Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (103)

Search Parameters:
Keywords = Ca(HCO2)2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1022 KiB  
Article
Impact of Biochar Interlayer on Surface Soil Salt Content, Salt Migration, and Photosynthetic Activity and Yield of Sunflowers: Laboratory and Field Studies
by Muhammad Irfan, Gamal El Afandi, Amira Moustafa, Salem Ibrahim and Santosh Sapkota
Sustainability 2025, 17(12), 5642; https://doi.org/10.3390/su17125642 - 19 Jun 2025
Viewed by 509
Abstract
Soil salinization presents a significant challenge, driven by factors such as inadequate drainage, shallow aquifers, and high evaporation rates, threatening global food security. The sunflower emerges as a key cash crop in such areas, providing the opportunity to convert its straw into biochar, [...] Read more.
Soil salinization presents a significant challenge, driven by factors such as inadequate drainage, shallow aquifers, and high evaporation rates, threatening global food security. The sunflower emerges as a key cash crop in such areas, providing the opportunity to convert its straw into biochar, which offers additional agronomic and environmental benefits. This study investigates the effectiveness of biochar interlayers in enhancing salt leaching and suppressing upward salt migration through integrated laboratory and field experiments. The effectiveness of varying biochar interlayer application rates was assessed in promoting salt leaching, decreasing soil electrical conductivity (EC), and enhancing crop performance in saline soils through a systematic approach that combines laboratory and field experiments. The biochar treatments included a control (CK) and different applications of 20 (BL20), 40 (BL40), 60 (BL60), and 80 (BL80) tons of biochar per hectare, all applied below a depth of 20 cm, with each treatment replicated three times. The laboratory and field experimental setups maintained consistency in terms of biochar treatments and interlayer placement methodology. During the laboratory column experiments, the soil columns were treated with deionized water, and their leachates were analyzed for EC and major ionic components. The results showed that columns with biochar interlayers exhibited significantly higher efflux rates compared to those of the control and notably accelerated the time required for the effluent EC to decrease to 2 dS m−1. The CK required 43 days for full discharge and 38 days for EC stabilization below 2 dS m−1. In contrast, biochar treatments notably reduced these times, with BL80 achieving discharge in just 7 days and EC stabilization in 10 days. Elution events occurred 20–36 days earlier in the biochar-treated columns, confirming biochar’s effectiveness in enhancing leaching efficiency in saline soils. The field experiment results supported the laboratory findings, indicating that increased biochar application rates significantly reduced soil EC and ion concentrations at depths of 0–20 cm and 20–40 cm, lowering the EC from 7.12 to 2.25 dS m−1 and from 6.30 to 2.41 dS m−1 in their respective layers. The application of biochar interlayers resulted in significant reductions in Na+, K+, Ca2+, Mg2+, Cl, SO42−, and HCO3 concentrations across both soil layers. In the 0–20 cm layer, Na+ decreased from 3.44 to 2.75 mg·g−1, K+ from 0.24 to 0.11 mg·g−1, Ca2+ from 0.35 to 0.20 mg·g−1, Mg2+ from 0.31 to 0.24 mg·g−1, Cl from 1.22 to 0.88 mg·g−1, SO42− from 1.91 to 1.30 mg·g−1 and HCO3 from 0.39 to 0.18 mg·g−1, respectively. Similarly, in the 20–40 cm layer, Na+ declined from 3.62 to 3.05 mg·g−1, K+ from 0.28 to 0.12 mg·g−1, Ca2+ from 0.39 to 0.26 mg·g−1, Mg2+ from 0.36 to 0.27 mg·g−1, Cl from 1.18 to 0.80 mg·g−1, SO42− from 1.95 to 1.33 mg·g−1 and HCO3 from 0.42 to 0.21 mg·g−1 under increasing biochar rates. Moreover, the use of biochar interlayers significantly improved the physiological traits of sunflowers, including their photosynthesis rates, stomatal conductance, and transpiration efficiency, thereby boosting biomass and achene yield. These results highlight the potential of biochar interlayers as a sustainable strategy for soil desalination, water conservation, and enhanced crop productivity. This approach is especially promising for managing salt-affected soils in regions like California, where soil salinization represents a considerable threat to agricultural sustainability. Full article
(This article belongs to the Special Issue Sustainable Development and Climate, Energy, and Food Security Nexus)
Show Figures

