Population Genetic Structure Analysis Reveals Significant Genetic Differentiation of the Endemic Species Camellia chekiangoleosa Hu. with a Narrow Geographic Range
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population Sample Information
2.2. Experimental Methods
2.3. Data Analysis
3. Results
3.1. Genetic Diversity
3.2. Genetic Differentiation
3.3. Genetic Structure
4. Discussion
4.1. Evaluation of Genetic Diversity in Camellia chekiangoleosa
4.2. Population Genetic Structure Analysis Reveals Significant Differentiation of Populations
4.3. Conservation of Camellia chekiangoleosa Genetic Resources
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fan, M.L.; Kai, Y.; Rui, Z.; Liu, H.Q.; Xiao, G.; Sun, K.Y. Temporal transcriptome profiling reveals candidate genes involved in cold acclimation of Camellia japonica (Naidong). Plant Physiol. Biochem. 2021, 167, 795–805. [Google Scholar] [CrossRef]
- Zhang, J.; Ying, Y.; Yao, X. Effects of turning frequency on the nutrients of Camellia oleifera shell co-compost with goat dung and evaluation of co-compost maturity. PLoS ONE 2019, 14, e0222841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, L.Y.; Wang, X.N.; Wang, L.P.; Chen, Y.Z.; Jiang, X.C. Genetic diversity of oil-tea camellia germplasms revealed by ISSR analysis. Int. J. Biomath. 2015, 5, 331–354. [Google Scholar] [CrossRef]
- Zhou, J.; Ai, Z.; Wang, H.; Niu, G.; Yuan, J. Phosphorus Alleviates Aluminum Toxicity in Camellia oleifera Seedlings. Int. J. Agric. Biol. 2019, 21, 237–243. [Google Scholar] [CrossRef]
- Fan, L.L.; Huang, J.S. Investigation on Species and Verieties pattern of Camellia sp. in Suichuan County. South China For. Sci. 2001, 4, 16–18. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, Q.; María, D.; Wang, L.J. Profiling and quantification of phenolic compounds in Camellia seed oils: Natural tea polyphenols in vegetable oil. Food Res. Int. 2017, 102, 184–194. [Google Scholar] [CrossRef] [PubMed]
- He, Y.C.; Wu, M.J.; Dong, L.; Wen, Q.; Li, T.; Li, X.H. Analysis of kernel oil content and variation of fatty acid composition of Camellia chekiangoleosa in the main producing areas. Non-Wood For. Res. 2020, 3, 37–45. [Google Scholar] [CrossRef]
- Guo, H.; Tan, H.Y.; Zhou, J.P. Proximate composition of Camellia chekiangoleosa Hu fruit and fatty acid constituents of its seed oil. J. Zhejiang Univ. 2010, 36, 662–669. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, X. Comparative transcriptomic analysis identifies genes responsible for fruit count and oil yield in the oil tea plant Camellia chekiangoleosa. Sci. Rep. 2018, 8, 6637. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.C.; Wang, Z.W.; Dong, L.; Wen, Q.; Huang, W.Y.; Li, T.; Ye, J.S.; Xu, L.A. Analysis on the character diversity of fruit and seed of Camellia chekiangoleosa. J. Nanjing For. Univ. Nat. Sci. Ed. 2021, 45, 51–59. [Google Scholar] [CrossRef]
- Wen, Q.; Xu, L.; Gu, Y.; Huang, M.; Xu, L.A. Development of polymorphic microsatellite markers in Camellia chekiangoleosa (Theaceae) using 454-ESTs. Am. J. Bot. 2012, 99, e203–e205. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Li, J.Y.; Zhang, D.L. Assessment of Genetic Diversity and Population Structure of Endangered Camellia chekiangoleosa Hu Using Issr Markers. Pak. J. Bot. 2018, 50, 1965–1970. [Google Scholar]
