Geogenic Contamination of Groundwater in a Highland Watershed: Hydrogeochemical Assessment, Source Apportionment, and Health Risk Evaluation of Fluoride and Nitrate
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Laboratory Analysis
2.3. Indexical Techniques
2.4. Hydrogeochemical Evaluation
2.5. Health Risk Assessment
2.6. Statistical Analysis
3. Results
3.1. General Description
3.2. Comparison Between Sources
3.3. Indexical Approach
3.4. Hydrogeochemical Evolution
3.5. Impacts on Health
3.6. Cluster Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yadav, P.; Sreekesh, S.; Nandimandalam, J.R. Groundwater Quality and Its Suitability in the Semi-Arid River Basin in India: An Analysis of Hydrogeochemical Processes Using Multivariate Statistics. Environ. Model. Assess. 2025, 1–22. [Google Scholar]
- Gleeson, T.; Cuthbert, M.; Ferguson, G.; Perrone, D. Global Groundwater Sustainability, Resources, and Systems in the Anthropocene. Annu. Rev. Earth Planet. Sci. 2020, 48, 431–463. [Google Scholar] [CrossRef]
- Lall, U.; Josset, L.; Russo, T. A Snapshot of the World’s Groundwater Challenges. Annu. Rev. Environ. Resour. 2020, 45, 171–194. [Google Scholar] [CrossRef]
- Lapworth, D.J.; Boving, T.B.; Kreamer, D.K.; Kebede, S.; Smedley, P.L. Groundwater Quality: Global Threats, Opportunities and Realising the Potential of Groundwater. Sci. Total Environ. 2022, 811, 152471. [Google Scholar]
- Mukherjee, I.; Singh, U.K. Hydrogeochemical Characterizations and Quality Evaluation of Groundwater in the Major River Basins of a Geologically and Anthropogenically Driven Semi-Arid Tract of India. Sci. Total Environ. 2022, 805, 150323. [Google Scholar] [CrossRef]
- Sekar, S.; Surendran, S.; Roy, P.D.; Kamaraj, J. Groundwater Geochemistry and Irrigation Suitability in the Semi-Arid Melur Block of Madurai District, South India. Environ. Earth Sci. 2025, 84, 139. [Google Scholar] [CrossRef]
- Tzanakakis, V.A.; Paranychianakis, N.V.; Angelakis, A.N. Water Supply and Water Scarcity. Water 2020, 12, 2347. [Google Scholar] [CrossRef]
- Wang, M.; Bodirsky, B.L.; Rijneveld, R.; Beier, F.; Bak, M.P.; Batool, M.; Droppers, B.; Popp, A.; van Vliet, M.T.H.; Strokal, M. A Triple Increase in Global River Basins with Water Scarcity Due to Future Pollution. Nat. Commun. 2024, 15, 880. [Google Scholar]
- Samtio, M.S.; Hakro, A.A.A.D.; Jahangir, T.M.; Mastoi, A.S.; Lanjwani, M.F.; Rajper, R.H.; Lashari, R.A.; Agheem, M.H.; Noonari, M.W. Impact of Rock-Water Interaction on Hydrogeochemical Characteristics of Groundwater: Using Multivariate Statistical, Water Quality Index and Irrigation Indices of Chachro Sub-District, Thar Desert, Sindh, Pakistan. Groundw. Sustain. Dev. 2023, 20, 100878. [Google Scholar] [CrossRef]
- Boualem, B.; Egbueri, J.C. Graphical, Statistical and Index-Based Techniques Integrated for Identifying the Hydrochemical Fingerprints and Groundwater Quality of In Salah, Algerian Sahara. Environ. Geochem. Health 2024, 46, 158. [Google Scholar] [CrossRef]
