Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,818)

Search Parameters:
Keywords = CYP3A4/5

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3069 KB  
Article
Cyclophilin Inhibitor Rencofilstat Combined with Proteasome Inhibitor Ixazomib Increases Proteotoxic Cell Death in Advanced Prostate Cancer Cells with Minimal Effects on Non-Cancer Cells
by Carlos Perez-Stable, Alicia de las Pozas, Medhi Wangpaichitr, Robert T. Foster and Daren R. Ure
Biomedicines 2025, 13(10), 2442; https://doi.org/10.3390/biomedicines13102442 (registering DOI) - 7 Oct 2025
Abstract
Background/Objective: Proteotoxic stress induced by inhibitors of the ubiquitin–proteasome system has been successful in multiple myeloma but not in solid cancers such as prostate cancer. Our objective is to find a combination with proteasome inhibitors that increases apoptotic cell death in all types [...] Read more.
Background/Objective: Proteotoxic stress induced by inhibitors of the ubiquitin–proteasome system has been successful in multiple myeloma but not in solid cancers such as prostate cancer. Our objective is to find a combination with proteasome inhibitors that increases apoptotic cell death in all types of prostate cancer without harming non-cancer cells. Methods: The effectiveness of rencofilstat, a pan-cyclophilin inhibitor, combined with the ixazomib proteasome inhibitor, was investigated in multiple prostate cancer and non-cancer cells. Inducible knockdown of stress response XBP1s and cyclophilins A/B and inducible expression of XBP1s and cyclophilin B were developed in prostate cancer to determine functional roles. Results: Rencofilstat + ixazomib increased apoptotic cell death in prostate cancer but not in non-cancer cells. We investigated the effects on XBP1s and PERK, important unfolded protein response factors required for cells to survive proteotoxic stress. The results revealed that XBP1s had a pro-survival role early, but maintenance at later times of rencofilstat + ixazomib treatment resulted in cell death. In addition, decreased PERK and phospho-eIF2α likely maintained protein synthesis to further enhance proteotoxic stress. In contrast, rencofilstat + ixazomib did not alter XBP1s or PERK in non-cancer cells. Additional genetic experiments showed that the RCF targets cyclophilins A, B, and D had protective effects. Rencofilstat increased extracellular secretion of cyclophilin B, but rencofilstat + ixazomib reduced glycosylation and, likely, the biological function of CD147 (CypB receptor) and decreased downstream ERK signaling. Conclusions: Rencofilstat + ixazomib may be a new strategy for increasing proteotoxic stress and apoptotic cell death in advanced prostate cancer cells with less toxic side effects. Full article
Show Figures

Figure 1

31 pages, 10340 KB  
Article
Silencing the cyp314a1 and cyp315a1 Genes in the Aedes albopictus 20E Synthetic Pathway for Mosquito Control and Assessing Algal Blooms Induced by Recombinant RNAi Microalgae
by Xiaodong Deng, Changhao He, Chunmei Xue, Dianlong Xu, Juncai Li and Xiaowen Fei
Insects 2025, 16(10), 1033; https://doi.org/10.3390/insects16101033 - 7 Oct 2025
Abstract
As one of the key vectors for the transmission of Dengue fever, Aedes albopictus is highly ecologically adaptable. The development of environmentally compatible biological defence and control technologies has therefore become an urgent need for vector biological control worldwide. This study constructed and [...] Read more.
As one of the key vectors for the transmission of Dengue fever, Aedes albopictus is highly ecologically adaptable. The development of environmentally compatible biological defence and control technologies has therefore become an urgent need for vector biological control worldwide. This study constructed and used double-stranded RNA (dsRNA) expression vectors targeting the cyp314a1 and cyp315a1 genes of Ae. albopictus to transform Chlamydomonas reinhardtii and Chlorella vulgaris, achieving RNA interference (RNAi)-mediated gene silencing. The efficacy of the RNAi recombinant algal strain biocide against Ae. albopictus was evaluated by administering it to Ae. albopictus larvae. The results showed that the oral administration of the cyp314a1 and cyp315a1 RNAi recombinant C. reinhardtii/C. vulgaris strains was lethal to Ae. albopictus larvae and severely affected their pupation and emergence. The recombinant algal strains triggered a burst of ROS (Reactive Oxygen Species) in the mosquitoes’ bodies, resulting in significant increases in the activities of the superoxide dismutase (SOD), peroxiredoxin (POD) and catalase (CAT), as well as significant upregulation of the mRNA levels of the CME pathway genes in larvae. In the simulated field experiment, the number of Ae. albopictus was reduced from 1000 to 0 in 16 weeks by the RNAi recombinant Chlorella, which effectively controlled the population of mosquitoes. Meanwhile, the levels of nitrogen (N), phosphorus (P), nitrate, nitrite, ammonia and COD (Chemical Oxygen Demand) in the test water decreased significantly. High-throughput sequencing analyses of 18S rDNA and 16S rDNA showed that, with the release of RNAi recombinant Chlorella into the test water, the biotic community restructuring dominated by resource competition caused by algal bloom, as well as the proliferation of anaerobic bacteria and the decline of aerobic bacteria triggered by anaerobic conditions, are the main trends in the changes in the test water. This study is an important addition to the use of RNAi recombinant microalgae as a biocide. Full article
(This article belongs to the Special Issue RNAi in Insect Physiology)
Show Figures