Figure 1

18 pages, 5072 KiB  
Article
The Genetic Mechanism of Fluoride-Enriched Geothermal Groundwater in Southeast Coastal Areas in China: Hydrochemistry, Isotope, and Machine Learning Analysis
by Lei Liu, Shouchuan Zhang, Jiahui He and Luyao Wang
Water 2025, 17(10), 1498; https://doi.org/10.3390/w17101498 - 16 May 2025
Viewed by 415
Abstract
Fluoride-enriched geothermal groundwater poses chronic health risks (e.g., dental and skeletal fluorosis) through prolonged exposure; nevertheless, hydrochemical-driven factors and the genetic mechanism of fluoride enrichment in such systems remain inadequately identified. This study employed hydrochemical characterization, isotopic tracing, and health risk models to [...] Read more.
Fluoride-enriched geothermal groundwater poses chronic health risks (e.g., dental and skeletal fluorosis) through prolonged exposure; nevertheless, hydrochemical-driven factors and the genetic mechanism of fluoride enrichment in such systems remain inadequately identified. This study employed hydrochemical characterization, isotopic tracing, and health risk models to elucidate the genetic mechanism of fluoride-enriched geothermal groundwater. The key findings reveal the following. (1) Geothermal groundwater (Cl-Na type; TDS 90–345 mg/L; pH 6.25–7.42) contrasts with alkaline river water (pH 7.48–8.05; SO4-Na/HCO3-Na) and saline seawater (TDS 23.9–28.2 g/L). Stable isotopes (δD, δ1⁸O) confirm atmospheric precipitation recharge with an elevation of 69–635 m. (2) The Self-Organizing Map algorithm categorized 30 geothermal samples into three groups: Cluster I—low temperature and pH, high TDS; Cluster II—high temperature, low F concentration; and Cluster III—low TDS, and high pH and F concentration. (3) Fluoride enrichment in Cluster III originated from the evaporite/fluorite dissolution under alkaline conditions and cation exchange interactions, while the inhibition of CaF2 dissolution by reverse cation exchange limited the accumulation of F in Cluster II and Cluster III samples. (4) Health risks disproportionately affect children (80% high risk) and women, necessitating pre-use defluorination. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

26 pages, 9639 KiB  
Article
Hydrochemical Characteristics and Evolution Laws of Groundwater in Huangshui River Basin, Qinghai
by Ziqi Wang, Ting Lu, Shengnan Li, Kexin Zhou, Yidong Gu, Bihui Wang and Yudong Lu
Water 2025, 17(9), 1349; https://doi.org/10.3390/w17091349 - 30 Apr 2025
Viewed by 418
Abstract
Groundwater plays a leading role in ecological environment protection in semi-arid regions. The Huangshui River Basin is located in the Tibetan Plateau and Loess Plateau transition zone of semi-arid areas. Its ecological environment is relatively fragile, and there is an urgent need for [...] Read more.
Groundwater plays a leading role in ecological environment protection in semi-arid regions. The Huangshui River Basin is located in the Tibetan Plateau and Loess Plateau transition zone of semi-arid areas. Its ecological environment is relatively fragile, and there is an urgent need for systematic study of the basin to develop a groundwater environment and realize the rational and efficient development of water resources. In this study, methodologically, we combined the following: 1. Field sampling (271 groundwater samples across the basin’s hydrogeological units); 2. Comprehensive laboratory analysis of major ions and physicochemical parameters; 3. Multivariate statistical analysis (Pearson correlation, descriptive statistics); 4. Geospatial techniques (ArcGIS kriging interpolation); 5. Hydrochemical modeling (Piper diagrams, Gibbs plots, PHREEQC simulations). Key findings reveal the following: 1. Groundwater is generally weakly alkaline (pH 6.94–8.91) with TDS ranging 155–10,387 mg/L; 2. Clear spatial trends: TDS and major ions (Na+, Ca2+, Mg2+, Cl, SO42−) increase along flow paths; 3. Water types evolve from Ca-HCO3-dominant (upper reaches) to complex Ca-SO4/Ca-Cl mixtures (lower reaches); 4. Water–rock interactions dominate hydrochemical evolution, with secondary cation exchange effects; 5. PHREEQC modeling identifies dominant carbonate dissolution (mean SIcalcite = −0.32) with localized evaporite influences (SIgypsum up to 0.12). By combining theoretical calculations and experimental results, this study reveals distinct hydrochemical patterns and evolution mechanisms. The groundwater transitions from Ca-HCO3-type in upstream areas to complex Ca-SO4/Cl mixtures downstream, driven primarily by dissolution of gypsum and carbonate minerals. Total dissolved solids increase dramatically along flow paths (155–10,387 mg/L), with Na+ and SO42− showing the strongest correlation to mineralization (r > 0.9). Cation exchange processes and anthropogenic inputs further modify water chemistry in midstream regions. These findings establish a baseline for sustainable groundwater management in this ecologically vulnerable basin. Full article
Show Figures

