Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,723)

Search Parameters:
Keywords = Ca2+ concentration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1448 KB  
Article
Recycling Reservoir Sediments and Rice Husk for Sustainable Rice Seedling Production
by Pei-Tzu Kao and Shan-Li Wang
Agronomy 2025, 15(10), 2387; https://doi.org/10.3390/agronomy15102387 (registering DOI) - 14 Oct 2025
Abstract
Amending reservoir sediments with organic matter provides a sustainable alternative to conventional rice (Oryza sativa L.) seedling substrates, simultaneously reducing dependence on agricultural soils and promoting the recycling of dredged sediments and agricultural by-products. Preliminary tests showed that adding rice husk (RH) [...] Read more.
Amending reservoir sediments with organic matter provides a sustainable alternative to conventional rice (Oryza sativa L.) seedling substrates, simultaneously reducing dependence on agricultural soils and promoting the recycling of dredged sediments and agricultural by-products. Preliminary tests showed that adding rice husk (RH) improved the porosity and water retention of the sediments while preventing surface cracking. This study further examined the effects of RH and rice husk biochar (RHB) on sediment fertility and rice seedling growth. Seedlings were grown for 15 days in a fine- or coarse-texture sediment amended with 0, 5, 10, or 20% (w/w) RH or RHB. A 10% amendment was identified as the optimal ratio for promoting seedling growth (increasing ca. 20% biomass). Nitrogen (N) availability was the primary factor influencing seedling performance, outweighing the effects of salinity and phosphorus availability. Compared with RH, RHB amendment resulted in lower substrate available N, likely due to greater losses through denitrification and ammonia volatilization, leading to reduced growth. In contrast, RH amendment maintained higher levels of available N, resulting in greater shoot biomass and higher leaf chlorophyll concentrations. Overall, amending reservoir sediments with 10% RH provides the most effective substrate formulation, offering a practical and sustainable strategy for rice seedling production. Full article
20 pages, 2323 KB  
Article
Stanniocalcin2, A Promising New Target for Identifying Patients with Stroke/Ictus
by Nuria Bermejo, José Javier López, Alejandro Berna-Erro, Esperanza Fernández, Antonio Jesús Corbacho, Maria Teresa Vázquez, Maria Purificación Granados and Pedro Cosme Redondo
Int. J. Mol. Sci. 2025, 26(20), 9999; https://doi.org/10.3390/ijms26209999 (registering DOI) - 14 Oct 2025
Abstract
STC2 (stanniocalcin 2) controls calcium (Ca2+) homeostasis in human platelets and other cell lines. The regulation of intracellular Ca2+ homeostasis is crucial for platelet activation; thus, the alteration in intracellular Ca2+ concentration or the mechanism involved in its regulation [...] Read more.
STC2 (stanniocalcin 2) controls calcium (Ca2+) homeostasis in human platelets and other cell lines. The regulation of intracellular Ca2+ homeostasis is crucial for platelet activation; thus, the alteration in intracellular Ca2+ concentration or the mechanism involved in its regulation has been proposed to underlie some thrombotic disorders. Our previous studies evidenced that the knockdown of STC2 altered murine platelet activation; furthermore, a reduction in STC2 expression resulted in enhanced Ca2+ homeostasis in diabetic patients and, therefore, would contribute to the prothrombotic condition as a hallmark of diabetes mellitus type 2 (DM2). In this study, we examine a possible link between the expression of stanniocalcins (STCs) and different thrombotic events in humans. The expression of STCs was determined by Western blotting (WB); meanwhile, the analysis of protein interaction and phosphorylation was performed by completing a previous immunoprecipitation protocol (IP) of the proteins of interest. Thus, our results from patients with stroke/ictus presented a clear reduction in STC2 expression in their platelets, finding less STC2 content in the youngest thrombotic patients. Furthermore, acetyl-salicylic acid (ASA) administration reversed the decrease in the expression of STC2 in patients who did not suffer additional thrombotic episodes, as evidenced by the longitudinal analysis of up to 10 years of follow-up. Additionally, the increase in STC2 phosphorylation at the serine residues revealed increased activity of STC2 in thrombotic patients. Finally, we suggest that store-operated Ca2+ entry (SOCE) is over-activated in patients suffering from stroke/ictus, as revealed by the increase in the STIM1/Orai1 interaction found under resting conditions and, further, because MEG-01 cells transfected with siRNA STC2 to evoke artificial reduction in the STC2 expression presented an increased SOCE with respect to the control cells transfected with siRNA A. Conversely, the expression of the non-capacitative Ca2+ channels, Orai3 and TRPC6, was found to be reduced in patients with stroke. Altogether, our data allow us to conclude that STC2 represents a promising marker of stroke/ictus in thrombotic patients. Full article
(This article belongs to the Special Issue Molecular Insights into Thrombosis)
Show Figures

