Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = Caco-2/TC7 cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1970 KB  
Article
Pediococcus pentosaceus MZF16 Probiotic Strain Prevents In Vitro Cytotoxic Effects of Pseudomonas aeruginosa H103 and Prolongs the Lifespan of Caenorhabditis elegans
by Meryem Boujnane, Mohamed Zommiti, Olivier Lesouhaitier, Mounir Ferchichi, Ali Tahrioui, Amine M. Boukerb and Nathalie Connil
Pathogens 2025, 14(3), 244; https://doi.org/10.3390/pathogens14030244 - 3 Mar 2025
Viewed by 1778
Abstract
Pseudomonas aeruginosa is an opportunistic pathogenic bacterium, responsible for several life-threatening infections due to its multiple virulence factors and problematic multi-drug resistance, hence the necessity to find alternatives such as competitive probiotics. Pediococcus pentosaceus MZF16 is an LAB strain, isolated from traditional dried [...] Read more.
Pseudomonas aeruginosa is an opportunistic pathogenic bacterium, responsible for several life-threatening infections due to its multiple virulence factors and problematic multi-drug resistance, hence the necessity to find alternatives such as competitive probiotics. Pediococcus pentosaceus MZF16 is an LAB strain, isolated from traditional dried meat “Ossban”, with high probiotic potential. Our study investigated the capacity of P. pentosaceus MZF16 to counteract P. aeruginosa H103 using several tests on intestinal cells (analysis of cytotoxicity, inflammation, adhesion/invasion) and on the in vivo Caenorhabditis elegans model. The effect of MZF16 on the quorum sensing of the pathogen was also examined. We found that P. pentosaceus MZF16 was able to reduce H103 cytotoxicity and inflammatory activity and prevented pathogen colonization and translocation across Caco-2/TC7 cells. MZF16 also exerted an anti-virulence effect by attenuating quorum-sensing (QS) molecules and pyoverdine production and extended C. elegans lifespan. The obtained results highlight the potential of P. pentosaceus MZF16 probiotic strain as an anti-Pseudomonas aeruginosa alternative and establish a basis for elucidating the mechanisms of P. pentosaceus MZF16 involved in countering P. aeruginosa virulence. Full article
Show Figures

Figure 1

29 pages, 7525 KB  
Article
Impact of Glucose, Inflammation and Phytochemicals on ACE2, TMPRSS2 and Glucose Transporter Gene Expression in Human Intestinal Cells
by Rizliya Visvanathan, Michael J. Houghton and Gary Williamson
Antioxidants 2025, 14(3), 253; https://doi.org/10.3390/antiox14030253 - 21 Feb 2025
Cited by 3 | Viewed by 1562
Abstract
Inflammation is associated with the pathophysiology of type 2 diabetes and COVID-19. Phytochemicals have the potential to modulate inflammation, expression of SARS-CoV-2 viral entry receptors (angiotensin-converting enzyme 2 (ACE2) and transmembrane protease, serine 2 (TMPRSS2)) and glucose transport in the gut. This study [...] Read more.
Inflammation is associated with the pathophysiology of type 2 diabetes and COVID-19. Phytochemicals have the potential to modulate inflammation, expression of SARS-CoV-2 viral entry receptors (angiotensin-converting enzyme 2 (ACE2) and transmembrane protease, serine 2 (TMPRSS2)) and glucose transport in the gut. This study assessed the impact of phytochemicals on these processes. We screened 12 phytochemicals alongside 10 pharmaceuticals and three plant extracts, selected for known or hypothesised effects on the SARS-CoV-2 receptors and COVID-19 risk, for their effects on the expression of ACE2 or TMPRSS2 in differentiated Caco-2/TC7 human intestinal epithelial cells. Genistein, apigenin, artemisinin and sulforaphane were the most promising ones, as assessed by the downregulation of TMPRSS2, and thus they were used in subsequent experiments. The cells were then co-stimulated with pro-inflammatory cytokines interleukin-1 beta (IL-1β) and tumour necrosis factor-alpha (TNF-α) for ≤168 h to induce inflammation, which are known to induce multiple pathways, including the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. Target gene expression (ACE2, TMPRSS2, SGLT1 (sodium-dependent glucose transporter 1) and GLUT2 (glucose transporter 2)) was measured by droplet digital PCR, while interleukin-1 (IL-6), interleukin-1 (IL-8) and ACE2 proteins were assessed using ELISA in both normal and inflamed cells. IL-1β and TNF-α treatment upregulated ACE2, TMPRSS2 and SGLT1 gene expression. ACE2 increased with the duration of cytokine exposure, coupled with a significant decrease in IL-8, SGLT1 and TMPRSS2 over time. Pearson correlation analysis revealed that the increase in ACE2 was strongly associated with a decrease in IL-8 (r = −0.77, p < 0.01). The regulation of SGLT1 gene expression followed the same pattern as TMPRSS2, implying a common mechanism. Although none of the phytochemicals decreased inflammation-induced IL-8 secretion, genistein normalised inflammation-induced increases in SGLT1 and TMPRSS2. The association between TMPRSS2 and SGLT1 gene expression, which is particularly evident in inflammatory conditions, suggests a common regulatory pathway. Genistein downregulated the inflammation-induced increase in SGLT1 and TMPRSS2, which may help lower the postprandial glycaemic response and COVID-19 risk or severity in healthy individuals and those with metabolic disorders. Full article
Show Figures