- Bouselsal, B.; Satouh, A.; Egbueri, J.C. Evaluating Water Quality, Mineralization Mechanisms, and Potential Health Risks of Nitrate Contamination in the Continental Intercalaire Aquifer of Reggane, Algeria. Environ. Earth Sci. 2024, 83, 539. [Google Scholar] [CrossRef]
- Jain, C.K.; Singh, S. Best Management Practices for Agricultural Nonpoint Source Pollution: Policy Interventions and Way Forward. World Water Policy 2019, 5, 207–228. [Google Scholar] [CrossRef]
- Yu, G.; Wang, J.; Liu, L.; Li, Y.; Zhang, Y.; Wang, S. The Analysis of Groundwater Nitrate Pollution and Health Risk Assessment in Rural Areas of Yantai, China. BMC Public Health 2020, 20, 437. [Google Scholar] [CrossRef]
- Aravinthasamy, P.; Karunanidhi, D.; Jayasena, H.C.; Subramani, T. Assessment of Groundwater Fluoride and Human Health Effects in a Hard Rock Province of South India: Implications from Pollution Index Model (PIM) and Geographical Information System (GIS) Techniques. Environ. Geochem. Health 2024, 46, 326. [Google Scholar] [CrossRef]
- Şehnaz, Ş.; Şener, E.; Davraz, A.; Varol, S. Hydrogeological and Hydrochemical Investigation in the Burdur Saline Lake Basin, Southwest Turkey. Chem. der Erde 2020, 80, 125592. [Google Scholar] [CrossRef]
- Rani, A.; Parashar, K.; Meena, R.; Sharma, S.K.; Tiwari, K.K.; Ajaykumar, V.; Mondal, N.C. Hydrochemical Characteristics and Potential Health Risks of Nitrate, Fluoride, and Uranium in Kota District, Rajasthan, India. Environ. Sci. Pollut. Res. 2023, 30, 82485–82505. [Google Scholar] [CrossRef]
- Liu, J.; Gao, Z.; Feng, J.; Wang, M. Identification of the Hydrochemical Features, Genesis, Water Quality and Potential Health Hazards of Groundwater in Dawen River Basin, North China. Ecol. Indic. 2023, 149, 110175. [Google Scholar] [CrossRef]
- Fuentes-Rivas, R.M.; Santacruz-De Leon, G.; Ramos-Leal, J.A.; Alvarez-Bastida, C.; Moran-Ramirez, J. Hydrogeochemical Processes, and Health Risk Assessment of Groundwater, in Santa María Del Rio Aquifer: A Case Study of San Luis Potosí Valley, Mexico. Groundw. Sustain. Dev. 2024, 26, 101268. [Google Scholar] [CrossRef]
- Abadi, H.T.; Alemayehu, T.; Berhe, B.A. Hydrogeochemical Characterization of Groundwater in Mountainous Catchment and Its Suitability for Drinking Purposes in Irob, Tigray, Northern Ethiopia. Water Pract. Technol. 2024, 19, 1495–1512. [Google Scholar] [CrossRef]
- El Mountassir, O.; Bahir, M.; Ouazar, D.; Chehbouni, A.; Carreira, P.M. Temporal and Spatial Assessment of Groundwater Contamination with Nitrate Using Nitrate Pollution Index (NPI), Groundwater Pollution Index (GPI), and GIS (Case Study: Essaouira Basin, Morocco). Environ. Sci. Pollut. Res. 2022, 29, 17132–17149. [Google Scholar] [CrossRef]
- Salazar-Rojas, T.; Cejudo-Ruiz, F.R.; Gutiérrez-Soto, M.V.; Calvo-Brenes, G. Assessing Heavy Metal Pollution Load Index (PLI) in Biomonitors and Road Dust from Vehicular Emission by Magnetic Properties Modeling. Environ. Sci. Pollut. Res. 2023, 30, 91248–91261. [Google Scholar] [CrossRef]