Graphical abstract

14 pages, 2033 KB  
Article
Influence of Catalytic Support on Hydrogen Production from Glycerol Steam Reforming
by Jorge Feijoo, Rocío Maceiras, Victor Alfonsín, Nevin Aly and Alejandro de la Fuente
Hydrogen 2025, 6(4), 88; https://doi.org/10.3390/hydrogen6040088 (registering DOI) - 14 Oct 2025
Abstract
The use of hydrogen as an energy carrier represents a promising alternative for mitigating climate change. However, its practical application requires achieving a high degree of purity throughout the production process. In this study, the influence of the type of catalytic support on [...] Read more.
The use of hydrogen as an energy carrier represents a promising alternative for mitigating climate change. However, its practical application requires achieving a high degree of purity throughout the production process. In this study, the influence of the type of catalytic support on H2 production via steam glycerol reforming was evaluated, with the objective of obtaining syngas with the highest possible H2 concentration. Three types of support were analyzed: two natural materials (zeolite and dolomite) and one metal oxide, alumina. Alumina and dolomite were coated with Ni at different loadings, while zeolite was only evaluated without Ni. Reforming experiments were carried out at a constant temperature of 850 °C, with continuous monitoring of H2, CO2, CO, and CH4 concentrations. The results showed that zeolite yielded the lowest H2 concentration (51%), mainly due to amorphization at high temperatures and the limited effectiveness of physical adsorption processes. In contrast, alumina and dolomite achieved H2 purities of around 70%, which increased with Ni loading. The improvement was particularly significant in dolomite, owing to its higher porosity and the recarbonation processes of CaO, enabling H2 purities of up to 90%. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production, Storage, and Utilization)
Show Figures

Figure 1

16 pages, 743 KB  
Article
Snail (Helix pomatia) Shells as a Catalyst for Biodiesel Synthesis
by Eglė Sendžikienė, Gediminas Gokas, Ieva Gaidė, Milda Gumbytė, Kiril Kazancev and Violeta Makarevičienė
Catalysts 2025, 15(10), 979; https://doi.org/10.3390/catal15100979 (registering DOI) - 14 Oct 2025
Abstract
Biodiesel is an alternative to conventional diesel. The use of heterogeneous catalysts in biodiesel production is promising, as it is easier to separate them from the product than homogeneous ones. It was determined that the calcined grape snail (Helix pomatia) shells [...] Read more.
Biodiesel is an alternative to conventional diesel. The use of heterogeneous catalysts in biodiesel production is promising, as it is easier to separate them from the product than homogeneous ones. It was determined that the calcined grape snail (Helix pomatia) shells show good catalytic efficiency in the rapeseed oil transesterification process with methanol. It was determined that the CaO concentration in calcined grape snail (Helix pomatia) shells was 97.74 ± 0.12%. Using the response surface methodology, the biodiesel production process was optimized. The influence of the interaction of independent variables and optimal conditions for the synthesis of rapeseed oil methyl ester was determined: an alcohol-to-oil molar ratio of 10.6:1, a catalyst concentration of 5.7 wt%, and a reaction duration of 7.8 h at a temperature of 64 °C. The physical and chemical properties of the produced biodiesel at optimal process conditions are presented, and their compliance with the requirements of the biodiesel standard is discussed. The produced biodiesel using snail shells, which are food processing waste, meets the requirements of the standard and can be used in diesel engines during the summer period. Full article
(This article belongs to the Section Biomass Catalysis)
Show Figures

