Snail (Helix pomatia) Shells as a Catalyst for Biodiesel Synthesis
Abstract
1. Introduction
2. Results and Discussions
2.1. Concentration of Calcium Oxide in Snail Shells
2.2. Optimal Reaction Conditions Modeling and Determination Using Response Surface Methodology
- Y—ester yield, %;
- A—alcohol-to-oil molar ratio, mol/mol;
- B—catalyst loading, wt%;
- C—reaction duration, h.
Source of Variation | Sum of Squares | Degrees of Freedom (df) | Mean Squares | F-Value | p-Value Prob > F | |
---|---|---|---|---|---|---|
Model | 14,527.03 | 9 | 1614.11 | 273.49 | <0.0001 | Significant |
A-molar ratio | 1899.94 | 1 | 1899.94 | 321.92 | <0.0001 | |
B-catalyst | 143.28 | 1 | 143.28 | 24.28 | 0.0017 | |
C-Duration | 7786.11 | 1 | 7786.11 | 1319.26 | <0.0001 | |
AB | 184.22 | 1 | 184.22 | 31.21 | 0.0008 | |
AC | 383.23 | 1 | 383.23 | 64.93 | <0.0001 | |
BC | 43.11 | 1 | 43.11 | 7.30 | 0.0305 | |
A2 | 1742.11 | 1 | 1742.11 | 295.18 | <0.0001 | |
B2 | 814.71 | 1 | 814.71 | 138.04 | <0.0001 | |
C2 | 1927.91 | 1 | 1927.91 | 326.66 | <0.0001 | |
Residual | 41.31 | 7 | 5.90 | |||
Lack of Fit | 40.43 | 5 | 8.09 | 18.25 | 0.0528 | Not significant |
Pure Error | 0.8861 | 2 | 0.4430 | |||
Cor Total | 14,568.34 | 16 | ||||
C.V.% = 3.64 | R2 = 0.9972 | Adeq Precision = 44.764 | ||||
R2Adj = 0.9935 | R2Pred = 0.9781 |
2.3. Effect of the Interaction of Independent Variables on the Effectiveness of Transesterification
2.4. Optimization of Rapeseed Oil Methyl Ester Synthesis Process
2.5. Physical and Chemical Properties of Obtained Rapeseed Oil Methyl Ester
3. Materials and Methods
3.1. Preparation of the Catalyst
3.2. Determination of Calcium Oxide in Snail Shells
- V—volume of trilon B used for calcium titration, mL;
- m—mass of the snail shells sample, g;
- K—trilon B correction factor.
3.3. Oil Transesterification Process
3.4. Determination of Ester Content
3.5. Response Surface Analysis: Optimization and Statistical Analysis of the Transesterification Process
- Y—the response (dependent variable);
- Xi and Xj—the independent variables;
- β0, βi, βii bei βj, and βij—constant coefficients.
3.6. Studies of the Physical and Chemical Properties of Biodiesel
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aghbashlo, M.; Peng, W.; Tabatabaei, M.; Kalogirou, S.A.; Soltanian, S.; Hosseinzadeh-Bandbafha, H.; Mahian, O.; Lam, S.S. Machine learning technology in biodiesel research: A review. Prog. Energy Combust. Sci. 2021, 85, 100904. [Google Scholar] [CrossRef]
- CEEC the Future. Available online: https://www.ceecthefuture.org/resources/world-energy-use-to-rise-by-56-percent-driven-by-growth-in-the-developing-world (accessed on 3 April 2025).