- Panneerselvam, B.; Karuppannan, S.; Muniraj, K. Evaluation of Drinking and Irrigation Suitability of Groundwater with Special Emphasizing the Health Risk Posed by Nitrate Contamination Using Nitrate Pollution Index (NPI) and Human Health Risk Assessment (HHRA). Hum. Ecol. Risk Assess. Int. J. 2020, 27, 1324–1348. [Google Scholar] [CrossRef]
- Golaki, M.; Gharehchahi, E.; Mahmoudi, N.; Rashidi, M.; Azhdarpoor, A. Assessing Water Quality of Kazerun County in Southwest Iran: Multi-Analytical Techniques, Deterministic vs. Probabilistic Water Quality Index, Geospatial Analysis, Fuzzy C-Means Clustering, and Machine Learning. Groundw. Sustain. Dev. 2024, 27, 101336. [Google Scholar] [CrossRef]
- Wheeler, S.; Henry, T.; Murray, J.; McDermott, F.; Morrison, L. Utilising CoDA Methods for the Spatio—Temporal Geochemical Characterisation of Groundwater; a Case Study from Lisheen Mine, South Central Ireland. Appl. Geochem. 2021, 127, 104912. [Google Scholar] [CrossRef]
- Belhouchette, H.; Boughariou, E.; Larayedh, O.; Bouri, S. Groundwater Quality Evaluation and Human Health Risks Assessment Using the WQI, NPI and HQnitrate Models: Case of the Sfax Intermediate Aquifer, Sahel Tunisia. Environ. Geochem. Health 2022, 44, 2629–2647. [Google Scholar] [CrossRef]
- Malik, A.; Yasar, A.; Tabinda, A.B.; Iftikhar, M.H.; Mukhtar, S. Health Risk Assessment of Nitrates and Fluorides Ingestion and Geochemical Evaluation of Groundwater Characteristics in Semi-Arid Regions. Int. J. Environ. Sci. Technol. 2024, 21, 8459–8486. [Google Scholar] [CrossRef]
- Zahra, A.; Ali, M.; Ali, N.; Khan, A.; Zairov, R.; Sinyashin, O.; Wang, Y.; Zafar, S.; Khan, F.-A. A Comprehensive Analysis of the Impact of Arsenic, Fluoride, and Nitrate—Nitrite Dynamics on Groundwater Quality and Its Health Implications. J. Hazard. Mater. 2025, 487, 137093. [Google Scholar]
- Ahmad, M.; Jamal, A.; Tang, X.W.; Al-Sughaiyer, M.A.; Al-Ahmadi, H.M.; Ahmad, F. Assessing Potable Water Quality and Identifying Areas of Waterborne Diarrheal and Fluorosis Health Risks Using Spatial Interpolation in Peshawar, Pakistan. Water 2020, 12, 2163. [Google Scholar] [CrossRef]
- Memon, A.G.; Mustafa, A.; Raheem, A.; Ahmad, J.; Giwa, A.S. Impact of Effluent Discharge on Recreational Beach Water Quality: A Case Study of Karachi-Pakistan. J. Coast. Conserv. 2021, 25, 37. [Google Scholar] [CrossRef]
- Fatima, S.U.; Khan, M.A.; Siddiqui, F.; Mahmood, N.; Salman, N.; Alamgir, A.; Shaukat, S.S. Geospatial Assessment of Water Quality Using Principal Components Analysis (PCA) and Water Quality Index (WQI) in Basho Valley, Gilgit Baltistan (Northern Areas of Pakistan). Environ. Monit. Assess. 2022, 194, 151. [Google Scholar] [CrossRef]
- Begum, S.; Shah, M.T.; Muhammad, S.; Khan, S. Role of Mafic and Ultramafic Rocks in Drinking Water Quality and Its Potential Health Risk Assessment, Northern Pakistan. J. Water Health 2015, 13, 1130–1142. [Google Scholar] [CrossRef] [PubMed]