Figure 1

13 pages, 1337 KB  
Article
Probiotic Potential of Yeasts Isolated from Fermented Beverages: Assessment of Antagonistic Strategies Against Salmonella enterica Serovar Enteritidis
by Silvia Cristina Vergara Alvarez, María Dolores Pendón, Ana Agustina Bengoa, María José Leiva Alaniz, Yolanda Paola Maturano and Graciela Liliana Garrote
J. Fungi 2024, 10(12), 878; https://doi.org/10.3390/jof10120878 - 17 Dec 2024
Cited by 6 | Viewed by 1990
Abstract
Global concern about pathogenic resistance to antibiotics is prompting interest in probiotics as a strategy to prevent or inhibit infections. Fermented beverages are promising sources of probiotic yeasts. This study aimed to evaluate the antagonistic effects of Kluyveromyces marxianus, Wickerhamomyces anomalus, [...] Read more.
Global concern about pathogenic resistance to antibiotics is prompting interest in probiotics as a strategy to prevent or inhibit infections. Fermented beverages are promising sources of probiotic yeasts. This study aimed to evaluate the antagonistic effects of Kluyveromyces marxianus, Wickerhamomyces anomalus, and Pichia manshurica strains from kefir and wine against Salmonella enterica serovar Enteritidis in intestinal epithelial cells. The ability of these yeasts to adhere to Caco-2/TC-7 cells was evaluated, as well as their influence on the ability of Salmonella to associate and invade these cells. The behavior of the pathogen was analyzed by (a) incubation of enterocytes with yeast before adding Salmonella, (b) co-incubation of Salmonella with yeast before contact with the enterocytes, and (c) incubation of Salmonella with yeast metabolites before contact with enterocytes. All yeast strains demonstrated adherence to Caco-2/TC-7 cells (33–100%) and effectively inhibited Salmonella invasion. Among the treatments, co-culture showed the greatest effect, reducing Salmonella association and invasion by more than 50%. Additionally, these yeasts modulated the epithelial immune response, significantly decreasing CCL20-driven luminescence by 60–81% (p < 0.0001). These results highlight the potential of yeasts from fermented beverages as probiotics to counteract Salmonella infections, offering a promising alternative in the fight against antibiotic resistance. Full article
(This article belongs to the Special Issue Yeasts with Probiotic and Postbiotic Potential)
Show Figures

Figure 1

17 pages, 10687 KB  
Article
Characterizations on a GRAS Electrospun Lipid–Polymer Composite Loaded with Tetrahydrocurcumin
by Zhenyu Lin, Jun Li and Qingrong Huang
Foods 2024, 13(11), 1672; https://doi.org/10.3390/foods13111672 - 27 May 2024
Cited by 2 | Viewed by 2022
Abstract
Electrospun/sprayed fiber films and nanoparticles were broadly studied as encapsulation techniques for bioactive compounds. Nevertheless, many of them involved using non-volatile toxic solvents or non-biodegradable polymers that were not suitable for oral consumption, thus rather limiting their application. In this research, a novel [...] Read more.
Electrospun/sprayed fiber films and nanoparticles were broadly studied as encapsulation techniques for bioactive compounds. Nevertheless, many of them involved using non-volatile toxic solvents or non-biodegradable polymers that were not suitable for oral consumption, thus rather limiting their application. In this research, a novel electrospun lipid–polymer composite (ELPC) was fabricated with whole generally recognized as safe (GRAS) materials including gelatin, medium chain triglyceride (MCT) and lecithin. A water-insoluble bioactive compound, tetrahydrocurcumin (TC), was encapsulated in the ELPC to enhance its delivery. Confocal laser scanning microscopy (CLSM) was utilized to examine the morphology of this ELPC and found that it was in a status between electrospun fibers and electrosprayed particles. It was able to form self-assembled emulsions (droplets visualized by CLSM) to deliver active compounds. In addition, this gelatin-based ELPC self-assembled emulsion was able to form a special emulsion gel. CLSM observation of this gel displayed that the lipophilic contents of the ELPC were encapsulated within the cluster of the hydrophilic gelatin gel network. The FTIR spectrum of the TC-loaded ELPC did not show the fingerprint pattern of crystalline TC, while it displayed the aliphatic hydrocarbon stretches from MCT and lecithin. The dissolution experiment demonstrated a relatively linear release profile of TC from the ELPC. The lipid digestion assay displayed a rapid digestion of triglycerides in the first 3–6 min, with a high extent of lipolysis. A Caco-2 intestinal monolayer transport study was performed. The ELPC delivered more TC in the upward direction than downwards. MTT study results did not report cytotoxicity for both pure TC and the ELPC-encapsulated TC under 15 μg/mL. Caco-2 cellular uptake was visualized by CLSM and semi-quantified to estimate the accumulation rate of TC in the cells over time. Full article
(This article belongs to the Special Issue Applications of Polymeric Nanomaterials in the Food Industry)
Show Figures