- Gaide, I.; Grigas, A.; Makareviciene, V.; Sendzikiene, E. Life cycle assessment and biodegradability of biodiesel produced using different alcohols and heterogeneous catalysts. Green Chem. Lett. Rev. 2024, 17, 2394503. [Google Scholar] [CrossRef]
- Mandari, V.; Devarai, S.K. Biodiesel Production Using Homogeneous, Heterogeneous, and Enzyme Catalysts via Transesterification and Esterification Reactions: A Critical Review. BioEnergy Res. 2022, 15, 935–961. [Google Scholar] [CrossRef] [PubMed]
- Karčauskiene, D.; Sendžikiene, E.; Makarevičiene, V.; Zaleckas, E.; Repšiene, R.; Ambrazaitiene, D. False flax (Camelina sativa L.) as an alternative source for biodiesel production. Agriculture 2014, 101, 161–168. [Google Scholar] [CrossRef]
- Mukhtar, A.; Saqib, S.; Lin, H.; Shah, M.U.H.; Ullah, S.; Younas, M.; Rezakazemi, M.; Ibrahim, M.; Mahmood, A.; Asif, S.; et al. Current status and challenges in the heterogeneous catalysis for biodiesel production. Renew. Sustain. Energy Rev. 2022, 157, 112012. [Google Scholar] [CrossRef]
- Langellotti, V.; Melchiorre, M.; Cucciolito, M.E.; Esposito, R.; Grieco, D.; Pinto, G.; Ruffo, F. Biodiesel from Waste Cooking Oil: Highly Efficient Homogeneous Iron(III) Molecular Catalysts. Catalysts 2023, 13, 1496. [Google Scholar] [CrossRef]
- Zhao, X.; Qi, F.; Yuan, C.; Du, W.; Liu, D. Lipase-catalyzed process for biodiesel production: Enzyme immobilization, process simulation and optimization. Renew. Sustain. Energy Rev. 2015, 44, 182–197. [Google Scholar] [CrossRef]
- Xia, S.; Lin, J.; Sayanjali, S.; Shen, C.; Cheong, L.Z. Lipase-catalyzed production of biodiesel: A critical review on feedstock, enzyme carrier and process factors. Biofuels Bioprod. Biorefining 2024, 18, 291–309. [Google Scholar] [CrossRef]
- Gumbytė, M.; Makareviciene, V.; Sendzikiene, E. Enzymatic Transesterification of Atlantic Salmon (Salmo salar) Oil with Isoamyl Alcohol. Materials 2023, 16, 185. [Google Scholar] [CrossRef]
- Gaide, I.; Makareviciene, V.; Sendzikiene, E.; Kazancev, K. Snail Shells as a Heterogeneous Catalyst for Biodiesel Fuel Production. Processes 2023, 11, 260. [Google Scholar] [CrossRef]
- Mazaheri, H.H.C.; Ong, H.C.; Amini, Z.; Masjuki, H.H.; Mofijur, M.; Su, C.H.; Anjum Badruddin, I.; Khan, T.M.Y. An Overview of Biodiesel Production via Calcium Oxide Based Catalysts: Current State and Perspective. Energies 2021, 14, 3950. [Google Scholar] [CrossRef]
- De la Cruz-De, M.; De la cruz-Burelo, P.; Hernández-Núñez, E.; Santiago-González, R.E.; Valerio-Cárdenas, C.; Villegas-Cornelio, V.M. Using discarded oyster shells to obtain biodiesel. Agro Product. 2022. [Google Scholar] [CrossRef]
- Karkal, S.S.; Rathod, D.R.; Jamadar, A.S.; Shivaramu, M.S.; Kudre, T.G. Production optimization, scale-up, and characterization of biodiesel from marine fishmeal plant oil using Portunus sanguinolentus crab shell derived heterogeneous catalyst. Biocatal. Agric. Biotechnol. 2023, 47, 102571. [Google Scholar] [CrossRef]
- Alsabi, H.A.; Shafi, M.E.; Almasoudi, S.H.; Mufti, F.A.M.; Alowaidi, S.A.; Sharawi, S.E.; Alaswad, A.A. From Waste to Catalyst: Transforming Mussel Shells into a Green Solution for Biodiesel Production from Jatropha curcas Oil. Catalysts 2024, 14, 59. [Google Scholar] [CrossRef]
- Karkal, S.S.; Rathod, D.R.; Jamadar, A.S.; Shivaramu, M.S.; Kudre, T.G. Exploitation of freshwater fish waste as feedstock and Fenneropeneus indicus shrimp shell as catalyst source for biodiesel production. Biofuels 2023, 15, 1–15. [Google Scholar] [CrossRef]
- Gaide, I.; Makareviciene, V.; Sendzikiene, E.; Gumbytė, M. Rapeseed Oil Transesterification Using 1-Butanol and Eggshell as a Catalyst. Catalysts 2023, 13, 302. [Google Scholar] [CrossRef]
- Gaide, I.; Makareviciene, V.; Sendzikiene, E. Effectiveness of Eggshells as Natural Heterogeneous Catalysts for Transesterification of Rapeseed Oil with Methanol. Catalysts 2022, 12, 246. [Google Scholar] [CrossRef]
- Available online: https://touchstonesnailfranchise.com/snail-market/?utm_source (accessed on 25 August 2025).