Figure 1

23 pages, 4803 KB  
Article
Characterization of Steroid Metabolic Pathways in Established Human and Mouse Cell Models
by Therina du Toit, Michael Groessl, Emanuele Pignatti, Amanda C. Swart and Christa E. Flück
Int. J. Mol. Sci. 2025, 26(19), 9721; https://doi.org/10.3390/ijms26199721 - 6 Oct 2025
Abstract
Immortalized adrenal, placental and gonadal cell models are often termed steroidogenic based on steroid hormone production and steroidogenic enzymes. Profiling of ‘classic’ steroid metabolites is common; however, downstream untargeted metabolites remain unidentified. This study characterized steroidogenesis in human adrenal H295R and H295A; placental [...] Read more.
Immortalized adrenal, placental and gonadal cell models are often termed steroidogenic based on steroid hormone production and steroidogenic enzymes. Profiling of ‘classic’ steroid metabolites is common; however, downstream untargeted metabolites remain unidentified. This study characterized steroidogenesis in human adrenal H295R and H295A; placental BeWo and JEG-3; mouse Leydig MA-10; and mouse adrenal Y-1 and OS-3 cells. Steroids were determined under basal, stimulated and serum-free conditions using liquid chromatography–mass spectrometry. This study identified distinct differences in mineralocorticoid and glucocorticoid production in the two human adrenal models and between the human and mouse adrenal models; unconventional hydroxylated progesterone steroid metabolites in all models which were most abundant in MA-10 cells; glucocorticoids and abundant classical androgens in MA-10 cells; 11-oxy androgens in H295R, H295A and MA-10 cells; comparable levels of the classical androgens in H295R and MA-10 cells, while 11-oxy androgen were more abundant in H295R and H295A cells; and high pregnenolone and progesterone in placental models with limited hydroxylated progesterone metabolites. Our detailed protocols and comprehensive steroid profiles provide an invaluable guide to researchers for in vitro investigations into steroidogenesis. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Graphical abstract