- Hughes, A.R.; Inouye, B.D.; Johnson, M.T.J.; Underwood, N.; Vellend, M. Ecological consequences of genetic diversity. Ecol. Lett. 2008, 11, 609–623. [Google Scholar] [CrossRef] [PubMed]
- Kobori, H. Conservation Education Based on the Principles of Conservation Biology. Jpn. J. Environ. Educ. 2009, 19, 77–78. [Google Scholar] [CrossRef] [Green Version]
- Gentili, R.; Fenu, G.; Mattana, E.; Citterio, S.; Mattia, F.D.; Bacchetta, G.; Peeters, T. Conservation genetics of two island endemic Ribes spp. (Grossulariaceae) of Sardinia: Survival or extinction? Plant Biol. 2015, 17, 1085–1094. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.B. Understanding crop genetic diversity under modern plant breeding. Theor. Appl. Genet. 2015, 128, 2131–2142. [Google Scholar] [CrossRef] [Green Version]
- Nybom, H. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol. Ecol. 2004, 13, 1143–1155. [Google Scholar] [CrossRef]
- Erfanian, M.B.; Sagharyan, M.; Memariani, F.; Ejtehadi, H. Predicting range shifts of three endangered endemic plants of the Khorassan-Kopet Dagh floristic province under global change. Sci. Rep. 2021, 11, 9159. [Google Scholar] [CrossRef]
- Oakley, C.G.; Winn, A.A. Effects of population size and isolation on heterosis, mean fitness, and inbreeding depression in a perennial plant. New Phytol. 2012, 196, 261–270. [Google Scholar] [CrossRef]
- Gentili, R.; Solari, A.; Diekmann, M.; Duprè, C.; Citterio, S. Genetic differentiation, local adaptation and phenotypic plasticity in fragmented populations of a rare forest herb. Peer J. 2018, 6, e4929. [Google Scholar] [CrossRef]
- Lu, X.L.; Chen, H.L.; Liang, X.Y.; Tang, S.Q. Genetic Diversity Analysis of C. nitidissima var. microcarpa and Peripheral Population of Camellia nitidissima. Mol. Plant Breed. 2019, 17, 301–306. [Google Scholar] [CrossRef]
- Liu, S.; Liu, H.; Wu, A.; Hou, Y.; An, Y.; Wei, C.L. Construction of fingerprinting for tea plant (Camellia sinensis) accessions using new genomic SSR markers. Mol. Breed. 2017, 37, 93. [Google Scholar] [CrossRef]
- Li, S.; Liu, S.L.; Pei, S.Y.; Ning, M.M.; Tang, S.Q. Genetic diversity and population structure of Camellia huana (Theaceae), a limestone species with narrow geographic range, based on chloroplast DNA sequence and microsatellite markers. Plant Divers. 2020, 42, 343–350. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Liu, C.; Wang, X.; Wang, R.; Tian, Y. Assessment of genetic diversity in Camellia oleifera Abel. accessions using morphological traits and simple sequence repeat (SSR) markers. Breed. Sci. 2020, 70, 586–593. [Google Scholar] [CrossRef]
- Liu, F.L.; Xiao, B. Global Mapper System and Its Application in Marine Geological Survey. Ocean Technol. 2011, 30, 24–26. [Google Scholar]
- Cota-Sánchez, J.H.; Remarchuk, K.; Ubayasena, K. Ready-to-use DNA extracted with a CTAB method adapted for herbarium specimens and mucilaginous plant tissue. Plant Mol. Biol. Rep. 2006, 24, 161–167. [Google Scholar] [CrossRef]
- Liu, K.J.; Muse, S.V. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics 2005, 21, 2128–2129. [Google Scholar] [CrossRef] [Green Version]
- Yeh, F.; Yang, R.; Boyle, T. POPGENE Version 1.32 Microsoft Windows-Based Freeware for Populations Genetic Analysis; University of Alberta: Edmonton, AB, Canada, 1999. [Google Scholar]
- Goudet, J. FSTAT, a Program to Estimate and Test Gene Diversities and Fixation Indices, Version 2.9.3. 2001. Available online: http://www.unil.ch/popgen/softwares/fstat.htm (accessed on 20 June 2021).