Graphical abstract

18 pages, 7503 KB  
Article
Biosynthesis of Selenium Nanoparticles from Rosa rugosa Extract: Mechanisms and Applications for Sustainable Crop Protection
by Le Song, Man Liang, Yingxiu Wang and Yanli Bian
Agronomy 2025, 15(10), 2385; https://doi.org/10.3390/agronomy15102385 - 13 Oct 2025
Abstract
Selenium nanoparticles (SeNPs) show great potential for sustainable agriculture, but their green synthesis and practical application still need further optimization. This study established a green synthesis method for SeNPs using lyophilized rose (Rosa rugosa Thunb.) powder as both a reducing and stabilizing [...] Read more.
Selenium nanoparticles (SeNPs) show great potential for sustainable agriculture, but their green synthesis and practical application still need further optimization. This study established a green synthesis method for SeNPs using lyophilized rose (Rosa rugosa Thunb.) powder as both a reducing and stabilizing agent to reduce sodium selenite (Na2SeO3), key parameters, including template concentration, Na2SeO3/VC ratio, and reaction temperature were systematically optimized. This process yielded stable, spherical SeNPs with optimal properties, exhibiting a diameter of 90 nm and a zeta potential of −35 mV. Structural characterization confirmed that selenium forms chelation complexes through carboxyl and hydroxyl oxygen-binding sites. The SeNPs exhibited exceptional stability (retained 426 days at 25 °C) and pH tolerance (pH 4–10), though divalent cations (Ca2+) triggered aggregation. In agricultural application tests, 5 mg/L SeNPs increased tomato plant biomass by 84% and antioxidant capacity by 152% compared to controls, and the biosynthesis pathways of salicylic acid and jasmonic acid were upregulated. Moreover, the SeNPs exhibited strong concentration-dependent antifungal activity against several major pathogens. Among these pathogens, tomato gray mold (Botrytis cinerea) was the most sensitive, as evidenced by its low EC50 (4.86 mg/L) and sustained high inhibition rates, which remained substantial even at 1 mg/L and reached 94% at 10 mg/L. These findings highlight SeNPs as a friendly alternative for minimizing agrochemical use in sustainable agriculture. Full article
Show Figures

Figure 1

19 pages, 5176 KB  
Article
A Study on the Hydrochemical Evolution Property and Pollution Source Attribution of Groundwater in Highly Urbanized Areas: A Case Study of Shenzhen City
by Yue Wei, Yang Li, Lihong Zhang, Chuane Liu, Qingzhai Meng, Jianbo Yin and Long Wang
Water 2025, 17(20), 2945; https://doi.org/10.3390/w17202945 - 13 Oct 2025
Abstract
Accurate identification of groundwater pollution sources is crucial for the socio-economic development of a region. In highly urbanized areas, where human activities have a pronounced impact on groundwater, however, the hydrochemical evolution patterns and sources of pollutants remain unclear. Taking Shenzhen, a highly [...] Read more.
Accurate identification of groundwater pollution sources is crucial for the socio-economic development of a region. In highly urbanized areas, where human activities have a pronounced impact on groundwater, however, the hydrochemical evolution patterns and sources of pollutants remain unclear. Taking Shenzhen, a highly urbanized city in China, as a case study, this research employed a combination of multivariate statistical techniques and the Positive Matrix Factorization (PMF) model to elucidate the hydrochemical evolution and quantitatively parse the pollution sources of groundwater in such regions. The results revealed that the pH of groundwater in the study area ranged from 4.24 to 7.31, indicating weak acidity to neutrality. The exceedance rates for pH, NH4+, COD, Mn, and Fe were as high as 67.1%, 44.3%, 44.3%, 34.3%, and 31.4%, respectively. The Water Quality Index assessment revealed that 32.9% of the groundwater samples were classified as poor, highlighting the significant impact of human activities. Land-use types significantly affected groundwater quality, with urban areas exhibiting higher concentrations of the COD, NO3, Mn, and Fe compared to agricultural and forested areas. The predominant hydrochemical type of groundwater in the study area was HCO3·Cl—Ca·Na, with rock weathering (primarily silicate weathering) being the dominant process controlling groundwater chemistry. The PMF model identified three major pollution sources in the highly urbanized region: domestic and industrial wastewater, enhanced water-rock interactions leading to the release of hydrochemical components, and agricultural fertilizers, contributing 43.9%, 37.0%, and 19.1% to groundwater pollution, respectively. Geostatistical spatial interpolation techniques demonstrated that in urban areas, groundwater quality was primarily controlled by the discharge of domestic and industrial wastewater, while in agricultural areas, excessive fertilizer application was the main driver of groundwater degradation. These findings provide a scientific basis for groundwater pollution prevention and sustainable utilization in highly urbanized regions. Full article
Show Figures