22 pages, 4768 KB  
Article
Interactions of Linalool and Linalyl Acetate with Selected Dog Cytochrome P450 (CYP) Proteins Identified by In Silico Drug Discovery Followed by Molecular Docking Analysis
by Raquel Rodrigues Soares-Santos, Arun Kumar Jaiswal, Renata Cristina Mendes Ferreira, Vasco Ariston de Carvalho Azevedo, Flávia Figueira Aburjaile and Benito Soto-Blanco
Pharmaceuticals 2025, 18(10), 1499; https://doi.org/10.3390/ph18101499 - 6 Oct 2025
Abstract
Background: Cytochrome P450 (CYP450) enzymes play a central role in the metabolism of xenobiotics, including plant-derived compounds such as terpenoids. Objectives: This study aimed to predict the molecular interactions of linalool (LIN) and linalyl acetate (LINAct), major constituents of lavender essential oil, [...] Read more.
Background: Cytochrome P450 (CYP450) enzymes play a central role in the metabolism of xenobiotics, including plant-derived compounds such as terpenoids. Objectives: This study aimed to predict the molecular interactions of linalool (LIN) and linalyl acetate (LINAct), major constituents of lavender essential oil, with the canine CYP2B11, CYP2C21, and CYP2D15 isoforms, using in silico approaches. Methods: Three-dimensional (3D) models of the target enzymes were generated through homology modeling using SWISS-MODEL and validated based on global model quality estimate (GMQE) and QMEAN Z-score metrics. Ligand structures were optimized in the Molecular Operating Environment (MOE), and pharmacophoric features were analyzed. Molecular docking simulations were performed using AutoDock Vina, followed by visualization of interactions in MOE. Results: LIN and LINAct exhibit favorable binding affinities with all three isoforms, suggesting their potential as substrates or modulators. Hydrogen bonding and hydrophobic interactions were the predominant forces stabilizing the ligand–enzyme complexes. Conclusions: These findings provide a computational basis for understanding the hepatic metabolism of LIN and LINAct in dogs, offering preliminary insights into the role of specific CYP isoforms in their biotransformation. Full article
Show Figures

Figure 1

13 pages, 1102 KB  
Article
Children with Genetically Confirmed Hereditary Spastic Paraplegia: A Single-Center Experience
by Seyda Besen, Yasemin Özkale, Murat Özkale, Sevcan Tuğ Bozdoğan, Özlem Alkan, Serdar Ceylaner and İlknur Erol
Children 2025, 12(10), 1332; https://doi.org/10.3390/children12101332 - 4 Oct 2025
Abstract
Objective: The classification of hereditary spastic paraplegia (HSP) is based on genetics, and the number of genetic loci continues to increase with new genetic descriptions. Additionally, the number of new variants in known mutations continues to increase. In this paper, we aim to [...] Read more.
Objective: The classification of hereditary spastic paraplegia (HSP) is based on genetics, and the number of genetic loci continues to increase with new genetic descriptions. Additionally, the number of new variants in known mutations continues to increase. In this paper, we aim to report our experience with genetically confirmed HSPs. Methods: We retrospectively evaluated 10 consecutive children with genetically confirmed HSPs. Results: In this study, we identified six novel mutations, including spastic paraplegia 11 (SPG11), glucosylceramidase beta 2 (GBA2), chromosome 19 open reading frame 12 (C19orf12), 1 in each of the Cytochrome P450 family 7 subfamily B member 1 (CYP7B1) genes, and two different mutations in the intropomyosin-receptor kinase fused gene (TFG) gene. We also identified different clinical phenotypes associated with known mutations. Conclusions: Heterozygous mutations with GBA2 and SPG11 mutation-related HSP are reported for the first time, expanding the known inheritance patterns. We report a novel homozygous chromosome 19 open reading frame 12 (C19orf12) mutation resulting in iron accumulation in the brain, broadening the genetic variants and clinical findings. We determine the first Turkish patients with carnitine palmitoyltransferase IC (CPT1C) and TFG gene mutation-related pure HSP. A pure form of HSP with two novel TFG gene mutations is also identified for the first time. We report the first Turkish patient with kinase D-interacting substrate of 220 kDa (KIDINS220) gene, broadening the clinical spectrum of KIDINS220 variant-related disorders to encompass certain HSPs. Moreover, a novel variant in the oxysterol7-hydroxylase (CYP7B1) gene is reported, expanding the genetic variants and clinical findings relating to SPG5. Full article
(This article belongs to the Section Pediatric Neurology & Neurodevelopmental Disorders)
Show Figures