- Peakall, R.; Smouse, P.E. Genalex 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
- Excoffier, L.; Lischer, H. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef]
- Belkhir, K.; Borsa, P.; Chikhi, L.; Raufaste, N.; Bonhomme, F. GENETIX (ver.4.02): Logiciel sous Windows TM pour la Genetique des Populations, Laboratoire Genome, Populations, Interactions CNRSUMR 5000; Universite Montpellier II: Montpellier, France, 2004. [Google Scholar]
- Manel, S.; Schwartz, M.K.; Luikart, G.; Taberlet, P. Landscape genetics combining landscape ecology and population genetics. Trends Ecol. Evol. 2003, 18, 189–197. [Google Scholar] [CrossRef]
- Travadon, R.; Sache, I.; Dutech, C.; Stachowiak, A.; Marquer, B.; Bousset, L. Absence of isolation by distance patterns at the regional scale in the fungal plant pathogen Leptosphaeria maculans. Fungal Biol. 2011, 115, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Rohlf, F.J. NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, Version 2.2, 2.1; Department of Ecoloy and Evolution, State University of New York: New York, NY, USA, 2005. [Google Scholar]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piry, S.; Luikart, G.; Cornuet, J.M. BOTTLENECK: A computer program for detecting recent reductions in the effective population size using allele frequency data. J. Hered. 1999, 90, 502–503. [Google Scholar] [CrossRef]
- Solórzano, S.; Arias, S.; Dávila, P. Genetics and Conservation of Plant Species of Extremely Narrow Geographic Range. Diversity 2016, 8, 31. [Google Scholar] [CrossRef] [Green Version]
- Yao, M.Z.; Ma, C.L.; Qiao, T.T.; Jin, J.Q.; Liang, C. Diversity distribution and population structure of tea germplasms in China revealed by EST-SSR markers. Tree Genet. Genomes 2012, 8, 205–220. [Google Scholar] [CrossRef]
- Ueno, S.; Tomaru, N.; Yoshimaru, H.; Manabe, T.; Yamamoto, S. Genetic structure of Camellia japonica L. in an old-growth evergreen forest, Tsushima, Japan. Mol. Ecol. 2000, 9, 647–656. [Google Scholar] [CrossRef]
- Zhou, P.Y.; Hui, L.X.; Huang, S.-J.; Ni, Z.X.; Yu, F.-X.; Xu, L.A. Study on the Genetic Structure Based on Geographic Populations of the Endangered Tree Species: Liriodendron chinense. Forests 2021, 12, 917. [Google Scholar] [CrossRef]
- Garg, K.M.; Chattopadhyay, B. Gene Flow in Volant Vertebrates: Species Biology, Ecology and Climate Change. J. Indian Inst. Sci. 2021, 101, 165–176. [Google Scholar] [CrossRef]
- Chen, H.; Xuelin, L.U.; Quanqing, Y.E.; Tang, S.Q. Genetic diversity and structure of three yellow Camellia species based on SSR markers. Guihaia 2019, 39, 318–327. [Google Scholar] [CrossRef]
- Li, X.L.; Wang, J.; Fan, Z.Q.; Li, J.Y.; Yin, H.F. Genetic diversity in the endangered Camellia nitidissima assessed using transcriptome-based SSR markers. Trees 2020, 34, 543–552. [Google Scholar] [CrossRef]