Figure 1

14 pages, 1363 KB  
Article
Assessment of Antioxidant Potential of Carbon-Based Nanomaterials from Different Sources
by Oladoyin Grace Famutimi, Sam Masha, Rodney Maluleke, Vuyelwa Ncapayi, Thabang Calvin Lebepe, Nande Mgedle, Cynthia Mutendu Kungwa, Olufunto Tolulope Fanoro, Isaac Olusanjo Adewale and Oluwatobi Samuel Oluwafemi
Antioxidants 2025, 14(10), 1227; https://doi.org/10.3390/antiox14101227 - 13 Oct 2025
Abstract
Antioxidants regulate oxidative reactions by impeding, delaying, or inhibiting the oxidation of biomolecules. Concerns regarding the toxicity of synthetic antioxidants have driven the search for safer alternatives. In this study, the antioxidant activities of three nontoxic carbon-based nanomaterials—carbon dots from citric acid precursor [...] Read more.
Antioxidants regulate oxidative reactions by impeding, delaying, or inhibiting the oxidation of biomolecules. Concerns regarding the toxicity of synthetic antioxidants have driven the search for safer alternatives. In this study, the antioxidant activities of three nontoxic carbon-based nanomaterials—carbon dots from citric acid precursor (CB-Ca), iron-doped carbon dots (CB-Fe) and carbon dots derived from Momordica charantia leaves (CB-Mc)—were investigated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, hydrogen peroxide (H2O2) scavenging, ferric-reducing antioxidant power, and total antioxidant capacity (TAC) assays. Scavenging activity was carried out at varying concentrations, and half-maximal inhibitory concentration (IC50) was calculated using non-linear regression. Reductive ability and TAC were expressed as mg ascorbic acid equivalents/g nanomaterial. CB-Fe exhibited the most potent DPPH scavenging activity (IC50 = 254.2 ± 37.37 µg/mL), surpassing CB-Mc and CB-Ca by 2- to 3-fold. In contrast, CB-Ca had the highest H2O2 scavenging (IC50 = 84.2 ± 11.87 µg/mL), while CB-Mc had the highest TAC of 77.95 mg ascorbic acid Eq/g. CB-Fe also displayed superior ferric ion reducing capacity. The study concluded that each carbon dot type exhibits unique antioxidant profiles and may offer some special advantages in nanomedicine and other applications. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

20 pages, 3100 KB  
Article
The Effect of Retention Time and Seasonal Variation on the Characterization of Phyto-Remediated Aquaculture Wastewater in a Constructed Wetland
by Shadrach A. Akadiri, Pius O. O. Dada, Adekunle A. Badejo, Olayemi J. Adeosun, Akinwale T. Ogunrinde, Oluwaseun T. Faloye, Viroon Kamchoom and Oluwafemi E. Adeyeri
Biology 2025, 14(10), 1390; https://doi.org/10.3390/biology14101390 - 12 Oct 2025
Viewed by 42
Abstract
The insufficient availability of safe water has emerged as a prevalent issue severely impacting public health in developing nations. Moreover, studies reporting the efficacy of treatment plants (TPs)—specifically Phragmites karka and Typha latifolia—in removing toxic elements in aquaculture wastewater are scanty. Therefore, [...] Read more.
The insufficient availability of safe water has emerged as a prevalent issue severely impacting public health in developing nations. Moreover, studies reporting the efficacy of treatment plants (TPs)—specifically Phragmites karka and Typha latifolia—in removing toxic elements in aquaculture wastewater are scanty. Therefore, this study is aimed at investigating the effects of hydraulic retention time (HRT), seasonal variations, and TPs on the removal efficiency of pollutants from a vertical subsurface flow constructed wetland (VSSF-CW) in Nigeria. The experiments spanned three seasons (November–December–January—NDJ; March–April–May—MAM; and July–August–September—JAS) of the year, with samples collected from the CW at 7 day intervals for analysis. The aquaculture wastewater was analyzed in the laboratory to determine its chemical and toxic compositions before and after the introduction of treatment plants. Three-way ANOVA was used to analyze the main and interactive effects between HRT, seasons, and TPs on the physicochemical properties of the CW’s effluents. The removal efficiency was determined to evaluate the performance of the constructed wetland in comparison to the treatment plants. Results showed that these constructed wetlands effectively removed contaminants, with significant differences (p < 0.05) mostly observed in the effects of treatment plant types and seasons on the chemical and heavy metal concentrations. This was further confirmed by the main effects of HRT, seasons, and treatment plant choice, which significantly (p < 0.05) influenced treatment efficiency. Removal efficiencies increased with longer HRTs, reaching peak removal efficiencies of approximately 69, 67, and 61% for Na, K, and Ca, respectively. The BOD and COD reached 85 and 90% removal efficiency, while removal efficiency of 100% was achieved for most heavy metals at 21 day retention time. In summary, the study found that TPs (Phragmites karka and Typha latifolia), HRT, and seasonal variation are important for treating integrated poultry and aquaculture wastewater in a VSSF CWs. Full article
(This article belongs to the Special Issue Heavy Metal Pollution and Bioremediation: Application and Mechanism)
Show Figures