- Indexbox Lithuania—Snails (Except Sea Snails)—Market Analysis, Forecast, Size, Trends and Insights. Available online: https://www.indexbox.io/store/lithuania-snails-except-sea-snails-market-analysis-forecast-size-trends-and-insights/?utm_source (accessed on 19 March 2025).
- Laskar, I.B.; Rajkumari, K.; Gupta, R.; Chatterjee, S.; Paul, B.; Rokhum, S.L. Waste snail shell derived heterogeneous catalyst for biodiesel production by the transesterification of soybean oil. RSC Adv. 2018, 8, 20131. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.K.; Alkhafaje, Z.A.; Rashid, I.M. Heterogeneously catalyzed transesterification reaction using waste snail shell for biodiesel production. Heliyon 2023, 9, e17094. [Google Scholar] [CrossRef] [PubMed]
- Trisupakitti, S.; Ketwong, C.; Senajuk, W.; Phukapak, C.; Wiriyaumpaiwong, S. Golden apple cherry snail shell as catalyst for heterogeneous transesterification of biodiesel. Braz. J. Chem. Eng. 2018, 35, 1283–1291. [Google Scholar] [CrossRef]
- Kaewdaeng, S.; Sintuya, P.; Nironsin, R. Biodiesel production using calcium oxide from river snail shell ash as catalyst. Energy Procedia. 2017, 138, 937–942. [Google Scholar]
- Phewphong, S.; Roschat, W.; Moonsin, P.; Promarak, V.; Yoosuk, B. Biodiesel production process catalyzed by acid-treated golden apple snail shells (Pomacea canaliculata)-derived CaO as a high-performance and green catalyst. Eng. Technol. Appl. Sci. Res. 2021, 49, 36–46. [Google Scholar]
- Birla, A.; Singh, B.; Upadhyay, S.N.; Sharma, Y.C. Kinetics studies of synthesis of biodiesel from waste frying oil using a heterogeneous catalyst derived from snail shell. Bioresour. Technol. 2012, 106, 95–100. [Google Scholar] [CrossRef]
- EN 14214; Automotive fuels—Fatty acid methyl esters (FAME) for diesel engines—Requirements and test methods. European Committee for Standardization: Brussels, Belgium, 2019.
- Das, S.; Anal, J.M.H.; Kalita, P.; Saikia, L.; Rokhum, S.L. Process Optimization of Biodiesel Production Using Waste Snail Shell as a Highly Active Nanocatalyst. Int. J. Energy Res. 2023, 2023, 6676844. [Google Scholar] [CrossRef]
- Ouafi, R.; Haldhar, R.; Mehdaoui, I.; Asri, M.; AlObaid, A.A.; Warad, I.; Taleb, M.; Rais, Z.; Kim, S.C. Waste snail shells-derived mixed oxide catalyst for efficient transesterification of vegetable oil: Towards sustainable biodiesel production. Mater. Today Commun. 2024, 39, 109128. [Google Scholar] [CrossRef]
- Viriya-empikul, N.; Krasae, P.; Nualpaeng, W.; Yoosuk, B.; Faungnawakij, K. Biodiesel production over Ca-based solid catalysts derived from industrial wastes. Fuel 2012, 92, 239–244. [Google Scholar] [CrossRef]
- Gaide, I.; Makareviciene, V.; Sendzikiene, E.; Kazancev, K. Natural Rocks–Heterogeneous Catalysts for Oil Transesterification in Biodiesel Synthesis. Catalysts 2021, 11, 384. [Google Scholar] [CrossRef]
- EN 14105; Fat and oil derivatives—Fatty Acid Methyl Esters (FAME)—Determination of free and total glycerol and mono-, di-, triglyceride contents. European Committee for Standardization: Brussels, Belgium, 2020.
- Bailer, J.; Hödl, P.; de Hueber, K.; Mittelbach, M.; Plank, C.; Schindlbauer, H. Handbook of Analytical Methods for Fatty Acid Methyl Esters Used as Diesel Fuel Substitutes; Fichte-Research Institute for Chemistry and Technology of Petroleum Products, University of Technology: Vienna, Austria, 1994. [Google Scholar]
- EN 14103; Fat and oil derivatives—Fatty Acid Methyl Esters (FAME)—Determination of ester and linolenic acid methyl ester contents. European Committee for Standardization: Brussels, Belgium, 2020.