Figure 1

23 pages, 875 KiB  
Article
Microbial and Physiochemical Profiling of Zarqa River Supplemented with Treated Wastewater: A High-Resolution PCR Analysis
by Raha Alassaf and Alfred P. Blaschke
Resources 2025, 14(5), 69; https://doi.org/10.3390/resources14050069 - 22 Apr 2025
Cited by 1 | Viewed by 1251
Abstract
Background: This study aims to evaluate the quality of treated wastewater flowing in the Zarqa River to determine its suitability for agricultural use. The assessment is based on physicochemical and biological parameters in accordance with Jordanian standards (JS 893:2021), the CCME water quality [...] Read more.
Background: This study aims to evaluate the quality of treated wastewater flowing in the Zarqa River to determine its suitability for agricultural use. The assessment is based on physicochemical and biological parameters in accordance with Jordanian standards (JS 893:2021), the CCME water quality index, and the weighted arithmetic water quality index (WAWQI). Additionally, a microbial assessment was conducted to identify the presence of pathogens in the treated wastewater. Methods: A total of 168 water samples were collected from seven different sites along the Zarqa River over a 24-month period. This study focused on microbial assessment and selected parameters from the JS 893:2021, including total dissolved solids (TDSs), biochemical oxygen demand (BOD), dissolved oxygen (DO), chemical oxygen demand (COD), and E. coli levels. Furthermore, data were gathered on additional physicochemical parameters such as pH, mineral content (including Na, Ca, K, Mg, and Cl), salts (HCO3, SO4, NO3, and PO4), and heavy metals (Fe, Cu, Pb, Mn, and Co). The CCME water quality index and weighted arithmetic WQI scores were calculated to determine the water quality from all seven study sites. Results: In terms of Jordanian standards, Site 1 had the lowest TDS and DO values along with E. coli concentration. Further, in terms of minerals and salts, the maximum concentrations found for the sites are given herewith: Site 2 (K+ and NO3), Site 3 (Cl, Na+), Site 5 (Ca, HCO3), and Site 7 (Mg2+, PO4, and SO4). In terms of pH, all the study sites had pH values within the acceptable range, i.e., between 6 and 9, for irrigation purposes. The concentrations of certain heavy metals, specifically lead (Pb), manganese (Mn), and cobalt (Co), were observed to be negligible. In contrast, Site 6 exhibited the highest concentration of iron (Fe) (0.0178 mg/L), while Site 5 recorded the maximum concentration of copper (Cu) (0.0210 mg/L) among the study locations. Site 1 demonstrated the most favorable water quality among the seven sites evaluated, whereas Site 6 exhibited the poorest water quality. Overall, the water quality from the majority of the sites was deemed suitable for drainage and for irrigating crops classified under the B category. However, based on the weighted arithmetic water quality index (WQI) values, none of the sites achieved a classification of good or excellent water quality, although the water quality at these sites may still be utilized for irrigation purposes. The current study is the first to report the presence of SARS-CoV-2 in Zarqa River water samples. Conclusions: The current study outcomes are promising and provide knowledgeable insights in terms of water quality parameters, while public health aspects should be considered when planning the WWTPs in parallel to reclaiming the wastewater for irrigation purposes. Full article
Show Figures

Figure 1

19 pages, 3834 KiB  
Article
Geogenic Contamination of Groundwater in a Highland Watershed: Hydrogeochemical Assessment, Source Apportionment, and Health Risk Evaluation of Fluoride and Nitrate
by Kashif Alam, Muhammad Nafees, Wajid Ali, Said Muhammad and Abdur Raziq
Hydrology 2025, 12(4), 70; https://doi.org/10.3390/hydrology12040070 - 26 Mar 2025
Viewed by 654
Abstract
Groundwater is one of the major sources of freshwater supply for drinking and domestic purposes. This study evaluates the hydrogeochemical processes, groundwater quality for human consumption, associated health risks from fluoride F and nitrate (NO3), and sources of dissolved [...] Read more.
Groundwater is one of the major sources of freshwater supply for drinking and domestic purposes. This study evaluates the hydrogeochemical processes, groundwater quality for human consumption, associated health risks from fluoride F and nitrate (NO3), and sources of dissolved solutes in a highland watershed in northern Pakistan. Groundwater samples (n = 51) were gathered and analyzed for a range of physicochemical parameters. To evaluate contamination, indices such as the nitrate pollution index (NPI) and fluoride pollution index (FPI) were applied, along with a composite groundwater pollution index to assess overall water quality. The findings revealed that total dissolved solid, turbidity, F, and K+ levels exceeded health-based thresholds in 20%, 1%, 4%, and 2% of samples, respectively. Among the water sources, handpumps were identified as the most contaminated. According to the NPI and composite index, 96% and 92% of the samples did not show significant contamination, respectively. However, the FPI results highlighted that 59% of the samples exhibited low F pollution, while 41% fell under medium pollution levels. While NO3 ingestion posed no notable health risks, F exposure presented significant concerns, with 58.8% of the samples posing risks, particularly for children. The dominant hydrochemical facies were Ca-Mg-HCO3, with the main influence on water chemistry by rock-water interactions and reverse ion exchange processes. Full article
Show Figures