Figure 1

16 pages, 3102 KB  
Article
Synaptic Plasticity-Enhancing and Cognitive-Improving Effects of Standardized Ethanol Extract of Perilla frutescens var. acuta in a Scopolamine-Induced Mouse Model
by Jihye Lee, Eunhong Lee, Hyunji Kwon, Somin Moon, Ho Jung Bae, Joon-Ho Hwang, Gun Hee Cho, Haram Kong, Mi-Houn Park, Sung-Kyu Kim, Dong Hyun Kim and Ji Wook Jung
Int. J. Mol. Sci. 2025, 26(20), 9925; https://doi.org/10.3390/ijms26209925 (registering DOI) - 12 Oct 2025
Viewed by 94
Abstract
In our previous study, we demonstrated that a standardized ethanol extract of Perilla frutescens var. acuta (PE) alleviates memory deficits in an Alzheimer’s disease mouse model by inhibiting amyloid β (Aβ) aggregation and promoting its disaggregation. However, the extent to which PE exerts [...] Read more.
In our previous study, we demonstrated that a standardized ethanol extract of Perilla frutescens var. acuta (PE) alleviates memory deficits in an Alzheimer’s disease mouse model by inhibiting amyloid β (Aβ) aggregation and promoting its disaggregation. However, the extent to which PE exerts additional cognitive benefits independent of Aβ pathology remained unclear. Here, we aimed to evaluate the effects of PE on synaptic plasticity and learning and memory functions. Male ICR mice were used, and cognitive impairment was induced by scopolamine administration. PE was orally administered at doses determined from previous studies, and cognitive performance was assessed using the passive avoidance, Y-maze, and Morris water maze tests. In parallel, hippocampal slices were employed to examine the effects of PE on synaptic plasticity. PE (100 and 300 μg/mL) significantly enhanced long-term potentiation (LTP) in a concentration-dependent manner without altering basal synaptic transmission. This facilitation of LTP was blocked by scopolamine (1 μM), a muscarinic acetylcholine receptor (mAChR) antagonist, and IEM-1460 (50 μM), a calcium-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (CP-AMPAR) inhibitor, indicating the involvement of mAChR and CP-AMPAR pathways. In vivo, PE (100, 250, and 500 mg/kg) treatment improved memory performance across all behavioral tasks and upregulated hippocampal synaptic proteins including GluN2B, PSD-95, and CaMKII. Collectively, these results demonstrate that PE ameliorates scopolamine (1 mg/kg)-induced cognitive impairment by enhancing synaptic plasticity, likely through modulation of mAChR, CP-AMPAR, and NMDA receptor signaling. These findings highlight the therapeutic potential of PE for memory deficits associated with cholinergic dysfunction. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