- ISO 3675; Crude petroleum and liquid petroleum products—Laboratory determination of density—Hydrometer method. The International Organization for Standardization: Genève, Switzerland, 1998.
- ISO 3104; Petroleum products—Transparent and opaque liquids—Determination of kinematic viscosity and calculation of dynamic viscosity. The International Organization for Standardization: Genève, Switzerland, 2023.
- ISO 660; Animal and vegetable fats and oils—Determination of acid value and acidity. The International Organization for Standardization: Genève, Switzerland, 2020.
- ISO 665; Oilseeds—Determination of moisture and volatile matter content. The International Organization for Standardization: Genève, Switzerland, 2020.
- ISO 3961; Animal and vegetable fats and oils—Determination of iodine value. The International Organization for Standardization: Genève, Switzerland, 2024.
- EN 14110; Fat and oil derivatives—Fatty Acid Methyl Esters—Determination of methanol content. European Committee for Standardization: Brussels, Belgium, 2019.
- EN 14109; Fat and oil derivatives—Fatty Acid Methyl Esters (FAME)—Determination of potassium content by atomic absorption spectrometry. European Committee for Standardization: Brussels, Belgium, 2003.
- EN 14107; Fat and oil derivatives. Fatty acid methyl esters (FAME)—Determination of phosphorous content by inductively coupled plasma (ICP) emission spectrometry. European Committee for Standardization: Brussels, Belgium, 2003.
- EN 14112; Fat and oil derivatives—Fatty Acid Methyl Esters (FAME)—Determination of oxidation stability. European Committee for Standardization: Brussels, Belgium, 2020.
- EN 590; Automotive fuels—Diesel -Requirements and test methods. European Committee for Standardization: London, UK, 2025.
- EN 116; Diesel and domestic heating fuels—Determination of cold filter plugging point—Stepwise cooling bath method. European Committee for Standardization: Brussels, Belgium, 2015.
Methanol-to-Oil Molar Ratio, mol/mol | Snail Shells Concentration, wt% (from Oil Mass) | Reaction Duration, h | Predicted Ester Yield, wt% | Experimental Ester Yield, wt% | Experimental Ester Content, wt% |
---|---|---|---|---|---|
10.6:1 | 5.7 | 7.8 | 99.81 | 98.80 ± 0.30 | 97.15 ± 0.25 |
Oil | Snail | Temperature, °C | Snail Shells Amount, wt% | Reaction Duration, h | Methanol-to-Oil Molar Ratio, mol/mol | Ester Yield, Content * wt% | Reference |
---|---|---|---|---|---|---|---|
Waste frying oil | Snail from the banks of the river Ganges in Varanasi, India | 60 | 2 | 8 | 6.03:1 | 87.28 | [26] |
Palm olein oil | Golden apple snail | 60 | 10 | 2 | 12:1 | 93.2 | [30] |
Used cooking oil | River snail | 65 | 3 | 1 | 9:1 | 92.5 | [24] |
Palm oil | Golden apple snail | 65 | 0.8 | 6 | 12:1 | 92.5 | [23] |
Soybean oil | Pila spp | 28 | 3 | 7 | 6:1 | 98 | [21] |
Palm oil | Golden apple snail Pomacea canaliculata (calcination and acid treatment process) | 65 | 5 | 2.5 | 12:1 | 87.5 | [25] |
Waste cooking oil | 65 | 5 | 2.5 | 12:1 | 85.5 | ||
Waste cooking oil | Snail from Iraq | 62.2 | 9.8 | 4.8 | 21:5 | 95 * | [22] |
Rapeseed oil | Helix Aspersa Maxima | 64 | 6.06 | 8 | 7.5:1 | 98.15 * | [11] |
Soybean oil | Snail “chengkawl sawl” | 70 | 6.0 | 3 | 8:1 | 96.1 | [28] |