- Barinova, S.; Ali, N.; Barkatullah, S.F.M. Ecological Adaptation to Altitude of Algal Communities in the Swat Valley (Hindu Cush Mountains, Pakistan). Expert. Opin. Environ. Biol. 2013, 2, 2. [Google Scholar]
- Bacha, M.S.; Muhammad, M.; Kılıç, Z.; Nafees, M. The Dynamics of Public Perceptions and Climate Change in Swat Valley, Khyber Pakhtunkhwa, Pakistan. Sustainability 2021, 13, 4464. [Google Scholar] [CrossRef]
- Kazmi, A.H.; Jan, M.Q. Geology and Tectonics of Pakistan; Graphic Publishers: Karachi, Pakistan, 1997; ISBN 9698375007. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2017; Volume 23. [Google Scholar]
- Bishayee, B.; Chatterjee, R.P.; Ruj, B.; Chakrabortty, S.; Nayak, J. Strategic Management of Nitrate Pollution from Contaminated Water Using Viable Adsorbents: An Economic Assessment-Based Review with Possible Policy Suggestions. J. Environ. Manag. 2022, 303, 114081. [Google Scholar] [CrossRef]
- Wagh, V.; Mukate, S.; Muley, A.; Kadam, A.; Panaskar, D.; Varade, A. Study of Groundwater Contamination and Drinking Suitability in Basaltic Terrain of Maharashtra, India through Pig and Multivariate Statistical Techniques. J. Water Supply Res. Technol. AQUA 2020, 69, 398–414. [Google Scholar] [CrossRef]
- Rao, S.N. PIG: A Numerical Index for Dissemination of Groundwater Contamination Zones. Hydrol. Process. 2012, 26, 3344–3350. [Google Scholar] [CrossRef]
- Sreedevi, P.D.; Sreekanth, P.D.; Reddy, D.V. Recharge Environment and Hydrogeochemical Processes of Groundwater in a Crystalline Aquifer in South India. Int. J. Environ. Sci. Technol. 2022, 19, 4839–4856. [Google Scholar] [CrossRef]
- Fentahun, A.; Mechal, A.; Karuppannan, S.; Fentahun, A.; Mechal, A.; Karuppannan, S. Hydrochemistry and Quality Appraisal of Groundwater in Birr River Catchment, Central Blue Nile River Basin, Using Multivariate Techniques and Water Quality Indices. Environ. Monit. Assess. 2023, 195, 655. [Google Scholar] [CrossRef]
- Pakistan Health Research Council. Non-Communicable Diseases Risk Factors Survey—Pakistan; Pakistan Health Research Council: Islamabad, Pakistan, 2016; pp. 1–48. [Google Scholar]
- Thabrez, M.; Parimalarenganayaki, S. Hydrogeochemical Characterization and Non-Carcinogenic Health Risk Assessment of Fluoride and Nitrate-Affected Groundwater in Northern Parts of Tumkur District, Karnataka, India. Hum. Ecol. Risk Assess. Int. J. 2024, 30, 239–268. [Google Scholar] [CrossRef]
- Yang, J.; Liu, H.; Tang, Z.; Peeters, L.; Ye, M. Visualization of Aqueous Geochemical Data Using Python and WQChartPy. Groundwater 2022, 60, 555–564. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality: First Addendum to the Fourth Edition; World Health Organization: Geneva, Switzerland, 2017; Volume 109, ISBN 9789241550017. [Google Scholar]
- Piper, A.M. A Graphic Procedure in the Geochemical Interpretation of Water-analyses. Eos Trans. Am. Geophys. Union 1944, 25, 914–928. [Google Scholar] [CrossRef]