13 pages, 3628 KB  
Article
Model Construction and Prediction of Combined Toxicity of Arsenic(V) and Lead(II) on Chlamydomonas reinhardtii
by Zhongquan Jiang, Tianyi Wei, Chunhua Zhang, Xiaosheng Shen, Zhemin Shen, Tao Yuan and Ying Ge
Biology 2025, 14(10), 1395; https://doi.org/10.3390/biology14101395 - 11 Oct 2025
Viewed by 79
Abstract
With the acceleration of industrialization, the impact of the toxic metalloid arsenic (As) and metal lead (Pb) on aquatic ecosystems has garnered widespread concern. However, the specific toxic effects of how these two metals jointly impact aquatic organisms are not yet fully understood. [...] Read more.
With the acceleration of industrialization, the impact of the toxic metalloid arsenic (As) and metal lead (Pb) on aquatic ecosystems has garnered widespread concern. However, the specific toxic effects of how these two metals jointly impact aquatic organisms are not yet fully understood. This study aims to investigate the toxic effects of As and Pb individually and in combination of the mixture on the growth of Chlamydomonas reinhardtii (C. reinhardtii) in a lab setup using the Concentration Addition (CA) model and the Independent Action (IA) model to predict the toxic effects at different concentrations. The results indicated that As and Pb had significant inhibitory effects on the growth of algae, and the toxicity of As was greater than that of Pb (As EC50 = 374.87 μg/L, Pb EC50 = 19,988.75 μg/L), measured by Spectrophotometer. As the metal concentrations increased, both metals demonstrated classic sigmoidal concentration-effect curves. Furthermore, we discovered that in mixtures of As and Pb at varying concentration ratios, the combined toxic effect shifted from additive to synergistic with increasing As concentration, exhibiting a pronounced concentration ratio dependency. Utilizing nonlinear least squares regression, we successfully constructed concentration-response models for both As and Pb, employing Observation-based Confidence Intervals (OCIs) to reflect the uncertainty of the data. By comparing experimental data with model predictions, the EC50 was used as an index to compare the toxicity magnitude of As/Pb mixtures. The toxicity of As and Pb mixtures gradually increases with the increase in their concentration ratios. Scanning and transmission electron microscopic observations revealed that the combination of 200 μg/L As and 2000 μg/L Pb resulted in the greatest synergistic toxic effect, with severe breakage and indentation to C. reinhardtii cells. This study not only provided new insights into the environmental behavior and ecological risks of As and Pb but also held significant implications for effective water pollution management strategies by offering a validated model-based framework for predicting mixture toxicity across different concentration regimes. Full article
(This article belongs to the Section Toxicology)
Show Figures

Figure 1

19 pages, 3575 KB  
Article
Attenuation of Acid Mine Drainage in a Coal Waste Deposit in Southern Brazil and the Prospect of Transitioning from Active to Passive Treatment
by Felipe Santin Keller, Cláudio Boff, Daniela Silva, Alexandre Grigorieff, Cristiano Corrêa Weber, Jéssica Weiler and Ivo André Homrich Schneider
Minerals 2025, 15(10), 1068; https://doi.org/10.3390/min15101068 - 11 Oct 2025
Viewed by 176
Abstract
Capão da Roça, located in the municipality of Charqueadas, is one of the few areas of coal tailing deposits at the surface within the State of Rio Grande do Sul, Brazil that generates acid mine drainage (AMD). Over the course of 2007, the [...] Read more.
Capão da Roça, located in the municipality of Charqueadas, is one of the few areas of coal tailing deposits at the surface within the State of Rio Grande do Sul, Brazil that generates acid mine drainage (AMD). Over the course of 2007, the landfill was characterised in detail, and an active treatment plant involving pH neutralisation and metal precipitation operations was implemented to meet emission standards for mine water. In that year, based on the sulphur mass balance, it was estimated that the process of AMD generation would last for approximately two decades. The objective of this work was to study the temporal evolution of the parameters of the raw AMD. The effluent was analysed for 17 years on a monthly basis in regard to pH, acidity, metals (Fe, Al, and Mn), and sulphates. The results indicated an increase in pH (from 2.1 to 4.7), a decay in the concentration of metals (from 177.8 to 0.1 mg L−1 for iron, 29.0 to 0.1 mg L−1 for aluminium, and 3.1 to 0.6 mg L−1 for manganese), sulphates (from 2023 to 307 mg L−1), and acidity (from 539.5 mg CaCO3 L−1 to 3.96 mg CaCO3 L−1), which were adjusted to a first-order kinetic model in agreement with observations at some other mining sites. Over the years, the active lime neutralisation–precipitation treatment system has been efficient in treating the effluent. Today, most water quality parameters already meet emissions standards; however, the AMD treatment plant is still necessary to prevent pH fluctuations and to reduce the concentrations of manganese. For this reason, a transition from an active to a passive treatment system was considered. Pilot scale studies confirmed that channels filled with gravel-size limestone or slag enable the neutralisation/increase in the pH of the effluent and remove residual amounts of some metals, resulting in an effluent with no level of toxicity to the microcrustacean Daphnia magna. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Graphical abstract