Figure 1

12 pages, 2020 KB  
Article
Molecular-Genetic Research of Rhodococcus rhodochrous IEGM 1362, an Active (–)-Isopulegol Biotransformer
by Polina Y. Maltseva, Natalia A. Plotnitskaya and Irina B. Ivshina
Molecules 2025, 30(19), 3976; https://doi.org/10.3390/molecules30193976 - 3 Oct 2025
Abstract
The present study aimed to identify genes encoding enzymes involved in the biotransformation of monoterpenoid (–)-isopulegol by Rhodococcus rhodochrous IEGM 1362. This strain is able to transform (–)-isopulegol with formation of two novel metabolites with promising antitumor and analeptic activities. Cell fractions of [...] Read more.
The present study aimed to identify genes encoding enzymes involved in the biotransformation of monoterpenoid (–)-isopulegol by Rhodococcus rhodochrous IEGM 1362. This strain is able to transform (–)-isopulegol with formation of two novel metabolites with promising antitumor and analeptic activities. Cell fractions of rhodococci and specific inhibitor of cytochrome P450-dependent oxygenase activity were used to establish the localization and type of biotransformation enzymes. The expression of nine CYP450 genes selected by bioinformatics analysis was analyzed by quantitative real-time PCR (qRT-PCR). Selection of optimal reference genes for normalization of qRT-PCR results was performed using BestKeeper, Normfinder, geNorm, Delta CT, and RefFinder algorithms. As a result of these studies, the role of CYP450 enzyme complexes in the biotransformation of (–)-isopulegol was confirmed, and their cytoplasmic localization was established. The genes encoding DNA gyrase subunit B (gyrB) and protein translocase subunit A (secA) were selected as the most stable reference genes. The induced expression of the gene encoding CYP450 hydroxylase in the presence of (–)-isopulegol was determined. The obtained data allow us to identify the specific CYP450 enzyme involved in (–)-isopulegol biotransformation by R. rhodochrous IEGM 1362 and lay the foundation for further studies of molecular and genetic mechanisms of monoterpenoid biotransformation. Full article
Show Figures

Figure 1

20 pages, 3065 KB  
Article
CES1 Increases Hepatic Triacylglycerol Synthesis Through Activation of PPARγ, LXR and SREBP1c
by Rajakumar Selvaraj, Jihong Lian, Russell Watts, Randal Nelson, Michael F. Saikali, Carolyn L. Cummins and Richard Lehner
Cells 2025, 14(19), 1548; https://doi.org/10.3390/cells14191548 - 3 Oct 2025
Abstract
Increased hepatic triacylglycerol (TG) storage in lipid droplets (LDs) is a hallmark of metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH). Human carboxylesterase 1 (CES1) regulates TG storage and secretion in hepatocytes, but the mechanism remains to be elucidated. We [...] Read more.
Increased hepatic triacylglycerol (TG) storage in lipid droplets (LDs) is a hallmark of metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH). Human carboxylesterase 1 (CES1) regulates TG storage and secretion in hepatocytes, but the mechanism remains to be elucidated. We performed studies in rat hepatoma McArdle RH7777 cells stably transfected with CES1 cDNA and in Ces1d-deficient mice using a variety of biochemical, pharmacological and cell biology approaches including the assessment of gene expression, confocal immunofluorescence microscopy, lipid synthesis measurements and quantitative mass spectrometry. CES1-expressing cells accrued more TG compared to cells lacking CES1 when incubated with oleic acid. CES1 increased the expression of Srebf1c, Nr1h3 and Nr1h2 encoding transcription factors (SREBP1c and LXRα and LXRβ, respectively) that regulate the expression of lipogenic genes. Additionally, CES1 increased the expression of Acsl1 encoding an enzyme catalyzing fatty acid activation and the expression of Dgat1 and Dgat2 encoding enzymes catalyzing TG synthesis. Treatment of CES1-expressing cells with PPARγ antagonist (GW9662), LXR antagonist (GSK2033) or CYP27A1 inhibitor Felodipine prevented CES1-mediated fatty acid esterification into TG. Ces1d-deficient mice fed high-fat diet (HFD) presented with decreased expression of Nr1h3, Nr1h2, Srebf1c and reduced hepatic TG content. Felodipine and GSK2033 treatment eliminated the differential effects on TG concentration between wild-type and Ces1d-deficient hepatocytes. The results suggest that CES1/Ces1d activates PPARγ, LXR and SREBP1c pathways, thereby increasing TG synthesis and LD storage by augmenting fatty acid esterification. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Liver Diseases)
Show Figures