Figure 1

15 pages, 6484 KiB  
Article
Multivariate Statistics and Hydrochemistry Combined to Reveal the Factors Affecting Shallow Groundwater Evolution in a Typical Area of the Huaibei Plain, China
by Xi Qin, Hesheng Wang, Jianshi Gong, Yonghong Ye, Kaie Zhou, Naizheng Xu, Liang Li and Jie Li
Water 2025, 17(7), 962; https://doi.org/10.3390/w17070962 - 26 Mar 2025
Viewed by 400
Abstract
Understanding the characteristics of groundwater chemistry is essential for water resource development and utilization. However, few studies have focused on the chemical evolution processes of shallow groundwater in typical areas of the Huaibei Plain. We analyzed 28 water samples from the study area [...] Read more.
Understanding the characteristics of groundwater chemistry is essential for water resource development and utilization. However, few studies have focused on the chemical evolution processes of shallow groundwater in typical areas of the Huaibei Plain. We analyzed 28 water samples from the study area using hydrogeochemical mapping, multivariate statistical analysis, and other approaches. The study found that the hydrogeochemical facies of groundwater are mainly HCO3-Ca·Mg (64.3%), mixed SO4·Cl-Ca·Mg, and SO4·Cl-Na. The hydrochemical composition is primarily controlled by natural water–rock interactions, including carbonate weathering and cation exchange processes. Correlation analysis and principal component analysis (PCA) revealed that mineral dissolution was the predominant source of Na+, Mg2+, Cl, and SO42− in shallow groundwater, significantly contributing to total dissolved solids (TDS) accumulation. Hierarchical cluster analysis (HCA) identified three characteristic zones: (1) agricultural/urban-influenced areas, (2) high-F/low-hardness zones, and (3) nitrate-contaminated regions. These findings provide critical insights for assessing the geochemical status of groundwater in the Huaibei Plain and formulating targeted resource management strategies. Full article
(This article belongs to the Special Issue Assessment of Groundwater Quality and Pollution Remediation)
Show Figures

Figure 1

19 pages, 7976 KiB  
Article
La/Fe-Bimetallic-Modified Red Brick Powder for Phosphate Removal from Wastewater: Characterization, Adsorption, and Mechanism
by Yunrui Zhao, Hui Luo, Rubin Han, Shiheng Tao, Meng Liu, Ming Tang, Jiayao Xing, Limin Chen and Bao-Jie He
Materials 2025, 18(6), 1326; https://doi.org/10.3390/ma18061326 - 17 Mar 2025
Viewed by 439
Abstract
The use of construction waste red brick powder (RBP) to prepare adsorbents for phosphate removal from wastewater represents a promising technology with substantial research potential. This study investigates the preparation of La-based magnetic red brick powder (La-Fe-RBP) via bimetallic modification to enhance its [...] Read more.
The use of construction waste red brick powder (RBP) to prepare adsorbents for phosphate removal from wastewater represents a promising technology with substantial research potential. This study investigates the preparation of La-based magnetic red brick powder (La-Fe-RBP) via bimetallic modification to enhance its adsorption performance. The key characteristics, adsorption process, adsorption mechanism, and practical applications of the modified adsorbent were analyzed. The obtained results suggested that the underlying adsorption mechanism of La-Fe-RBP was best described by the Langmuir and pseudo-second-order kinetic models, which suggested that the adsorption mechanism was monolayer chemical adsorption. La-Fe-RBP exhibited rapid kinetics, achieving adsorption saturation in just 40 min, significantly faster than RBP (360 min). Additionally, isotherm experiments determined the highest theoretical adsorption capacity as 42.835 mg/g. More importantly, La-Fe-RBP exhibited efficient phosphate adsorption within a pH ranging from 3 to 8. Furthermore, La-Fe-RBP exhibited high selectivity for phosphate ions in the presence of coexisting ions (SO42, NO3, Cl, HCO3, Mg2+, and Ca2+), demonstrating its robustness and effectiveness in complex water conditions. FTIR and XPS analyses demonstrated that ligand exchange and electrostatic attraction were the primary mechanisms underlying phosphate adsorption by La-Fe-RBP. Domestic sewage treated with La-Fe-RBP met the Class IV surface water environmental quality standards in China. The findings of this study prove that the La-Fe-RBP composite material, characterized by high adsorption efficiency and strong selectivity, holds significant potential for removing phosphates from real wastewater. Full article
Show Figures