Figure 1

16 pages, 4281 KB  
Article
Laminarin Reduces Cholesterol Uptake and NPC1L1 Protein Expression in High-Fat Diet (HFD)-Fed Mice
by Zhuoqian He, Zhongyin Zhang, Pengfei Xu, Verena M. Dirsch, Limei Wang and Kewei Wang
Mar. Drugs 2023, 21(12), 624; https://doi.org/10.3390/md21120624 - 29 Nov 2023
Cited by 11 | Viewed by 4255
Abstract
Aberrantly high dietary cholesterol intake and intestinal cholesterol uptake lead to dyslipidemia, one of the risk factors for cardiovascular diseases (CVDs). Based on previous studies, laminarin, a polysaccharide found in brown algae, has hypolipidemic activity, but its underlying mechanism has not been elucidated. [...] Read more.
Aberrantly high dietary cholesterol intake and intestinal cholesterol uptake lead to dyslipidemia, one of the risk factors for cardiovascular diseases (CVDs). Based on previous studies, laminarin, a polysaccharide found in brown algae, has hypolipidemic activity, but its underlying mechanism has not been elucidated. In this study, we investigated the effect of laminarin on intestinal cholesterol uptake in vitro, as well as the lipid and morphological parameters in an in vivo model of high-fat diet (HFD)-fed mice, and addressed the question of whether Niemann–Pick C1-like 1 protein (NPC1L1), a key transporter mediating dietary cholesterol uptake, is involved in the mechanistic action of laminarin. In in vitro studies, BODIPY-cholesterol-labeled Caco-2 cells were examined using confocal microscopy and a fluorescence reader. The results demonstrated that laminarin inhibited cholesterol uptake into Caco-2 cells in a concentration-dependent manner (EC50 = 20.69 μM). In HFD-fed C57BL/6J mice, laminarin significantly reduced the serum levels of total cholesterol (TC), total triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C). It also decreased hepatic levels of TC, TG, and total bile acids (TBA) while promoting the excretion of fecal cholesterol. Furthermore, laminarin significantly reduced local villous damage in the jejunum of HFD mice. Mechanistic studies revealed that laminarin significantly downregulated NPC1L1 protein expression in the jejunum of HFD-fed mice. The siRNA-mediated knockdown of NPC1L1 attenuated the laminarin-mediated inhibition of cholesterol uptake in Caco-2 cells. This study suggests that laminarin significantly improves dyslipidemia in HFD-fed mice, likely by reducing cholesterol uptake through a mechanism that involves the downregulation of NPC1L1 expression. Full article
(This article belongs to the Collection Marine Drugs in the Management of Metabolic Diseases)
Show Figures