- Shi, X.; Wen, Q.; Cao, M.; Guo, X.; Xu, L.A. Genetic Diversity and Structure of Natural Quercus variabilis Population in China as Revealed by Microsatellites Markers. Forests 2017, 8, 495. [Google Scholar] [CrossRef] [Green Version]
- Cristian, T.D.; Eduardo, R.; Fidelina, G.; Glenda, F.; Cavieres, L.A. Genetic Diversity in Nothofagus alessandrii (Fagaceae), an Endangered Endemic Tree Species of the Coastal Maulino Forest of Central Chile. Ann. Bot. 2007, 100, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Miao, C.Y.; Yang, J.; Mao, R.L.; Li, Y. Phylogeography of Achyranthes bidentata (Amaranthaceae) in China’s Warm-Temperate Zone Inferred from Chloroplast and Nuclear DNA: Insights into Population Dynamics in Response to Climate Change During the Pleistocene. Plant Mol. Biol. Rep. 2017, 35, 166–176. [Google Scholar] [CrossRef]
- Peng, G.; Tang, S. Fine-scale spatial genetic structure and gene flow of Camellia flavida, a shadetolerant shrub in karst. Acta Ecol. Sin. 2017, 37, 7313–7323. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Ai, B.; Kong, H.H.; Hang, H.W. Geographical pattern of isolation and diversification in karst habitat islands: A case study in the Primulina eburnea complex. J. Biogeogr. 2015, 42, 2131–2144. [Google Scholar] [CrossRef]
- Slatkin, M. A measure of population subdivision based on microsatellite allele frequencies. Genetics 1995, 139, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Slatkin, M. Gene flow and the geographic structure of natural populations. Science 1987, 236, 787–792. [Google Scholar] [CrossRef]
- Bhattacharyya, P.; Kumaria, S. Molecular characterization of Dendrobium nobile Lindl., an endangered medicinal orchid, based on randomly amplified polymorphic DNA. Plant Syst. Evol. 2015, 301, 201–210. [Google Scholar] [CrossRef]
- Yang, Z.L.; Ji-Yuan, L.I.; Fan, Z.Q. Effect of Storage Temperature on Pollen Germination of Sect. Camellia Species and C. Japonica Cultivars. J. Zhejiang For. Sci. Technol. 2004, 24, 1–3. [Google Scholar] [CrossRef]
Locus | Na | Ne | PIC | h | GST | RST | FST | Nm |
---|---|---|---|---|---|---|---|---|
CC_eSSR03 | 5 | 3.311 | 0.698 | 0.695 | 0.288 | 0.532 | 0.295 | 0.597 |
CC_eSSR15 | 5 | 1.985 | 0.496 | 0.468 | 0.213 | 0.086 | 0.215 | 0.913 |
CC_eSSR16 | 5 | 1.545 | 0.352 | 0.329 | 0.255 | 0.340 | 0.264 | 0.697 |
CC_eSSR29 | 4 | 2.641 | 0.621 | 0.625 | 0.352 | 0.486 | 0.372 | 0.422 |
CC_eSSR37 | 4 | 3.236 | 0.691 | 0.690 | 0.266 | 0.229 | 0.254 | 0.734 |
CC_eSSR41 | 4 | 2.643 | 0.622 | 0.623 | 0.181 | 0.316 | 0.189 | 1.073 |
CC_eSSR48 | 4 | 1.933 | 0.483 | 0.460 | 0.195 | 0.143 | 0.201 | 0.994 |
CC_eSSR49 | 5 | 2.560 | 0.609 | 0.589 | 0.183 | 0.260 | 0.188 | 1.080 |
CC_eSSR55 | 4 | 2.534 | 0.605 | 0.618 | 0.358 | 0.358 | 0.347 | 0.470 |
CC_eSSR83 | 3 | 2.283 | 0.562 | 0.562 | 0.169 | 0.140 | 0.171 | 1.212 |
CC_eSSR85 | 4 | 2.834 | 0.647 | 0.646 | 0.194 | 0.148 | 0.203 | 0.982 |
CC_eSSR87 | 5 | 3.057 | 0.673 | 0.660 | 0.371 | 0.447 | 0.376 | 0.415 |
CC_eSSR89 | 4 | 2.776 | 0.640 | 0.641 | 0.210 | 0.122 | 0.215 | 0.913 |