Figure 1

12 pages, 1832 KiB  
Article
Geochemical and Thermodynamic Study of Formation Water for Reservoir Management in Bibi Hakimeh Oil and Gas Field, Iran
by Seyed Hossein Hashemi, Amir Karimian Torghabeh, Abbas Niknam, Seyed Abdolrasoul Hashemi, Mohamad Hosein Mahmudy Gharaie and Nuno Pimentel
Fuels 2025, 6(1), 11; https://doi.org/10.3390/fuels6010011 - 5 Feb 2025
Cited by 1 | Viewed by 916
Abstract
This research evaluates the mineral ions and their concentrations in formation water from five well samples of the Bibi Hakimeh oil field (Iran). The analysis reveals the presence of calcium (Ca2+), sodium (Na+), and magnesium (Mg2+) cations, [...] Read more.
This research evaluates the mineral ions and their concentrations in formation water from five well samples of the Bibi Hakimeh oil field (Iran). The analysis reveals the presence of calcium (Ca2+), sodium (Na+), and magnesium (Mg2+) cations, as well as sulfate (SO42−), bicarbonate (HCO3), and chloride (Cl) anions, which are soluble in water within the Bibi Hakimeh oil formation. Furthermore, mineral deposits of CaSO4, CaSO4.2H2O, CaCO3, and MgCO3 are investigated and predicted using StimCADE 2 software. The findings highlight the significant chemical precipitation of calcium sulfate and calcium carbonate mineral deposits under the operating conditions of the Bibi Hakimeh oil well. The geochemical composition of the formation waters is discussed to understand the equilibrium conditions and possible influence of the physical parameters. Additionally, this study examines the interaction between rock and water of the Bibi Hakimeh formation, revealing a notable correlation between the concentration of calcium and magnesium ions and the water–rock reaction in this field. Full article
Show Figures

Figure 1

14 pages, 835 KiB  
Article
Geochemical Feed Zone Analysis Based on the Mineral–Solution Equilibrium Hypothesis
by Luigi Marini, Stefano Orlando, Giovanni Vespasiano and Carmine Apollaro
Geosciences 2025, 15(2), 52; https://doi.org/10.3390/geosciences15020052 - 4 Feb 2025
Viewed by 753
Abstract
In this work we propose a method of geochemical feed zone (FZ) analysis based on the assumption of thermochemical equilibrium between geothermal fluids and hydrothermal minerals, for each FZ contributing to well discharge. Using our method, it is possible to calculate the mass [...] Read more.
In this work we propose a method of geochemical feed zone (FZ) analysis based on the assumption of thermochemical equilibrium between geothermal fluids and hydrothermal minerals, for each FZ contributing to well discharge. Using our method, it is possible to calculate the mass fraction and the chemistry of each FZ fluid, namely (1) the pH and the concentrations of SiO2, CO2, Na, K, Ca, Mg, HCO3, SO4, F, and Cl of FZ liquids, and (2) the concentrations of SiO2 and CO2 of FZ vapors. The method can be applied to wells with two single-phase FZs and to wells with either three single-phase FZs or two FZs, one single-phase and the other two-phase, with different temperature and fluid chemistry. Full article
(This article belongs to the Special Issue Geochemistry in the Development of Geothermal Resources)
Show Figures