Figure 1

11 pages, 1091 KB  
Article
Gut Microbiota-Derived Short-Chain Fatty Acids: Novel Regulators of Intestinal Serotonin Transporter
by Berta Buey, Ana Forcén, Laura Grasa, Elena Layunta, Jose Emilio Mesonero and Eva Latorre
Life 2023, 13(5), 1085; https://doi.org/10.3390/life13051085 - 26 Apr 2023
Cited by 40 | Viewed by 7269
Abstract
Serotonin (5-HT) is a key neurotransmitter synthesized both in the gut and the central nervous system. It exerts its signaling through specific receptors (5-HTR), which regulate numerous behaviors and functions such as mood, cognitive function, platelet aggregation, gastrointestinal motility, and inflammation. Serotonin activity [...] Read more.
Serotonin (5-HT) is a key neurotransmitter synthesized both in the gut and the central nervous system. It exerts its signaling through specific receptors (5-HTR), which regulate numerous behaviors and functions such as mood, cognitive function, platelet aggregation, gastrointestinal motility, and inflammation. Serotonin activity is determined mainly by the extracellular availability of 5-HT, which is controlled by the serotonin transporter (SERT). Recent studies indicate that, by activation of innate immunity receptors, gut microbiota can modulate serotonergic signaling by SERT modulation. As part of its function, gut microbiota metabolize nutrients from diet to produce different by-products, including short-chain fatty acids (SCFAs): propionate, acetate, and butyrate. However, it is not known whether these SCFAs regulate the serotonergic system. The objective of this study was to analyze the effect of SCFAs on the gastrointestinal serotonergic system using the Caco-2/TC7 cell line that expresses SERT and several receptors constitutively. Cells were treated with different SCFAs concentrations, and SERT function and expression were evaluated. In addition, the expression of 5-HT receptors 1A, 2A, 2B, 3A, 4, and 7 was also studied. Our results show that the microbiota-derived SCFAs regulate intestinal serotonergic system, both individually and in combination, modulating the function and expression of SERT and the 5-HT1A, 5-HT2B, and 5-HT7 receptors expression. Our data highlight the role of gut microbiota in the modulation of intestinal homeostasis and suggest microbiome modulation as a potential therapeutic treatment for intestinal pathologies and neuropsychiatric disorders involving serotonin. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

22 pages, 3934 KB  
Article
Validation of Knock-Out Caco-2 TC7 Cells as Models of Enterocytes of Patients with Familial Genetic Hypobetalipoproteinemias
by Claire Bordat, Donato Vairo, Charlotte Cuerq, Charlotte Halimi, Franck Peiretti, Armelle Penhoat, Aurélie Vieille-Marchiset, Teresa Gonzalez, Marie-Caroline Michalski, Marion Nowicki, Noël Peretti and Emmanuelle Reboul
Nutrients 2023, 15(3), 505; https://doi.org/10.3390/nu15030505 - 18 Jan 2023
Cited by 4 | Viewed by 3814
Abstract
Abetalipoproteinemia (FHBL-SD1) and chylomicron retention disease (FHBL-SD3) are rare recessive disorders of lipoprotein metabolism due to mutations in MTTP and SAR1B genes, respectively, which lead to defective chylomicron formation and secretion. This results in lipid and fat-soluble vitamin malabsorption, which induces severe neuro-ophthalmic [...] Read more.
Abetalipoproteinemia (FHBL-SD1) and chylomicron retention disease (FHBL-SD3) are rare recessive disorders of lipoprotein metabolism due to mutations in MTTP and SAR1B genes, respectively, which lead to defective chylomicron formation and secretion. This results in lipid and fat-soluble vitamin malabsorption, which induces severe neuro-ophthalmic complications. Currently, treatment combines a low-fat diet with high-dose vitamin A and E supplementation but still fails in normalizing serum vitamin E levels and providing complete ophthalmic protection. To explore these persistent complications, we developed two knock-out cell models of FHBL-SD1 and FHBL-SD3 using the CRISPR/Cas9 technique in Caco-2/TC7 cells. DNA sequencing, RNA quantification and Western blotting confirmed the introduction of mutations with protein knock-out in four clones associated with i) impaired lipid droplet formation and ii) defective triglyceride (−57.0 ± 2.6% to −83.9 ± 1.6%) and cholesterol (−35.3 ± 4.4% to −60.6 ± 3.5%) secretion. A significant decrease in α-tocopherol secretion was also observed in these clones (−41.5 ± 3.7% to −97.2 ± 2.8%), even with the pharmaceutical forms of vitamin E: tocopherol-acetate and tocofersolan (α-tocopheryl polyethylene glycol succinate 1000). MTTP silencing led to a more severe phenotype than SAR1B silencing, which is consistent with clinical observations. Our cellular models thus provide an efficient tool to experiment with therapeutic strategies and will allow progress in understanding the mechanisms involved in lipid metabolism. Full article
(This article belongs to the Section Clinical Nutrition)
Show Figures