CC_eSSR92 | 5 | 2.421 | 0.595 | 0.569 | 0.195 | 0.157 | 0.206 | 0.964 |
CC_eSSR95 | 7 | 3.090 | 0.806 | 0.668 | 0.240 | 0.169 | 0.249 | 0.754 |
CC_eSSR101 | 6 | 4.056 | 0.761 | 0.699 | 0.067 | 0.113 | 0.071 | 3.271 |
Mean | 4.625 | 2.682 | 0.616 | 0.596 | 0.234 | 0.253 | 0.239 | 0.796 |
Pop | Sample Size | Allelic Richness | Ho b | He b | I | F | Bottleneck Test r | |
---|---|---|---|---|---|---|---|---|
TPM | SMM | |||||||
GTS | 50 | 3.829 | 0.439 | 0.566 | 1.009 | 0.216 * | 0.39098 | 0.86026 |
HS | 36 | 1.625 | 0.160 | 0.177 | 0.290 | 0.087 | 0.03906 ▲ | 0.07813 |
WYS | 50 | 3.245 | 0.369 | 0.509 | 0.873 | 0.268 * | 0.10458 | 0.21143 |
SQS | 50 | 3.694 | 0.478 | 0.575 | 1.005 | 0.162 * | 0.17535 | 0.40375 |
LS | 48 | 3.224 | 0.458 | 0.539 | 0.912 | 0.140 * | 0.02139 ▲ | 0.03864 ▲ |
JRS | 48 | 2.589 | 0.309 | 0.412 | 0.667 | 0.242 * | 0.07300 | 0.12054 |
ZR | 30 | 2.688 | 0.360 | 0.418 | 0.673 | 0.124 | 0.34839 | 0.40375 |
FA | 32 | 2.793 | 0.285 | 0.357 | 0.606 | 0.188 * | 0.33026 | 0.15143 |
WYL | 40 | 2.961 | 0.258 | 0.408 | 0.705 | 0.360 * | 0.85522 | 0.54163 |
RLX | 48 | 3.508 | 0.349 | 0.539 | 0.936 | 0.345 * | 0.32251 | 0.97995 |
XP | 48 | 3.040 | 0.372 | 0.425 | 0.739 | 0.114 | 0.80396 | 0.59949 |
DMS | 48 | 3.982 | 0.444 | 0.569 | 1.029 | 0.211 * | 0.93988 | 0.63217 |
Mean | 44 | 3.098 | 0.357 | 0.458 | 0.787 | 0.205 |
Source of Variation | d.f. | Sum of Squares | Variance Components | Percentage Variation | Probability |
---|---|---|---|---|---|
Among populations | 11 | 1191.53 | 1.191 | 24.15 | <0.001 |
Within populations | 1044 | 3906.02 | 3.741 | 75.85 | <0.001 |
Total | 1055 | 5097.55 | 4.932 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, B.; Wang, Z.; Huang, J.; Li, X.; Zhu, H.; Wen, Q.; Xu, L.-a. Population Genetic Structure Analysis Reveals Significant Genetic Differentiation of the Endemic Species Camellia chekiangoleosa Hu. with a Narrow Geographic Range. Forests 2022, 13, 234. https://doi.org/10.3390/f13020234
Huang B, Wang Z, Huang J, Li X, Zhu H, Wen Q, Xu L-a. Population Genetic Structure Analysis Reveals Significant Genetic Differentiation of the Endemic Species Camellia chekiangoleosa Hu. with a Narrow Geographic Range. Forests. 2022; 13(2):234. https://doi.org/10.3390/f13020234
Chicago/Turabian StyleHuang, Bin, Zhongwei Wang, Jianjian Huang, Xiaohui Li, Heng Zhu, Qiang Wen, and Li-an Xu. 2022. "Population Genetic Structure Analysis Reveals Significant Genetic Differentiation of the Endemic Species Camellia chekiangoleosa Hu. with a Narrow Geographic Range" Forests 13, no. 2: 234. https://doi.org/10.3390/f13020234
APA StyleHuang, B., Wang, Z., Huang, J., Li, X., Zhu, H., Wen, Q., & Xu, L.-a. (2022). Population Genetic Structure Analysis Reveals Significant Genetic Differentiation of the Endemic Species Camellia chekiangoleosa Hu. with a Narrow Geographic Range. Forests, 13(2), 234. https://doi.org/10.3390/f13020234