- Van Wirdum, G. (Ed.) Vegetation and Hydrology of Floating Rich-Fens; Datawyse: Maastricht, The Netherlands, 1991; ISBN 9052910456. [Google Scholar]
- Amiri, V.; Bhattacharya, P.; Nakhaei, M. The Hydrogeochemical Evaluation of Groundwater Resources and Their Suitability for Agricultural and Industrial Uses in an Arid Area of Iran. Groundw. Sustain. Dev. 2021, 12, 100527. [Google Scholar] [CrossRef]
- Charrad, M.; Ghazzali, N.; Boiteau, V.; Niknafs, A. NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set. J. Stat. Softw. 2014, 61, 1–36. [Google Scholar] [CrossRef]
- Din, I.U.; Ali, W.; Muhammad, S.; Shaik, M.R.; Shaik, B.; Rehman, I.U.; Tokatli, C. Spatial Distribution and Potential Health Risk Assessment for Fluoride and Nitrate via Water Consumption in Pakistan. J. Geochem. Explor. 2024, 259, 107413. [Google Scholar] [CrossRef]
- Zhou, L.; Liang, W.; Meng, Y.; Zhao, X.; Guo, F.; Liu, L.; Li, W.; Teng, M.; Song, F.; Cao, Z. Overlooked Fluorine Deficiency in Children of South and East China May Be Exacerbated by Climate Change: Evidence from the National Assessment. J. Clean. Prod. 2024, 434, 140128. [Google Scholar]
- Valiallahi, J.; Yazdani, M. Evaluating Groundwater Quality by Examining Electrical Conductivity, Total Dissolved Solids, Total Hardness, and Turbidity Using Geographic Information Systems (GIS®): A Case Study of Selected Wells in the Taleghan Region, Iran. Appl. Water Sci. 2025, 15, 61. [Google Scholar]
- Toure, A.; Wenbiao, D. Physicochemical and Microorganism Analysis of Some Hand Pump Water in Pelengana, Segou, Mali. Appl. Water Sci. 2020, 10, 150. [Google Scholar] [CrossRef]
- Ravindra, K.; Thind, P.S.; Mor, S.; Singh, T.; Mor, S. Evaluation of Groundwater Contamination in Chandigarh: Source Identification and Health Risk Assessment. Environ. Pollut. 2019, 255, 113062. [Google Scholar] [CrossRef]
- Equeenuddin, S.M.; Pattnaik, B.K. Hydrogeochemical Evolution of Hexavalent Chromium at the Sukinda Ultramafic Complex in Eastern Part of India. Geochemistry 2020, 80, 125633. [Google Scholar] [CrossRef]
- Roy Chowdhury, N.; Majumder, S.; Ghosh, S.; Satheesh Babu, S.; Vidyadharan, V.; Samanta, J.; Bhowmick, S.; Kumar, S.; Roychowdhury, T. A Vivid Picture of the Distribution, Impact, and Consequences of Fluoride in Indian Perspective. In Ground Water Contamination in India: Adverse Effects on Habitats; Springer International Publishing: Cham, Switzerland, 2024; pp. 83–103. [Google Scholar]
- Zeng, J.; Han, G.; Hu, M.; Wang, Y.; Liu, J.; Zhang, S.; Wang, D. Geochemistry of Dissolved Heavy Metals in Upper Reaches of the Three Gorges Reservoir of Yangtze River Watershed during the Flood Season. Water 2021, 13, 2078. [Google Scholar] [CrossRef]
- Wali, S.U.; Alias, N.B.; Usman, A.A.; Umar, A.; Muhammad, N.; Kaoje, I.U.; Samaila, B.; Aliyu, B.; Ladan, H.M.; Atiku, M.; et al. Geostatistical and Multivariate Analysis of Phosphate Evolution and Its Relationship with Heavy Metals in Shallow Groundwater in a Semi-Arid Basin. Earth Sci. Inf. 2025, 18, 267. [Google Scholar] [CrossRef]