Figure 1

16 pages, 3180 KB  
Article
Clostridioides difficile Flagellin Activates the Intracellular NLRC4 Inflammasome
by Hiba Chebly, Jean-Christophe Marvaud, Layale Safa, Assem Khalil Elkak, Philippe Hussein Kobeissy, Imad Kansau and Cécile Larrazet
Int. J. Mol. Sci. 2022, 23(20), 12366; https://doi.org/10.3390/ijms232012366 - 15 Oct 2022
Cited by 11 | Viewed by 3932
Abstract
Clostridioides difficile (C. difficile), is a major cause of nosocomial diarrhea and colitis. C. difficile flagellin FliC contributes toxins to gut inflammation by interacting with the immune Toll-like receptor 5 (TLR5) to activate nuclear factor-kappa B (NF-kB) and mitogen-activated protein kinase [...] Read more.
Clostridioides difficile (C. difficile), is a major cause of nosocomial diarrhea and colitis. C. difficile flagellin FliC contributes toxins to gut inflammation by interacting with the immune Toll-like receptor 5 (TLR5) to activate nuclear factor-kappa B (NF-kB) and mitogen-activated protein kinase (MAPK) signaling pathways. Flagella of intracellular pathogens can activate the NLR family CARD domain-containing protein 4 (NLRC4) inflammasome pathway. In this study, we assessed whether flagellin of the extracellular bacterium C. difficile internalizes into epithelial cells and activates the NLRC4 inflammasome. Confocal microscopy showed internalization of recombinant green fluorescent protein (GFP)-FliC into intestinal Caco-2/TC7 cell line. Full-length GFP-FliC activates NLRC4 in Caco-2/TC7 cells in contrast to truncated GFP-FliC lacking the C-terminal region recognized by the inflammasome. FliC induced cleavage of pro-caspase-1 into two subunits, p20 and p10 as well as gasdermin D (GSDMD), suggesting the caspase-1 and NLRC4 inflammasome activation. In addition, colocalization of GFP-FliC and pro-caspase-1 was observed, indicating the FliC-dependent NLRC4 inflammasome activation. Overexpression of the inflammasome-related interleukin (interleukin (IL)-1β, IL-18, and IL-33) encoding genes as well as increasing of the IL-18 synthesis was detected after cell stimulation. Inhibition of I-kappa-B kinase alpha (IKK-α) decreased the FliC-dependent inflammasome interleukin gene expression suggesting a role of the NF-κB pathway in regulating inflammasome. Altogether, these results suggest that FliC internalizes into the Caco-2/TC7 cells and activates the intracellular NLRC4 inflammasome thus contributing to the inflammatory process of C. difficile infection. Full article
(This article belongs to the Special Issue Flagella)
Show Figures

Figure 1

24 pages, 1783 KB  
Article
Simultaneous Removal of Mycotoxins by a New Feed Additive Containing a Tri-Octahedral Smectite Mixed with Lignocellulose
by Donato Greco, Vito D’Ascanio, Mariagrazia Abbasciano, Elisa Santovito, Antonella Garbetta, Antonio F. Logrieco and Giuseppina Avantaggiato
Toxins 2022, 14(6), 393; https://doi.org/10.3390/toxins14060393 - 8 Jun 2022
Cited by 15 | Viewed by 3731
Abstract
Simultaneous removal of mycotoxins has been poorly addressed, and a limited number of studies have reported the efficacy of feed additives in sequestering a large spectrum of mycotoxins. In this study, a new mycotoxin-adsorbing agent was obtained by properly mixing a tri-octahedral smectite [...] Read more.
Simultaneous removal of mycotoxins has been poorly addressed, and a limited number of studies have reported the efficacy of feed additives in sequestering a large spectrum of mycotoxins. In this study, a new mycotoxin-adsorbing agent was obtained by properly mixing a tri-octahedral smectite with a lignocellulose-based material. At a dosage of 1 mg mL−1, these materials simultaneously adsorbed frequently occurring mycotoxins and did not exert a cytotoxic effect on intestinal cells. Chyme samples obtained by a simulated GI digestion did not affect the viability of Caco-2TC7 cells as measured by the MTT test. In addition, the chyme of the lignocellulose showed a high content of polyphenols (210 mg mL−1 catechin equivalent) and good antioxidant activity. The properties of the individual constituents were maintained in the final composite, and were unaffected by their combination. When tested with a pool of seven mycotoxins at 1 µg mL−1 each and pH 5, the composite (5 mg mL−1) simultaneously sequestered AFB1 (95%), FB1 (99%), ZEA (93%), OTA (80%), T-2 (63%), and DON (22%). HT-2 adsorption did not occur. Mycotoxin adsorption increased exponentially as dosage increased, and occurred at physiological pH values. AFB1, ZEA and T-2 adsorption was not affected by pH in the range 3–9, whereas OTA and FB1 were adsorbed at pH values of 3–5. The adsorbed amount of AFB1, ZEA and T-2 was not released when pH rose from 3 to 7. FB1 and OTA desorption was less than 38%. Langmuir adsorption isotherms revealed high capacity and affinity for adsorption of the target mycotoxins. Results of this study are promising and show the potential of the new composite to remove mycotoxins in practical scenarios where several mycotoxins can co-occur. Full article
Show Figures