19 pages, 4425 KB  
Article
A Comprehensive Analysis of the Effectiveness of a Water-Based Extraction Method in Cement Bypass Dust Valorization
by Karolina Wojtacha-Rychter, Magdalena Król and Jakub Dechnik
Materials 2025, 18(20), 4668; https://doi.org/10.3390/ma18204668 (registering DOI) - 11 Oct 2025
Viewed by 108
Abstract
The solid by-product from cement kiln gas installations, known as cement bypass dust (CBPD), is rich in chlorides, which limits the reuse of materials in cement. In this study, three types of CBPD were subjected to an extraction process to obtain a low-chlorine [...] Read more.
The solid by-product from cement kiln gas installations, known as cement bypass dust (CBPD), is rich in chlorides, which limits the reuse of materials in cement. In this study, three types of CBPD were subjected to an extraction process to obtain a low-chlorine waste material. The relationships between the process parameters, including extraction time (1, 2, 5, 10, and 30 min), temperature (21, 45, and 90 °C), and extraction efficiency, were investigated. The chlorine removal efficiency ranged from 70% to 90%, with the optimal time and temperature identified as 1 min and 21 °C, respectively. Furthermore, a comprehensive characterization of CBPD was conducted before and after the extraction process using X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FT-IR); an approach not yet extensively reported in the literature. The results demonstrated that chloride removal corresponded to an increase in concentrations of Ca, Al, Si, Mg, and Fe oxides in the solid residue. For CBPD samples with initial chloride contents of 13.65% and 15.43%, calcium content in the residue increased by approximately 40%. No linear and predictable relationship was observed between the leaching time or temperature and the release of metals in the solid residue. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

19 pages, 1281 KB  
Article
Hemoglobin A1C: Intracellular Heterogeneity and Functional Implications in Prediabetic and T2 Diabetic Erythrocytes
by Galina Petukhova, Areen Wani, Gregory Barshtein, Anna Bogdanova, Ariel Koren, Carina Levin and Leonid Livshits
Int. J. Mol. Sci. 2025, 26(20), 9890; https://doi.org/10.3390/ijms26209890 (registering DOI) - 11 Oct 2025
Viewed by 165
Abstract
Hemoglobin A1C (HbA1C), a non-enzymatically glycated form of adult hemoglobin (HbA0), is a widely used biomarker for diabetes. Its concentration is strongly correlated with the long-term glycemic state and the risk of diabetes development. However, beyond its diagnostic role, its physiological functions remain [...] Read more.
Hemoglobin A1C (HbA1C), a non-enzymatically glycated form of adult hemoglobin (HbA0), is a widely used biomarker for diabetes. Its concentration is strongly correlated with the long-term glycemic state and the risk of diabetes development. However, beyond its diagnostic role, its physiological functions remain poorly understood. To fill this gap, we investigated the intracellular distribution of HbA1C and its potential impact on red blood cell (RBC) functions. Specifically, the differences in cytosolic and membrane pools of HbA1C in RBCs from individuals with prediabetes, overt type 2 diabetes (T2D), and healthy controls were explored. Our cross-sectional findings confirmed the intracellular heterogeneity of HbA1C and revealed a strong correlation between fluctuations in HbA1C and those of other hemoglobin isoforms, specifically HbA2 and HbA0. This correlation was particularly evident in the context of diabetes or acute exposure to Ca2+-depleted environments. We also observed that short-term hyperglycemia does not significantly alter HbA1C intracellular localization. Furthermore, we found that the intracellular distribution of HbA1C is correlated with several physiological properties of RBCs, with these links varying according to the specific pathological abnormalities associated with pre- and overt diabetes. Further research is required to fully understand the mechanisms and implications of these observations. Full article
(This article belongs to the Special Issue Blood Cells in Human Health and Disease)
Show Figures