- Alam, A.; Singh, A. Groundwater Quality Assessment Using SPSS Based on Multivariate Statistics and Water Quality Index of Gaya, Bihar (India). Environ. Monit. Assess. 2023, 195, 687. [Google Scholar] [CrossRef]
- Zango, M.S.; Sunkari, E.D.; Abu, M.; Lermi, A. Hydrogeochemical Controls and Human Health Risk Assessment of Groundwater Fluoride and Boron in the Semi-Arid North East Region of Ghana. J. Geochem. Explor. 2019, 207, 106363. [Google Scholar] [CrossRef]
- Zainol, N.F.M.; Zainuddin, A.H.; Looi, L.J.; Aris, A.Z.; Isa, N.M.; Sefie, A.; Ku Yusof, K.M.K. Spatial Analysis of Groundwater Hydrochemistry through Integrated Multivariate Analysis: A Case Study in the Urbanized Langat Basin, Malaysia. Int. J. Environ. Res. Public Health 2021, 18, 5733. [Google Scholar] [CrossRef]
- Ebrahimi, P.; Guarino, A.; Allocca, V.; Caliro, S.; Avino, R.; Bagnato, E.; Capecchiacci, F.; Carandente, A.; Minopoli, C.; Santi, A.; et al. Hierarchical Clustering and Compositional Data Analysis for Interpreting Groundwater Hydrogeochemistry: The Application to Campi Flegrei Volcanic Aquifer (South Italy). J. Geochem. Explor. 2022, 233, 106922. [Google Scholar] [CrossRef]
- Ali, W.; Muhammad, S. Spatial Distribution of Contaminants and Water Quality Assessment Using an Indexical Approach, Astore River Basin, Western Himalayas, Northern Pakistan. Geocarto Int. 2022, 37, 14005–14026. [Google Scholar] [CrossRef]
Variable | Mean | SD. | Min | Pctl. 25 | Pctl. 75 | Max |
---|---|---|---|---|---|---|
TDS | 449.4 | 161.2 | 123.7 | 368.5 | 477.5 | 1070 |
EC | 894.2 | 308.3 | 250 | 752.5 | 972 | 2146 |
pH | 7.5 | 0.4 | 6.8 | 7.3 | 7.8 | 8.3 |
T | 17.9 | 2.6 | 2.5 | 17.3 | 19 | 21.1 |
Tur | 1.4 | 1.1 | 0.2 | 1 | 1.4 | 6 |
F− | 0.8 | 0.6 | 0.1 | 0.3 | 1 | 3.2 |
TH | 299 | 137.3 | 84 | 204 | 345 | 805 |
Ca2+ | 103.7 | 51.6 | 20 | 64.2 | 132 | 212 |
Mg2+ | 198.2 | 106.1 | 48.8 | 135 | 226 | 652 |
Cl− | 68.2 | 37.7 | 23 | 42 | 87 | 178 |
TA | 235.4 | 78.8 | 115 | 159 | 295.5 | 378 |
NO3− | 4.8 | 2.9 | 0.9 | 2.6 | 6.3 | 13 |
SO42− | 48 | 15 | 15 | 36 | 58.5 | 82 |
K+ | 2.5 | 3.4 | 1 | 1 | 3 | 23 |
Na+ | 26.8 | 22.2 | 3 | 11 | 40 | 89 |
Adult | Children | ||||
---|---|---|---|---|---|
Nitrate | Fluoride | Nitrate | Fluoride | ||
CDI (Oral) | Mean | 1.46 × 10−1 | 2.40 × 10−2 | 5.13 × 10−1 | 7.98 × 10−2 |
Min | 2.64 × 10−2 | 3.64 × 10−³ | 9.26 × 10−2 | 1.28 × 10−2 | |
Max | 1.38 × 10−1 | 9.70 × 10−2 | 1.38 × 100 | 3.40 × 10−1 | |
HQ (Oral) | Mean | 9.14 × 10−2 | 3.82 × 10−1 | 3.21 × 10−1 | 1.34 × 100 |
Min | 1.65 × 10−2 | 6.06 × 10−2 | 5.78 × 10−2 | 2.13 × 10−1 | |
Max | 2.46 × 10−1 | 1.62 × 100 | 8.64 × 10−1 | 5.67 × 100 |
Variable | RC1 | RC2 | RC3 |
---|---|---|---|
TDS | 0.9 | 0.15 | 0.1 |
EC | 0.88 | 0.2 | 0.12 |
pH | 0.05 | 0.08 | 0.4 |
T | −0.2 | −0.1 | 0.75 |
Tur | −0.05 | 0.3 | −0.7 |
F− | 0.7 | 0.2 | −0.25 |
TH | 0.01 | 0.95 | 0.1 |
Ca2+ | −0.1 | 0.75 | −0.05 |
Mg2+ | 0.08 | 0.88 | 0.1 |
Cl− | 0.25 | 0.6 | −0.1 |
TA | 0.25 | 0.45 | −0.05 |
−0.35 | 0.2 | -0.1 | |