Figure 1

16 pages, 3153 KB  
Article
Impact of Subinhibitory Concentrations of Metronidazole on Morphology, Motility, Biofilm Formation and Colonization of Clostridioides difficile
by Tri-Hanh-Dung Doan, Marie-Françoise Bernet-Camard, Sandra Hoÿs, Claire Janoir and Séverine Péchiné
Antibiotics 2022, 11(5), 624; https://doi.org/10.3390/antibiotics11050624 - 5 May 2022
Cited by 9 | Viewed by 4208
Abstract
Clostridioides difficile infection (CDI) is the primary cause of health-care-associated infectious diarrhea. Treatment requires mostly specific antibiotics such as metronidazole (MTZ), vancomycin or fidaxomicin. However, approximately 20% of treated patients experience recurrences. Treatment with MTZ is complicated by reduced susceptibility to this molecule, [...] Read more.
Clostridioides difficile infection (CDI) is the primary cause of health-care-associated infectious diarrhea. Treatment requires mostly specific antibiotics such as metronidazole (MTZ), vancomycin or fidaxomicin. However, approximately 20% of treated patients experience recurrences. Treatment with MTZ is complicated by reduced susceptibility to this molecule, which could result in high failure and recurrence rates. However, the mechanism remains unclear. In this study, we investigated the impact of subinhibitory concentrations of MTZ on morphology, motility, biofilm formation, bacterial adherence to the intestinal Caco-2/TC7 differentiated monolayers, and colonization in monoxenic and conventional mouse models of two C. difficile strains (VPI 10463 and CD17-146), showing different susceptibility profiles to MTZ. Our results revealed that in addition to the inhibition of motility and the downregulation of flagellar genes for both strains, sub-inhibitory concentrations of MTZ induced various in vitro phenotypes for the strain CD17-146 exhibiting a reduced susceptibility to this antibiotic: elongated morphology, enhanced biofilm production and increased adherence to Caco-2/TC7 cells. Weak doses of MTZ induced higher level of colonization in the conventional mouse model and a trend to thicker 3-D structures entrapping bacteria in monoxenic mouse model. Thus, sub-inhibitory concentrations of MTZ can have a wide range of physiological effects on bacteria, which may contribute to their persistence after treatment. Full article
(This article belongs to the Special Issue Clostridioides difficile Infection, 2nd Edition)
Show Figures

Figure 1

18 pages, 2635 KB  
Article
Enhancement of the Solubility and Bioavailability of Pitavastatin through a Self-Nanoemulsifying Drug Delivery System (SNEDDS)
by Mehran Ashfaq, Shahid Shah, Akhtar Rasul, Muhammad Hanif, Hafeez Ullah Khan, Ahmed Khames, Mohamed A. Abdelgawad, Mohammed M. Ghoneim, Muhammad Yasir Ali, Mohammad A. S. Abourehab, Safirah Maheen, Omeira Iqbal, Ghulam Abbas and Amani M. El Sisi
Pharmaceutics 2022, 14(3), 482; https://doi.org/10.3390/pharmaceutics14030482 - 22 Feb 2022
Cited by 48 | Viewed by 5840
Abstract
The purpose of the study was to develop an SNEDDS to improve the solubility and bioavailability of pitavastatin. The solubility of pitavastatin in different oils, surfactants, and co-surfactants was determined and a pseudo-ternary phase diagram was constructed. The SNEDDS was characterized by zeta-sizer, [...] Read more.
The purpose of the study was to develop an SNEDDS to improve the solubility and bioavailability of pitavastatin. The solubility of pitavastatin in different oils, surfactants, and co-surfactants was determined and a pseudo-ternary phase diagram was constructed. The SNEDDS was characterized by zeta-sizer, zeta-potential, FTIR, DSC, and TGA. Release and permeation of pitavastatin from the SNEDDS was studied for 12 and 24 h, respectively. The lipolysis test, RBC lysis, effect on lipid profile, and pharmacokinetics were studied. The SPC3 formulation showed a 104 ± 1.50 nm particle size, a 0.198 polydispersity index (PDI), and a –29 zeta potential. FTIR, DSC, and TGA showed the chemical compatibility and thermal stability. The release and permeation of pitavastatin from SPC3 was 88.5 ± 2.5% and 96%, respectively. In the lipolysis test, the digestion of SPC3 yielded a high amount of pitavastatin and showed little RBC lysis. The lipid profile suggested that after 35 days of administration of the SNEDDS, there was a marked decrease in TC, LDL, and triglyceride levels. The SNEDDS of SPC3 showed an 86% viability of Caco-2 cells. Pharmacokinetics of SPC3 showed improved values of Cmax, Tmax, half-life, MRT, AUC, and AUMC compared to the reference formulation. Our study demonstrated that the SNEDDS effectively enhanced the solubility and bioavailability of a BCS class II drug. Full article
Show Figures