Figure 1

29 pages, 11644 KB  
Article
Machine Learning-Driven Optimization for Evaluating the Durability of Basalt Fibers in Alkaline Environments
by Aamir Mahmood, Miroslava Pechočiaková, Blanka Tomková, Muhammad Tayyab Noman, Mohammad Gheibi, Kourosh Behzadian, Jakub Wiener and Luboš Hes
Fibers 2025, 13(10), 137; https://doi.org/10.3390/fib13100137 - 11 Oct 2025
Viewed by 186
Abstract
Basalt fiber-reinforced composites are increasingly utilized in sustainable construction due to their high strength, environmental benefits, and durability. However, the long-term tensile performance of these composites in alkaline environments remains a critical concern. This study investigates the degradation performance of basalt fibers exposed [...] Read more.
Basalt fiber-reinforced composites are increasingly utilized in sustainable construction due to their high strength, environmental benefits, and durability. However, the long-term tensile performance of these composites in alkaline environments remains a critical concern. This study investigates the degradation performance of basalt fibers exposed to different alkaline solutions (NaOH, KOH, and Ca(OH)2) with varying concentrations (5 g/L, 15 g/L, and 30 g/L) over various exposure periods (7, 14, and 28 days). The performance assessment is carried out by mechanical properties, including tensile strength and modulus of elasticity, using experimental techniques and Response Surface Methodology (RSM) to find influential factors on tensile performance. The findings indicate that tensile strength degradation is highly dependent on alkali type and concentration, with Ca(OH)2-treated fibers exhibiting superior mechanical retention (max tensile strength: 938.94 MPa) compared to NaOH-treated samples, which showed the highest degradation rate. Five machine learning (ML) models, including Tree Random Forest (TRF), Function Multilayer Perceptron (FMP), Lazy IBK, Meta Bagging, and Function SMOreg (FSMOreg), were also implemented to predict tensile strength based on exposure parameters. FSMOreg demonstrated the highest prediction accuracy with a correlation coefficient of 0.928 and the lowest error metrics (RMSE 181.94). The analysis boosts basalt fiber durability evaluations in cement-based composites. Full article
Show Figures

Figure 1

48 pages, 5238 KB  
Article
Chemodynamics of Mercury (Hg) in a Southern Reservoir Lake (Cane Creek Lake, Cookeville, TN, USA): II—Estimation of the Hg Water/Air Exchange Coefficient Using the Two-Thin Film Model and Field-Measured Data of Hg Water/Air Exchange and Dissolved Gaseous Hg
by Hong Zhang, Lesta S. Fletcher and William C. Crocker
Water 2025, 17(20), 2931; https://doi.org/10.3390/w17202931 - 10 Oct 2025
Viewed by 247
Abstract
This paper reports a novel effort to estimate and evaluate the coefficients of Hg transfer across the water/air interface in lakes such as Cane Creek Lake (CCL, Cookeville, TN, USA). This was accomplished by calculating the coefficients (kw) using the [...] Read more.
This paper reports a novel effort to estimate and evaluate the coefficients of Hg transfer across the water/air interface in lakes such as Cane Creek Lake (CCL, Cookeville, TN, USA). This was accomplished by calculating the coefficients (kw) using the Two-Thin Film (TTF) Model for Hg transfer together with the field-measured data of Hg emission flux (F), dissolved gaseous mercury concentration (DGM), air Hg concentration (Ca), and water temperature for Henry’s coefficient (KH) obtained from a separate field study at the CCL. The daily mean kw values range from 0.045 to 0.21 m h−1, with the min. at 0.0025–0.14 and the max. at 0.079–0.41 m h−1, generally higher for the summer, and from 0.0092 to 0.15, with the min. at 0.0032–0.033 and the max. at 0.017–0.31 m h−1, generally lower for the fall and winter, exhibiting an apparent seasonal trend. The highest kw values occur in August (mean: 0.21, max.: 0.41 m h−1). Our kw results add to and enrich the aquatic interfacial Hg transfer coefficient database and provide an alternative avenue to evaluate and select the coefficients for the TTF Model’s application. The kw results are of value in gaining insights into the Hg transfer actually occurring across the water/air interface under environmental influences (e.g., wind/wave, solar radiation). Our kw results do not show a clear, consistent correlation of kw with wind/wave effect, nor sunlight effect, in spite of some correlations in sporadic cases. Generally, the kw values do not exbibit the trends prescribed by the model sensitivity study. The comparisons of our kw results with those obtained using wind-based transfer models (the Liss/Merlivat Model, the Wanninkhof Model, and the modified linear model) show that they depart from each other. The findings of this study indicate that the TTF Model has limitations and weaknesses. One major assumption of the TTF Model is the equilibrium of the Hg distribution between the air and water films across the water/air interface. The predominant oversaturation of DGM shown by our DGM data evidently challenges this assumption. This study suggests that aquatic interfacial Hg transfer is considerably more complicated, involving a group of factors, more than just wind and wave. Full article
Show Figures

Figure 1

Back to TopTop