaves has a significant impact on their photosynthesis and plant growth. Camellia chekiangoleosa yellow-leaf mutants are ideal materials for studying the mechanisms of pigment synthesis and photosynthesis, but their mechanism of leaf variation is not clear. We systematically elucidated the intrinsic causes of leaf yellowing in the new Camellia chekiangoleosa variety ‘Diecui Liuji’ in terms of changes in its cell structure, pigment content, and transcript levels. This study indicates that the incomplete structure of chloroplast-like vesicles, the decrease in blue-green chlorophyll a, and the increase in yellow-green chlorophyll b in yellowing leaves are the direct causes of yellowing-leaf formation. The high expression of genes that catalyze the degradation of chlorophyll a (PAO and RCCR) and its conversion to chlorophyll b (CAO) in yellowing leaves leads to a decrease in the chlorophyll a content, while the low expression of CLH genes is the main reason for the increase in the chlorophyll b content. We also found transcription factors such as ERF, E2F, WRKY, MYB, TPC, TGA, and NFYC may regulate their expression. RT-qPCR assays of 12 DEGs confirm the RNA-seq results. This study will provide a foundation for investigating the transcriptional and regulatory mechanisms of leaf color changes. Full article
(This article belongs to the Special Issue Molecular Research in Bamboo, Tree, Grass, and Other Forest Products)
Show Figures

Figure 1

16 pages, 30974 KiB  
Article
Genome-Wide Identification and Expression Analysis of YTH Gene Family for Abiotic Stress Regulation in Camellia chekiangoleosa
by Xiang Cheng, Sheng Yao, Jingjing Zhang, Dengbao Wang, Shaojun Xu, Qiong Yu and Kongshu Ji
Int. J. Mol. Sci. 2024, 25(7), 3996; https://doi.org/10.3390/ijms25073996 - 3 Apr 2024
Cited by 6 | Viewed by 2286
Abstract
N6-methyladenosine (m6A) is essential for RNA metabolism in cells. The YTH domain, conserved in the kingdom of Eukaryotes, acts as an m6A reader that binds m6A-containing RNA. In plants, the YTH domain is involved in [...] Read more.
N6-methyladenosine (m6A) is essential for RNA metabolism in cells. The YTH domain, conserved in the kingdom of Eukaryotes, acts as an m6A reader that binds m6A-containing RNA. In plants, the YTH domain is involved in plant hormone signaling, stress response regulation, RNA stability, translation, and differentiation. However, little is known about the YTH genes in tea-oil tree, which can produce edible oil with high nutritional value. This study aims to identify and characterize the YTH domains within the tea-oil tree (Camellia chekiangoleosa Hu) genome to predict their potential role in development and stress regulation. In this study, 10 members of the YTH family containing the YTH domain named CchYTH1-10 were identified from C. chekiangoleosa. Through analysis of their physical and chemical properties and prediction of subcellular localization, it is known that most family members are located in the nucleus and may have liquid–liquid phase separation. Analysis of cis-acting elements in the CchYTH promoter region revealed that these genes could be closely related to abiotic stress and hormones. The results of expression profiling show that the CchYTH genes were differentially expressed in different tissues, and their expression levels change under drought stress. Overall, these findings could provide a foundation for future research regarding CchYTHs in C. chekiangoleosa and enrich the world in terms of epigenetic mark m6A in forest trees. Full article
(This article belongs to the Special Issue Power Up Plant Genetic Research with Genomic Data 2.0)
Show Figures