Figure 1

15 pages, 12128 KB  
Article
Metabolomic and Transcriptomic Analyses of Soft-Body Coloration in Jinjiang Oyster (Crassostrea ariakensis)
by Zhuanzhuan Li, Shuqi Zhao, Jianing Yu, Biao Wu, Peizhen Ma, Xiujun Sun, Liqing Zhou and Zhihong Liu
Fishes 2025, 10(10), 499; https://doi.org/10.3390/fishes10100499 - 3 Oct 2025
Abstract
The coloration of shellfish significantly influences both environmental adaptability and economic value. In the Jinjiang oyster (Crassostrea ariakensis), soft-body color varies between individuals, with an orange-yellow phenotype distinct from the milky white coloration of the wild type. To elucidate the compositional [...] Read more.
The coloration of shellfish significantly influences both environmental adaptability and economic value. In the Jinjiang oyster (Crassostrea ariakensis), soft-body color varies between individuals, with an orange-yellow phenotype distinct from the milky white coloration of the wild type. To elucidate the compositional differences and molecular mechanisms underlying orange-yellow (designated as CaR) versus milky white (CaW) soft-body color in C. ariakensis, we conducted comparative ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS) non-targeted and transcriptomic analyses. A total of 280 differential accumulation metabolites (DAMs) and 691 differentially expressed genes (DEGs) were detected between the CaR and CaW groups. The metabolite set enrichment analysis (MSEA) revealed that DAMs were significantly enriched in pigment metabolism pathways, including tyrosine metabolism, porphyrin metabolism, and lipid metabolism. Furthermore, genes associated with melanin synthesis and carotenoids conversions or transports were upregulated in the CaR vs. CaW group. These genes included Cyp4z1, Cyp4f22, Cyp17a1, Cyp1a5, Cyp2d28a, Lrp4, Aldh, and Tyr-3, potentially driving the accumulation of pheomelanin and carotenoids. This study demonstrates the vital roles of melanin and carotenoid metabolism in Jinjiang oyster body color formation, providing key insights into the molecular mechanisms of color determination in shellfish. Full article
(This article belongs to the Special Issue Germplasm Resources and Genetic Breeding of Aquatic Animals)
Show Figures