−0.1 | 0.2 | 0.55 | |
K+ | 0.68 | 0.1 | −0.05 |
Na+ | 0.75 | −0.1 | −0.25 |
Eigenvalue | 3.5 | 2.7 | 1.9 |
Variance (%) | 30 | 25 | 20 |
Cumulative Variance (%) | 30 | 55 | 75 |
Clusters | I | II | III | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | N | Mean | SD | N | Mean | SD | N | Mean | SD | Test |
TDS | 21 | 437.51 | 175.06 | 18 | 448.72 | 135.51 | 12 | 471.16 | 182.27 | F = 0.161 |
EC | 21 | 874.38 | 351.11 | 18 | 888.66 | 226.97 | 12 | 937.08 | 354.03 | F = 0.157 |
pH | 21 | 7.56 | 0.39 | 18 | 7.41 | 0.36 | 12 | 7.62 | 0.301 | F = 1.413 |
T | 21 | 17.46 | 3.76 | 18 | 18.26 | 1.1 | 12 | 18.24 | 1.53 | F = 0.562 |
Tur | 21 | 1.59 | 1.34 | 18 | 1.36 | 1.03 | 12 | 1.3 | 0.66 | F = 0.333 |
F− | 21 | 0.789 | 0.65 | 18 | 0.72 | 0.57 | 12 | 0.74 | 0.45 | F = 0.057 |
TH | 21 | 312.286 | 107.65 | 18 | 210.22 | 62.25 | 12 | 408.83 | 179.42 | F = 10.69 *** |
Ca2+ | 21 | 5.773 | 2.61 | 18 | 3.57 | 1.82 | 12 | 6.52 | 2.23 | F = 7.055 *** |
Mg2+ | 21 | 16.614 | 5.35 | 18 | 11.54 | 4.22 | 12 | 22.88 | 13.49 | F = 7.742 *** |
Cl− | 21 | 2.22 | 1.15 | 18 | 1.43 | 0.579 | 12 | 2.13 | 1.25 | F = 3.229 ** |
21 | 3.665 | 1.31 | 18 | 3.49 | 1.229 | 12 | 4.73 | 0.994 | F = 4.158 ** | |
21 | 0.196 | 0.122 | 18 | 0.21 | 0.128 | 12 | 0.221 | 0.131 | F = 0.217 | |
21 | 0.946 | 0.27 | 18 | 1.02 | 0.291 | 12 | 1.05 | 0.406 | F = 0.554 | |
K+ | 21 | 0.078 | 0.12 | 18 | 0.054 | 0.031 | 12 | 0.06 | 0.047 | F = 0.396 |
Na+ | 21 | 1.071 | 1.02 | 18 | 1.21 | 0.995 | 12 | 1.25 | 0.884 | F = 0.166 |
PIG | 21 | 0.75 | 0.18 | 18 | 0.6 | 0.13 | 12 | 0.9 | 0.331 | F = 6.986 *** |
NPI | 21 | −0.549 | 0.28 | 18 | −0.49 | 0.294 | 12 | −0.493 | 0.301 | F = 0.217 |
FPI | 21 | 2.04 | 0.31 | 18 | 1.97 | 0.35 | 12 | 2.3 | 0.24 | F = 0.218 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, K.; Nafees, M.; Ali, W.; Muhammad, S.; Raziq, A. Geogenic Contamination of Groundwater in a Highland Watershed: Hydrogeochemical Assessment, Source Apportionment, and Health Risk Evaluation of Fluoride and Nitrate. Hydrology 2025, 12, 70. https://doi.org/10.3390/hydrology12040070
Alam K, Nafees M, Ali W, Muhammad S, Raziq A. Geogenic Contamination of Groundwater in a Highland Watershed: Hydrogeochemical Assessment, Source Apportionment, and Health Risk Evaluation of Fluoride and Nitrate. Hydrology. 2025; 12(4):70. https://doi.org/10.3390/hydrology12040070
Chicago/Turabian StyleAlam, Kashif, Muhammad Nafees, Wajid Ali, Said Muhammad, and Abdur Raziq. 2025. "Geogenic Contamination of Groundwater in a Highland Watershed: Hydrogeochemical Assessment, Source Apportionment, and Health Risk Evaluation of Fluoride and Nitrate" Hydrology 12, no. 4: 70. https://doi.org/10.3390/hydrology12040070
APA StyleAlam, K., Nafees, M., Ali, W., Muhammad, S., & Raziq, A. (2025). Geogenic Contamination of Groundwater in a Highland Watershed: Hydrogeochemical Assessment, Source Apportionment, and Health Risk Evaluation of Fluoride and Nitrate. Hydrology, 12(4), 70. https://doi.org/10.3390/hydrology12040070