Figure 1

20 pages, 3549 KiB  
Article
Effects of Understory Vegetation Conversion on Soil Greenhouse Gas Emissions and Soil C and N Pools in Chinese Hickory Plantation Forests
by Yanyan Gao, Haitao Shi, Yangen Chen, Sha Huang, Enhui Wang, Zelong Ni, Yufeng Zhou and Yongjun Shi
Forests 2024, 15(3), 558; https://doi.org/10.3390/f15030558 - 19 Mar 2024
Cited by 4 | Viewed by 1469
Abstract
Forest management, especially understory vegetation conversion, significantly affects soil greenhouse gas (GHG) emissions and soil C and N pools. However, it remains unclear what effect renovating understory vegetation has on GHG emissions and soil C and N pools in plantations. This study investigates [...] Read more.
Forest management, especially understory vegetation conversion, significantly affects soil greenhouse gas (GHG) emissions and soil C and N pools. However, it remains unclear what effect renovating understory vegetation has on GHG emissions and soil C and N pools in plantations. This study investigates the impact of renovating understory vegetation on these factors in Chinese hickory (Carya cathayensis Sarg) plantation forests. Different understory renovation modes were used in a 12-month field experiment: a safflower camellia (SC) (Camellia chekiangoleosa Hu) planting density of 600 plants ha−1 and wild rape (WR) (Brassica napus L.) strip sowing (UM1); SC 600 plants ha−1 and WR scatter sowing (UM2); SC 1200 plants ha−1 and WR strip sowing (UM3); SC 1200 plants ha−1 and WR scatter sowing (UM4); and removal of the understory vegetation layer (CK). The results showed that understory vegetation modification significantly increased soil CO2 and emission fluxes and decreased soil CH4 uptake fluxes (p < 0.01). The understory vegetation transformation significantly improved soil labile carbon and labile nitrogen pools (p < 0.01). This study proposes that understory vegetation conversion can bolster soil carbon sinks, preserve soil fertility, and advance sustainable development of Chinese hickory plantation forests. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

13 pages, 4609 KiB  
Article
Molecular Characterization of MYB Transcription Factors in Camellia chekiangoleosa Reveals That CcMYB33 Is an Important Regulator Involved in Multiple Developmental Processes
by Mingchuan Huang, Sijia Li, Minyan Wang, Hengfu Yin and Haimei Li
Horticulturae 2024, 10(2), 178; https://doi.org/10.3390/horticulturae10020178 - 16 Feb 2024
Viewed by 1740
Abstract
Camellia chekiangoleosa is an economically important woody plant from the Genus Camellia in Theaceae, and its seed kernels are rich in edible oils of high health value. Yet, little is known about the molecular regulation of growth and development in C. chekiangoleosa. [...] Read more.
Camellia chekiangoleosa is an economically important woody plant from the Genus Camellia in Theaceae, and its seed kernels are rich in edible oils of high health value. Yet, little is known about the molecular regulation of growth and development in C. chekiangoleosa. In this study, we characterized the MYB (Myeloblastosis) gene family that was widely involved in plant development and stress responses, and identified 235 members from the C. chekiangoleosa genome. Based on transcriptomic analysis of multiple tissues, we obtained tissue-specific expression profiles of the MYB genes. We found that 37 MYB genes were highly expressed during seed development, and among them, CcMYB33 (GAMYB) was specifically expressed in the seed coat, suggesting that it may be an important regulator. We cloned full-length sequences of the CcMYB33 gene and further analyzed its sequence characteristics and expression pattern. Our results indicated that CcMYB33 is an R2R3-type MYB transcription factor that is closely related to GAMYB genes of Arabidopsis thaliana. We showed that ectopic expression of CcMYB33 in Arabidopsis lines caused pleiotropical developmental defects, including abnormal leaves, fused stamen, and early flowering, among other things. This work identified important MYB regulators in the regulation of development and growth in C. chekiangoleosa, providing support for further molecular and genetic studies. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