Soybean oil | Snail shells powder after the copper Cu(II) removal | 60 | 2 | 1 | 12:1 | 93 | [29] |
Rapeseed oil | Helix pomatia | 64 | 5.7 | 7.8 | 10.6:1 | 98.80 97.15 * | This work |
Parameter | Units | EN 14214 Requirements | Rapeseed Oil Methyl Ester (RME) |
---|---|---|---|
Ester content | % | min 96.5 | 97.15 ± 0.25 |
Density at 15 °C | kgm−3 | min 860 max 900 | 885 ± 2.00 |
Viscosity at 40 °C | mm2s−1 | min 3.50 max 5.00 | 4.70± 0.10 |
Acid value | mg KOHg−1 | max 0.5 | 0.22 ± 0.05 |
Moisture content | mgkg−1 | max 500 | 305 ± 2.10 |
Iodine value | g J2100−1g−1 | max 120 | 115 ± 0.20 |
Linolenic acid methyl ester content | % | max 12.0 | 8.86 ± 0.10 |
Monoglyceride content | % | max 0.8 | 0.27 ± 0.03 |
Diglyceride content | % | max 0.2 | 0.05 ± 0.02 |
Triglyceride content | % | max 0.2 | 0.06 ± 0.01 |
Free glycerol content | % | max 0.02 | 0.007 ± 0.00 |
Total glycerol content | % | max 0.25 | 0.19 ± 0.10 |
Methanol content | % | max 0.2 | 0.10 ± 0.05 |
Phosphorus content, ppm | 10 | 7.5 ± 0.10 | |
Metals II (Ca/Mg) | mg kg−1 | max 5 | 3.5 ± 0.25 |
Oxidation stability 110 °C | H | min 8 | 8.5 ± 0.15 |
Cetane number | - | min 51 | 52 ± 0.20 |
Cold filter plugging point | °C | −5 °C (in summer) −32 °C (in winter) | −9.8 ± 0.04 |
Factors | Name | Units | Low Actual | High Actual |
---|---|---|---|---|
A: | Molar ratio of methanol to rapeseed oil | mol/mol | 5 | 15 |
B: | Catalyst loading (from oil mass) | wt% | 4 | 10 |
C: | Reaction duration | h | 4 | 10 |
No. | Alcohol-to-Oil Molar Ratio, mol/mol | Catalyst Concentration (from Oil Mass), wt% | Reaction Duration, h | Ester Yield, % | |
---|---|---|---|---|---|
Experimental Results | Predicted Results | ||||
1 | 10 | 7 | 7 | 96.94 | 96.37 |
2 | 5 | 4 | 4 | 18.22 | 16.86 |
3 | 15 | 10 | 10 | 99.81 | 100.16 |
4 | 10 | 7 | 7 | 99.15 | 100.27 |
5 | 5 | 10 | 10 | 29.54 | 28.75 |
6 | 15 | 10 | 10 | 28.95 | 30.56 |
7 | 3 | 7 | 7 | 45.64 | 48.39 |
8 | 10 | 2.8 | 2.8 | 67.25 | 70.79 |
9 | 5 | 10 | 10 | 70.33 | 70.67 |
10 | 10 | 7 | 7 | 97.8 | 96.37 |
11 | 10 | 11.2 | 11.2 | 81.99 | 80.50 |
12 | 15 | 4 | 4 | 39.21 | 37.87 |
13 | 15 | 4 | 4 | 98.4 | 98.18 |
14 | 10 | 7 | 7 | 27.78 | 28.71 |
15 | 10 | 7 | 7 | 96.49 | 96.37 |
16 | 17 | 7 | 7 | 84.44 | 83.74 |
17 | 5 | 4 | 4 | 52.11 | 49.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sendžikienė, E.; Gokas, G.; Gaidė, I.; Gumbytė, M.; Kazancev, K.; Makarevičienė, V. Snail (Helix pomatia) Shells as a Catalyst for Biodiesel Synthesis. Catalysts 2025, 15, 979. https://doi.org/10.3390/catal15100979
Sendžikienė E, Gokas G, Gaidė I, Gumbytė M, Kazancev K, Makarevičienė V. Snail (Helix pomatia) Shells as a Catalyst for Biodiesel Synthesis. Catalysts. 2025; 15(10):979. https://doi.org/10.3390/catal15100979
Chicago/Turabian StyleSendžikienė, Eglė, Gediminas Gokas, Ieva Gaidė, Milda Gumbytė, Kiril Kazancev, and Violeta Makarevičienė. 2025. "Snail (Helix pomatia) Shells as a Catalyst for Biodiesel Synthesis" Catalysts 15, no. 10: 979. https://doi.org/10.3390/catal15100979
APA StyleSendžikienė, E., Gokas, G., Gaidė, I., Gumbytė, M., Kazancev, K., & Makarevičienė, V. (2025). Snail (Helix pomatia) Shells as a Catalyst for Biodiesel Synthesis. Catalysts, 15(10), 979. https://doi.org/10.3390/catal15100979