Figure 1

17 pages, 7346 KiB  
Article
Comprehensive Hydrochemical Analysis, Controlling Mechanisms, and Water Quality Assessment of Surface and Groundwater in a Typical Intensive Agricultural Area, Northern China
by Zongjun Gao, Tingting Huang, Jinkai Chen, Hong Tian, Menghan Tan, Yiru Niu and Kexin Lou
Water 2025, 17(2), 276; https://doi.org/10.3390/w17020276 - 19 Jan 2025
Cited by 3 | Viewed by 1318
Abstract
Groundwater is a significant source of water, and evaluating its hydrochemical attributes, quality, and associated health risks holds paramount importance in guaranteeing safe water access for the population and fostering sustainable socio-economic progress. Situated within a semi-arid region, the Dianbu area (DBA) features [...] Read more.
Groundwater is a significant source of water, and evaluating its hydrochemical attributes, quality, and associated health risks holds paramount importance in guaranteeing safe water access for the population and fostering sustainable socio-economic progress. Situated within a semi-arid region, the Dianbu area (DBA) features numerous greenhouses interspersed amongst open farmlands. An examination revealed a discernible decline in the overall water chemistry environment in this area. This study extensively examined the fundamental water chemistry characteristics of groundwater and surface water samples through a statistical analysis, Piper’s trilinear diagram, ion ratios, and other analytical methods. The assessment of irrigation water quality was conducted using the entropy weight water quality index (EWQI), sodium adsorption ratio (SAR), percentage of soluble sodium (Na%), among other relevant indicators. The findings demonstrate multiple key aspects: 1. Water cations are chiefly composed of Ca2+ and Na+, while groundwater anions are notably NO3 and SO42− dominant, defining the water type as NO3-SO4-Ca. Conversely, surface water primarily displays HCO3 and SO42− anions, aligning it with an HCO3-SO4-Ca water type. 2. The extensive agricultural activities in the region, coupled with the excessive utilization of pesticides, chemical fertilizers, as well as the discharge of domestic sewage, contribute to heightened NO3 concentrations in groundwater. 3. The water quality assessments indicate that approximately 53% of agricultural water quality meets irrigation standards based on EWQI, with SAR results suggesting around 65.52% suitability for irrigation and Na% findings indicating approximately 55.88% viability for this purpose. Proper water selection tailored to specific conditions is advised to mitigate potential soil salinization risks associated with long-term irrational irrigation practices. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment, 2nd Edition)
Show Figures

Figure 1

21 pages, 7659 KiB  
Article
Hydrogeochemical Characteristics and Genesis of Hot Springs in Da Qaidam Area, Northern Qaidam Margin of the Qaidam Basin
by Jiayi Zhao, Lingxia Liu, Yaru Wang, Bingyan Li, Wenjing Lin and Haihui Yao
Water 2024, 16(23), 3509; https://doi.org/10.3390/w16233509 - 6 Dec 2024
Viewed by 1004
Abstract
Hydrogeochemical research on fluids is an effective method to understand the formation mechanism, occurrence environment, and circulation process of groundwater. The groundwater sampling sites are located in the town of Dachaidan on the northeastern edge of the Tibetan Plateau, which was selected as [...] Read more.
Hydrogeochemical research on fluids is an effective method to understand the formation mechanism, occurrence environment, and circulation process of groundwater. The groundwater sampling sites are located in the town of Dachaidan on the northeastern edge of the Tibetan Plateau, which was selected as the study object. Samples were collected from hot and cold springs and surface water in the area. This study is based on the analysis of water chemistry and isotopes, and aims (1) to discuss the chemical characteristics of groundwater in Da Qaidam, (2) to estimate the deep reservoir temperatures, recharge elevation and circulation depth of geothermal waters, and (3) to figure out the heat source beneath the geothermal area and its genetic mechanism. The result showed the following: The hydrochemical type of the hot spring is Cl·SO4-Na and Cl-Na, and the hydrochemical type of cold spring is SO4·HCO3-Na·Ca and Cl·HCO3·SO4-Ca·Na. The main source of groundwater recharge is snow and ice melt water. The recharge elevation ranges from 4666.8 m to 5755.9 m. The geothermal reservoir temperature is about 119.15–126.6 °C. Ice and snow melt water infiltrate into the high mountainous areas on the north side of Da Qaidam and circulate underground through the developed deep and large fractures. Part of the groundwater migrates upwards under the water conduction of the Da Qaidam fault fracture zone to form cold springs, while another part is heated by deep circulation and exposed to the surface in the form of medium to low temperature tectonic hot springs. The research results can provide a scientific basis for geothermal resource exploitation and utilization in Qinghai Province. Full article
(This article belongs to the Special Issue Groundwater Quality and Contamination at Regional Scales)
Show Figures