16 pages, 5927 KiB  
Article
Gene Structural Specificity and Expression of MADS-Box Gene Family in Camellia chekiangoleosa
by Pengyan Zhou, Yanshu Qu, Zhongwei Wang, Bin Huang, Qiang Wen, Yue Xin, Zhouxian Ni and Li’an Xu
Int. J. Mol. Sci. 2023, 24(4), 3434; https://doi.org/10.3390/ijms24043434 - 8 Feb 2023
Cited by 15 | Viewed by 3497
Abstract
MADS-box genes encode transcription factors that affect plant growth and development. Camellia chekiangoleosa is an oil tree species with ornamental value, but there have been few molecular biological studies on the developmental regulation of this species. To explore their possible role in C. chekiangoleosa [...] Read more.
MADS-box genes encode transcription factors that affect plant growth and development. Camellia chekiangoleosa is an oil tree species with ornamental value, but there have been few molecular biological studies on the developmental regulation of this species. To explore their possible role in C. chekiangoleosa and lay a foundation for subsequent research, 89 MADS-box genes were identified across the whole genome of C. chekiangoleosa for the first time. These genes were present on all the chromosomes and were found to have expanded by tandem duplication and fragment duplication. Based on the results of a phylogenetic analysis, the 89 MADS-box genes could be divided into either type I (38) or type II (51). Both the number and proportion of the type II genes were significantly greater than those of Camellia sinensis and Arabidopsis thaliana, indicating that C. chekiangoleosa type II genes experienced a higher duplication rate or a lower loss rate. The results of both a sequence alignment and a conserved motif analysis suggest that the type II genes are more conserved, meaning that they may have originated and differentiated earlier than the type I genes did. At the same time, the presence of extra-long amino acid sequences may be an important feature of C. chekiangoleosa. Gene structure analysis revealed the number of introns of MADS-box genes: twenty-one type I genes had no introns, and 13 type I genes contained only 1~2 introns. The type II genes have far more introns and longer introns than the type I genes do. Some MIKCC genes have super large introns (≥15 kb), which are rare in other species. The super large introns of these MIKCC genes may indicate richer gene expression. Moreover, the results of a qPCR expression analysis of the roots, flowers, leaves and seeds of C. chekiangoleosa showed that the MADS-box genes were expressed in all those tissues. Overall, compared with that of the type I genes, the expression of the type II genes was significantly higher. The CchMADS31 and CchMADS58 genes (type II) were highly expressed specifically in the flowers, which may in turn regulate the size of the flower meristem and petals. CchMADS55 was expressed specifically in the seeds, which might affect seed development. This study provides additional information for the functional characterization of the MADS-box gene family and lays an important foundation for in-depth study of related genes, such as those involved in the development of the reproductive organs of C. chekiangoleosa. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

15 pages, 1857 KiB  
Article
Comprehensive Evaluation of Quality Characteristics of Four Oil-Tea Camellia Species with Red Flowers and Large Fruit
by Shengyue Zhong, Bin Huang, Teng Wei, Zeyuan Deng, Jing Li and Qiang Wen
Foods 2023, 12(2), 374; https://doi.org/10.3390/foods12020374 - 13 Jan 2023
Cited by 12 | Viewed by 3126
Abstract
Red-flowered oil-tea camellia (ROC) is an important woody oil species growing in the south, and its oil has high nutritional value. There are four main species of ROC in China, namely, Camellia chekiangoleosa (CCH), Camellia polyodonta (CPO), [...] Read more.
Red-flowered oil-tea camellia (ROC) is an important woody oil species growing in the south, and its oil has high nutritional value. There are four main species of ROC in China, namely, Camellia chekiangoleosa (CCH), Camellia polyodonta (CPO), Camellia semiserrata (CSE) and Camellia reticulata (CRE). Reports on the comprehensive comparative analysis of ROC are limited. This study investigated the fruit characteristics and nutritional components of four ROC fruits, and the results showed that ROC had high oil content with levels of 39.13%–58.84%, especially the CCH fruit, which reached 53.6–58.84%. The contents of lipid concomitants of ROC oil were also substantial, including β-amyrin (0.87 mg/g–1.41 mg/g), squalene (0.43 mg/g–0.69 mg/g), β-sitosterin (0.47 mg/g–0.63 mg/g) and α-tocopherol (177.52 μg/g–352.27 μg/g). Moreover, the transverse diameter(TD)/longitudinal diameter (LD) of fruits showed a significant positive correlation with the oil content, and ROC fruits with thinner peels seemed to have better oil quality, which is similar to the result of the oil quality evaluation obtained by the gray correlation coefficient evaluation method. Four ROC oils were evaluated using the gray correlation coefficient method based on 11 indicators related to the nutritional value of ROC. CCH oil had the highest score of 0.8365, and YS-2 (a clone of CCH) was further evaluated as the best CCH oil. Finally, the results of heatmap analysis showed that triglycerides could be used as a characteristic substance to distinguish CCH oil from the other three ROC oils. The PLSDA (Partial least squares regression analysis) model and VIP (Variable important in projection) values further showed that P/S/O, P/O/O, P/L/L, P/L/Ln, S/S/O, S/O/O and P/S/S (these all represent abbreviations for fatty acids) could be used as characteristic differential triglycerides among the four ROC oils. This study provides a convenient way for planters to assess the nutritional quality of seed oil depending on fruit morphology and a potential way to distinguish between various ROC oils. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