Figure 1

21 pages, 7440 KB  
Article
Norepinephrine and Serotonin Can Modulate the Behavior of the Probiotic Enterococcus faecium NCIMB10415 towards the Host: Is a Putative Surface Sensor Involved?
by Rossella Scardaci, Francesca Bietto, Pierre-Jean Racine, Amine M. Boukerb, Olivier Lesouhaitier, Marc G. J. Feuilloley, Sara Scutera, Tiziana Musso, Nathalie Connil and Enrica Pessione
Microorganisms 2022, 10(3), 487; https://doi.org/10.3390/microorganisms10030487 - 22 Feb 2022
Cited by 13 | Viewed by 3589
Abstract
The human gut microbiota has co-evolved with humans by exchanging bidirectional signals. This study aims at deepening the knowledge of this crucial relationship by analyzing phenotypic and interactive responses of the probiotic Enterococcus faecium NCIMB10415 (E. faecium SF68) to the top-down signals [...] Read more.
The human gut microbiota has co-evolved with humans by exchanging bidirectional signals. This study aims at deepening the knowledge of this crucial relationship by analyzing phenotypic and interactive responses of the probiotic Enterococcus faecium NCIMB10415 (E. faecium SF68) to the top-down signals norepinephrine (NE) and serotonin (5HT), two neuroactive molecules abundant in the gut. We treated E. faecium NCIMB10415 with 100 µM NE and 50 µM 5HT and tested its ability to form static biofilm (Confocal Laser Scanning Microscopy), adhere to the Caco-2/TC7 monolayer, affect the epithelial barrier function (Transepithelial Electrical Resistance) and human dendritic cells (DC) maturation, differentiation, and cytokines production. Finally, we evaluated the presence of a putative hormone sensor through in silico (whole genome sequence and protein modelling) and in vitro (Micro-Scale Thermophoresis) analyses. The hormone treatments increase biofilm formation and adhesion on Caco-2/TC7, as well as the epithelial barrier function. No differences concerning DC differentiation and maturation between stimulated and control bacteria were detected, while an enhanced TNF-α production was observed in NE-treated bacteria. Investigations on the sensor support the hypothesis that a two-component system on the bacterial surface can sense 5HT and NE. Overall, the data demonstrate that E. faecium NCIMB10415 can sense both NE and 5HT and respond accordingly. Full article
(This article belongs to the Special Issue Enterococci for Probiotic Use: Safety and Risk)
Show Figures

Figure 1

18 pages, 3274 KB  
Article
Gold(I) Complexes Bearing Alkylated 1,3,5-Triaza-7-phosphaadamantane Ligands as Thermoresponsive Anticancer Agents in Human Colon Cells
by Javier Quero, Francesco Ruighi, Jesús Osada, M. Concepción Gimeno, Elena Cerrada and Maria Jesús Rodriguez-Yoldi
Biomedicines 2021, 9(12), 1848; https://doi.org/10.3390/biomedicines9121848 - 6 Dec 2021
Cited by 13 | Viewed by 3312
Abstract
Overheating can affect solubility or lipophilicity, among other properties, of some anticancer drugs. These temperature-dependent changes can improve efficiency and selectivity of the drugs, since they may affect their bioavailability, diffusion through cell membrane or activity. One recent approach to create thermosensitive molecules [...] Read more.
Overheating can affect solubility or lipophilicity, among other properties, of some anticancer drugs. These temperature-dependent changes can improve efficiency and selectivity of the drugs, since they may affect their bioavailability, diffusion through cell membrane or activity. One recent approach to create thermosensitive molecules is the incorporation of fluorine atoms in the chemical structure, since fluor can tune some chemical properties such as binding affinity. Herein we report the anticancer effect of gold derivatives with phosphanes derived from 1,3,5-triaza-7-phosphaadamantane (PTA) with long hydrocarbon chains and the homologous fluorinated chains. Besides, we analysed the influence of temperature in the cytotoxic effect. The studied gold(I) complexes with phosphanes derived from PTA showed antiproliferative effect on human colon carcinoma cells (Caco-2/TC7 cell line), probably by inhibiting cellular TrxR causing a dysfunction in the intracellular redox state. In addition, the cell cycle was altered by the activation of p53, and the complexes produce apoptosis through mitochondrial depolarization and the consequent activation of caspase-3. Furthermore, the results suggest that this cytotoxic effect is enhanced by hyperthermia and the presence of polyfluorinated chains. Full article
(This article belongs to the Special Issue Gold and Silver Complexes in the Treatment of Diseases)
Show Figures