Figure 1

15 pages, 2935 KiB  
Article
Removal of Phosphate from Water by Iron/Calcium Oxide-Modified Biochar: Removal Mechanisms and Adsorption Modeling
by Shufang Zeng, Xin Lan, Peng Liu, Zhongxing Zhang, Xi Cheng, Nuchao Xu and Huilin Yin
Water 2024, 16(22), 3245; https://doi.org/10.3390/w16223245 - 12 Nov 2024
Cited by 2 | Viewed by 2078
Abstract
Phosphorus (P) pollution is a leading cause of water eutrophication, and metal-modified biochar is an effective adsorbent with the ability to alter the migration capacity of phosphorus. This study uses bamboo as the raw material to prepare metal-modified biochar (ZFCO-BC) loaded with Fe [...] Read more.
Phosphorus (P) pollution is a leading cause of water eutrophication, and metal-modified biochar is an effective adsorbent with the ability to alter the migration capacity of phosphorus. This study uses bamboo as the raw material to prepare metal-modified biochar (ZFCO-BC) loaded with Fe and Ca under N2 conditions at 900 °C, and investigates its adsorption characteristics for phosphate. Batch experimental results show the adsorption capacity of the ZFCO-BC gradually increases (from 4.0 to 69.1 mg/g) as the initial phosphate concentration increases (from 2 to 900 mg/L), mainly through multilayer adsorption. Additionally, as the pH increases from 1 to 7, the adsorption capacity of the ZFCO-BC climbs to reach its maximum value of 48.4 mg/g with an initial phosphate concentration of 150 mg/L. At this pH, phosphate primarily exists as H2PO4 and HPO42−, which both readily react with Fe3+ and Ca2+ in the biochar. Furthermore, the addition of CO32−, HCO3, NO3, SO42−, F, and Cl each affect the removal rate of phosphate by less than 10%, indicating the ZFCO-BC has a highly efficient and selective phosphate adsorption capacity. A multi-column adsorption experiment designed to achieve long-term and efficient phosphorus removal treated 275.5 pore volumes (PVs) of water over 366 h. The cyclic adsorption–desorption experiment results show that 0.5 M NaOH can effectively leach phosphate from the ZFCO-BC. Observations at the molecular level from P K-edge XANES spectra confirm the removal of low-concentration phosphate is primarily dominated by electrostatic attraction, while the main removal mechanism for high-concentration phosphate is chemical precipitation. This study demonstrates that ZFCO-BC has broad application prospects for phosphate removal from wastewater and as a potential slow-release fertilizer in agriculture. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

26 pages, 21375 KiB  
Article
A Localized Evaluation of Surface Water Quality Using GIS-Based Water Quality Index along Satpara Watershed Skardu Baltistan, Pakistan
by Ali Muhammad, Donghui Shangguan, Ghulam Rasool, Amjad Ali Khan, Asim Qayyum Butt, Ayesha Hussain and Muhammad Ahsan Mukhtar
ISPRS Int. J. Geo-Inf. 2024, 13(11), 393; https://doi.org/10.3390/ijgi13110393 - 2 Nov 2024
Cited by 2 | Viewed by 2534
Abstract
Surface water quality in Skardu, Gilgit-Baltistan, Pakistan, is of immense importance because of the city’s dependence on these resources for domestic uses, agriculture, and drinking water. The water quality index (WQI) was integrated with the Geographic Information System (GIS) to spatially envision and [...] Read more.
Surface water quality in Skardu, Gilgit-Baltistan, Pakistan, is of immense importance because of the city’s dependence on these resources for domestic uses, agriculture, and drinking water. The water quality index (WQI) was integrated with the Geographic Information System (GIS) to spatially envision and examine water quality data to facilitate the identification of pollution hotspots, trend analysis, and knowledge-based decision-making for effective water resource management. This study aims to evaluate the physiochemical and bacteriological parameters of the Satpara watershed and to provide the spatial distribution of these parameters. This study endeavors to achieve Sustainable Development Goal 6 (SDG 6) by identifying localities with excellent and unfit water for drinking, sanitation, and hygiene. A total of fifty-one surface water samples were collected from various parts of the Satpara watershed during the fall season of 2023. Well-established laboratory techniques were used to investigate water for parameters like Electrical Conductivity (EC), pH, turbidity, total dissolved solids (TDSs), major cations (K+, Na+, Mg2+, Ca2+), major anions (Cl, SO42, NO3, HCO3), and bacteriological contaminants (E. coli). Spatial distribution maps of all these parameters were created using the Inverse Distance Weighted (IDW) technique in a GIS environment. A significant variation in the quality of water was observed along the study area. The level of Escherichia coli (E. coli) contamination is above the permissible limit at various locations along the watershed, making water unsafe for direct human consumption in these areas. Some regions showed low TDS values, which could adversely affect human health and agricultural yield. From the WQI valuation, 58.82% of the collected samples were “Poor”, 31.8% were “Very poor” and 9.8% were found to be “Unfit for drinking”. The research findings emphasize the pressing need for consistent monitoring and adoption of water management strategies in Skardu City to warrant sustainable soil and water use. The spatial maps generated for various parameters and the water quality index WQI offer critical insights for targeted intercessions. Full article
Show Figures