15 pages, 6067 KiB  
Article
Assessment of the Genetic Relationship and Population Structure in Oil-Tea Camellia Species Using Simple Sequence Repeat (SSR) Markers
by Heqin Yan, Huasha Qi, Yang Li, Yougen Wu, Yong Wang, Jianmiao Chen and Jing Yu
Genes 2022, 13(11), 2162; https://doi.org/10.3390/genes13112162 - 19 Nov 2022
Cited by 11 | Viewed by 2187
Abstract
Oil-tea camellia trees, the collective term for a class of economically valuable woody oil crops in China, have attracted extensive attention because of their rich nutritional and pharmaceutical value. This study aimed to analyze the genetic relationship and genetic diversity of oil-tea camellia [...] Read more.
Oil-tea camellia trees, the collective term for a class of economically valuable woody oil crops in China, have attracted extensive attention because of their rich nutritional and pharmaceutical value. This study aimed to analyze the genetic relationship and genetic diversity of oil-tea camellia species using polymorphic SSR markers. One-hundred and forty samples of five species were tested for genetic diversity using twenty-four SSR markers. In this study, a total of 385 alleles were identified using 24 SSR markers, and the average number of alleles per locus was 16.0417. The average Shannon’s information index (I) was 0.1890, and the percentages of polymorphic loci (P) of oil-tea camellia trees were 7.79−79.48%, indicating that oil-tea camellia trees have low diversity. Analysis of molecular variance (AMOVA) showed that the majority of genetic variation (77%) was within populations, and a small fraction (23%) occurred among populations. Principal coordinate analysis (PCoA) results indicated that the first two principal axes explained 7.30% (PC1) and 6.68% (PC2) of the total variance, respectively. Both UPGMA and PCoA divided the 140 accessions into three groups. Camellia oleifera clustered into one class, Camellia vietnamensis and Camellia gauchowensis clustered into one class, and Camellia crapnelliana and Camellia chekiangoleosa clustered into another class. It could be speculated that the genetic relationship of C. vietnamensis and C. gauchowensis is quite close. SSR markers could reflect the genetic relationship among oil-tea camellia germplasm resources, and the results of this study could provide comprehensive information on the conservation, collection, and breeding of oil-tea camellia germplasms. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Graphical abstract

13 pages, 2877 KiB  
Article
Population Genetic Structure Analysis Reveals Significant Genetic Differentiation of the Endemic Species Camellia chekiangoleosa Hu. with a Narrow Geographic Range
by Bin Huang, Zhongwei Wang, Jianjian Huang, Xiaohui Li, Heng Zhu, Qiang Wen and Li-an Xu
Forests 2022, 13(2), 234; https://doi.org/10.3390/f13020234 - 3 Feb 2022
Cited by 12 | Viewed by 3063
Abstract
In order to protect and utilize the germplasm resource better, it is highly necessary to carry out a study on the genetic diversity of Camellia chekiangoleosa Hu. However, systematic research on population genetics analysis of the species is comparatively rare. Herein, 16 highly [...] Read more.
In order to protect and utilize the germplasm resource better, it is highly necessary to carry out a study on the genetic diversity of Camellia chekiangoleosa Hu. However, systematic research on population genetics analysis of the species is comparatively rare. Herein, 16 highly variable simple sequence repeat (SSR) markers were used for genetic structure assessment in 12 natural C. chekiangoleosa populations. The genetic diversity of C. chekiangoleosa was low (h = 0.596), within which, central populations (such as Damaoshan (DMS), Sanqingshan (SQS), and Gutianshan (GTS)) at the junction of four main mountain ranges presented high diversity and represented the center of the C. chekiangoleosa diversity distribution; the Hengshan (HS) population in the west showed the lowest diversity, and the diversity of the eastern and coastal populations was intermediate. C. chekiangoleosa exhibited a high level of genetic differentiation, and the variation among populations accounted for approximately 24% of the total variation. The major reasons for this situation are the small population scale and bottleneck effects in some populations (HS and Lingshan (LS)), coupled with inbreeding within the population and low gene flow among populations (Nm = 0.796). To scientifically protect the genetic diversity of C. chekiangoleosa, in situ conservation measures should be implemented for high-diversity populations, while low-diversity populations should be restored by reintroduction. Full article
(This article belongs to the Special Issue Biodiversity and Conservation of Forests)
Show Figures

Figure 1

Back to TopTop