Figure 1

18 pages, 1817 KB  
Article
Selective Anticancer and Antimicrobial Metallodrugs Based on Gold(III) Dithiocarbamate Complexes
by Elisa Abás, Diego Aguirre-Ramírez, Mariano Laguna and Laura Grasa
Biomedicines 2021, 9(12), 1775; https://doi.org/10.3390/biomedicines9121775 - 26 Nov 2021
Cited by 21 | Viewed by 4152
Abstract
New dithiocarbamate cycloaurated complexes have been synthesized and their physicochemical and in vitro antitumor properties have been evaluated. All the performed studies highlighted good transport through the blood and biodistribution, according to the balance between the properties of hydrophilicity/lipophilicity and the binding of [...] Read more.
New dithiocarbamate cycloaurated complexes have been synthesized and their physicochemical and in vitro antitumor properties have been evaluated. All the performed studies highlighted good transport through the blood and biodistribution, according to the balance between the properties of hydrophilicity/lipophilicity and the binding of moderate strength to the BSA protein. Furthermore, none of the complexes exhibited reduction or decomposition reactions, presenting excellent physiological stability. The in vitro cytotoxic effect was evaluated on human colon cancer cell line Caco-2/TC7, and the complexes showed great antiproliferative activity and excellent selectivity, as much less effect was detected on normal Caco-2/TC7 cells. Most of the complexes exhibit antiproliferative activity that was better than or similar to auranofin, and at least nine times better than that of cisplatin. Its action mechanism is still under discussion since no evidence of cell cycle arrest was found, but an antioxidant role was shown for some of the selective complexes. All complexes were also tested as antimicrobial drugs, exhibiting good activity towards S. aureus and E. coli. bacteria and C. albicans and C. neoformans fungi. Full article
(This article belongs to the Special Issue Gold and Silver Complexes in the Treatment of Diseases)
Show Figures

Figure 1

22 pages, 6132 KB  
Article
Flavonoids as Human Intestinal α-Glucosidase Inhibitors
by Elizabeth Barber, Michael J. Houghton and Gary Williamson
Foods 2021, 10(8), 1939; https://doi.org/10.3390/foods10081939 - 20 Aug 2021
Cited by 96 | Viewed by 13809
Abstract
Certain flavonoids can influence glucose metabolism by inhibiting enzymes involved in carbohydrate digestion and suppressing intestinal glucose absorption. In this study, four structurally-related flavonols (quercetin, kaempferol, quercetagetin and galangin) were evaluated individually for their ability to inhibit human α-glucosidases (sucrase, maltase and isomaltase), [...] Read more.
Certain flavonoids can influence glucose metabolism by inhibiting enzymes involved in carbohydrate digestion and suppressing intestinal glucose absorption. In this study, four structurally-related flavonols (quercetin, kaempferol, quercetagetin and galangin) were evaluated individually for their ability to inhibit human α-glucosidases (sucrase, maltase and isomaltase), and were compared with the antidiabetic drug acarbose and the flavan-3-ol(−)-epigallocatechin-3-gallate (EGCG). Cell-free extracts from human intestinal Caco-2/TC7 cells were used as the enzyme source and products were quantified chromatographically with high accuracy, precision and sensitivity. Acarbose inhibited sucrase, maltase and isomaltase with IC50 values of 1.65, 13.9 and 39.1 µM, respectively. A similar inhibition pattern, but with comparatively higher values, was observed with EGCG. Of the flavonols, quercetagetin was the strongest inhibitor of α-glucosidases, with inhibition constants approaching those of acarbose, followed by galangin and kaempferol, while the weakest were quercetin and EGCG. The varied inhibitory effects of flavonols against human α-glucosidases depend on their structures, the enzyme source and substrates employed. The flavonols were more effective than EGCG, but less so than acarbose, and so may be useful in regulating sugar digestion and postprandial glycaemia without the side effects associated with acarbose treatment. Full article
(This article belongs to the Special Issue Functional Foods with Intestinal and Metabolic Health Effects)
Show Figures

Graphical abstract

Back to TopTop