Figure 1

15 pages, 4617 KiB  
Article
Human Coronavirus 229E Uses Clathrin-Mediated Endocytosis as a Route of Entry in Huh-7 Cells
by Sabina Andreu, Inés Ripa, José Antonio López-Guerrero and Raquel Bello-Morales
Biomolecules 2024, 14(10), 1232; https://doi.org/10.3390/biom14101232 - 29 Sep 2024
Viewed by 1634
Abstract
Human coronavirus 229E (HCoV-229E) is an endemic coronavirus responsible for approximately one-third of “common cold” cases. To infect target cells, HCoV-229E first binds to its receptor on the cell surface and then can follow different pathways, entering by direct fusion or by taking [...] Read more.
Human coronavirus 229E (HCoV-229E) is an endemic coronavirus responsible for approximately one-third of “common cold” cases. To infect target cells, HCoV-229E first binds to its receptor on the cell surface and then can follow different pathways, entering by direct fusion or by taking advantage of host cell mechanisms such as endocytosis. Based on the role of clathrin, the process can be classified into clathrin-dependent or -independent endocytosis. This study characterizes the role of clathrin-mediated endocytosis (CME) in HCoV-229E infection of the human hepatoma cell line Huh-7. Using specific CME inhibitory drugs, we demonstrated that blocking CME significantly reduces HCoV-229E infection. Additionally, CRISPR/Cas9-mediated knockout of the µ subunit of adaptor protein complex 2 (AP-2) further corroborated the role of CME, as KOs showed over a 50% reduction in viral infection. AP-2 plays an important role in clathrin recruitment and the maturation of clathrin-coated vesicles. Our study also confirmed that in Huh-7 cells, HCoV-229E requires endosomal acidification for successful entry, as viral entry decreased when treated with lysomotropic agents. Furthermore, the colocalization of HCoV-229E with early endosome antigen 1 (EEA-1), only present in early endosomes, suggested that the virus uses an endosomal route for entry. These findings highlight, for the first time, the role of CME in HCoV-229E infection and confirm previous data of the use of the endosomal route at a low pH in the experimental cell model Huh-7. Our results provide new insights into the mechanisms of entry of HCoV-229E and provide a new basis for the development of targeted antiviral therapies. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Viral Infections)
Show Figures

Figure 1

17 pages, 17982 KiB  
Article
Comprehending Spatial Distribution and Controlling Mechanisms of Groundwater in Topical Coastal Aquifers of Southern China Based on Hydrochemical Evaluations
by Jun He, Pan Wu, Yiyong Li, Min Zeng, Chen Chen, Hamza Jakada and Xinwen Zhao
Water 2024, 16(17), 2502; https://doi.org/10.3390/w16172502 - 3 Sep 2024
Viewed by 964
Abstract
Groundwater quality and availability in coastal aquifers have become a serious concern in recent times due to increased abstraction for domestic, agricultural and industrial purposes. (1) Background: Zhuhai city is selected as a representative coastal aquifer in Southern China to comprehensively evaluate the [...] Read more.
Groundwater quality and availability in coastal aquifers have become a serious concern in recent times due to increased abstraction for domestic, agricultural and industrial purposes. (1) Background: Zhuhai city is selected as a representative coastal aquifer in Southern China to comprehensively evaluate the hydrochemical characteristics, spatial distribution and controlling mechanisms of groundwater. (2) Methods: A detailed study utilizing statistical analyses, a Piper diagram, Gibbs plots, and ion ratios was conducted on 114 surface water samples and 211 groundwater samples. (3) Results: The findings indicate that the pH of most groundwater is from 6.06 to 6.52, indicating a weakly acidic environment. The pH of surface water ranges from 5.35 to 9.86, with most values being weakly alkaline. The acidity in the groundwater may be related to the acidic atmospheric precipitation, an acidic unsaturated zone, oxidation of sulphide minerals and tidal action. The groundwater chemical types are predominantly mixed, followed by Ca-Mg-HCO3 type. Surface water samples are predominantly Na-Cl-SO4 type. The NO3 concentration in groundwater is relatively high, with a mean value of 17.46 mg/L. The NO2 and NH4+ concentrations in groundwater are relatively low, with mean values of 0.46 mg/L and 7.58 mg/L. (4) Conclusions: The spatial distribution of the principal chemical constituents in the groundwater is related to the landform. The chemical characteristics of groundwater in the study area are mainly controlled by the weathering and dissolution of silicate and sulfate minerals, evaporation, seawater mixing and cation exchange. Nitrate in clastic fissure groundwater, granite fissure groundwater and unconfined pore groundwater primarily originates from atmospheric precipitation, agricultural activities of slope farmland and forest land. Nitrate in confined pore groundwater and karst groundwater primarily originates from domestic sewage and mariculture wastewater. Our findings elucidate the processes characterizing the hydrogeology and surface water interactions in Zhuhai City’s coastal system, which are relevant to other catchments with similar geological characteristics. Full article
(This article belongs to the Special Issue Soil and Groundwater Quality and Resources Assessment)
Show Figures

Figure 1

Back to TopTop