Figure 1

16 pages, 1221 KB  
Article
Building Sub-Saharan African PBPK Populations Reveals Critical Data Gaps: A Case Study on Aflatoxin B1
by Orphélie Lootens, Marthe De Boevre, Sarah De Saeger, Jan Van Bocxlaer and An Vermeulen
Toxins 2025, 17(10), 493; https://doi.org/10.3390/toxins17100493 - 3 Oct 2025
Abstract
Physiologically based pharmacokinetic (PBPK) models allow to simulate the behaviour of compounds in diverse physiological populations. However, the categorization of individuals into distinct populations raises questions regarding the classification criteria. In previous research, simulations of the pharmacokinetics of the mycotoxin aflatoxin B1 (AFB1), [...] Read more.
Physiologically based pharmacokinetic (PBPK) models allow to simulate the behaviour of compounds in diverse physiological populations. However, the categorization of individuals into distinct populations raises questions regarding the classification criteria. In previous research, simulations of the pharmacokinetics of the mycotoxin aflatoxin B1 (AFB1), were performed in the black South African population, using PBPK modeling. This study investigates the prevalence of clinical CYP450 phenotypes (CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4/5) across Sub-Saharan Africa (SSA), to determine the feasibility of defining SSA as a single population. SSA was subdivided into Central, East, South and West Africa. The phenotype data were assigned to the different regions and a fifth SSA group was composed of all regions’ weighted means. Available data from literature only covered 7.30% of Central, 56.9% of East, 38.9% of South and 62.9% of West Africa, clearly indicating critical data gaps. A pairwise proportion test was performed between the regions on enzyme phenotype data. When achieving statistical significance (p < 0.05), a Cohen’s d-test was performed to determine the degree of the difference. Next, per region populations were built using SimCYP starting from the available SSA based SouthAfrican_Population FW_Custom population, supplemented with the phenotype data from literature. Simulations were performed using CYP probe substrates in all populations, and derived PK parameters (Cmax, Tmax, AUCss and CL) were plotted in bar charts. Significant differences between the African regions regarding CYP450 phenotype frequencies were shown for CYP2B6, CYP2C19 and CYP2D6. Limited regional data challenge the representation of SSA populations in these models. The scarce availability of in vivo data for SSA regions restricted the ability to fully validate the developed PBPK populations. However, observed literature data from specific SSA regions provided partial validation, indicating that SSA populations should ideally be modelled at a regional level rather than as a single entity. The findings, emerging from the initial AFB1-focused PBPK work, underscore the need for more extensive and region-specific data to enhance model accuracy and predictive value across SSA. Full article
(This article belongs to the Special Issue Mycotoxins in Food and Feeds: Human Health and Animal Nutrition)
26 pages, 2925 KB  
Article
Novel Dual 5-HT7 Antagonists and Sodium Channel Inhibitors as Potential Therapeutic Agents with Antidepressant and Anxiolytic Activities
by Anna Czopek, Paulina Koczurkiewicz-Adamczyk, Katarzyna Wójcik-Pszczoła, Daria Kornas, Wojciech Sitko, Adam Bucki, Michał Sapa, Krzysztof Kamiński, Grzegorz Satała, Beata Duszyńska, Andrzej J. Bojarski, Gniewomir Latacz, Jacek Czopek, Joanna Szpor, Pola Dryja and Kinga Sałat
Pharmaceuticals 2025, 18(10), 1485; https://doi.org/10.3390/ph18101485 - 2 Oct 2025
Abstract
Background/Objectives: The study aimed to pharmacologically evaluate dually acting ligands, 5-HT7 antagonists and sodium channel inhibitors, as potential therapeutic agents for the treatment of depression, anxiety, and neuropathic pain. The designed dual ligands combined structural fragments of LP-12 (a 5-HT7 receptor [...] Read more.
Background/Objectives: The study aimed to pharmacologically evaluate dually acting ligands, 5-HT7 antagonists and sodium channel inhibitors, as potential therapeutic agents for the treatment of depression, anxiety, and neuropathic pain. The designed dual ligands combined structural fragments of LP-12 (a 5-HT7 receptor ligand) and phenytoin (a sodium channel blocker). Methods: A series of 1-(2-biphenyl)piperazine derivatives with a hydantoin core was synthesized and evaluated for 5-HT7 receptor affinity and sodium channel inhibition. The most potent ligands were further analyzed using molecular docking, cytotoxicity assays (MTT, LDH), and in vitro metabolism studies, including microsomal stability and CYP450 inhibition. In vivo pharmacological effects were assessed in behavioral models: forced swim test, four-plate test, and a streptozotocin (STZ)-induced diabetic neuropathy model in mice. Results: Compounds 10 and 20 exhibited high 5-HT7 receptor affinity (Ki < 10 nM) and potent sodium channel inhibition (>80% at 1 µM). Docking studies revealed binding modes consistent with established 5-HT7 ligands. Compound 10 showed lower cytotoxicity than compound 20 in both HepG2 and SH-SY5Y cells and was therefore selected for further evaluation. Metabolic profiling indicated improved microsomal stability relative to verapamil and a low risk of CYP-mediated drug–drug interactions. In vivo, compound 10 produced significant antidepressant- and anxiolytic-like effects, though it failed to reduce neuropathic pain symptoms in the STZ-induced model. Conclusions: Compound 10 shows potential for mood disorder treatment, but further refinement may be needed to improve analgesic efficacy. Full article
(This article belongs to the Special Issue Multitargeted Compounds: A Promising Approach in Medicinal Chemistry)
Show Figures

Figure 1

13 pages, 451 KB  
Systematic Review
Understanding Pain and Quality of Life in Paediatric Cancer Survivors: A Systematic Review with a Focus on Early Survivorship
by Francesca Di Domenico, Christina Liossi and Sandrine Martine Géranton
Children 2025, 12(10), 1320; https://doi.org/10.3390/children12101320 - 2 Oct 2025
Abstract
Background: Pain is a common but often under-recognized clinical feature among children and young people (CYP) cancer survivors. This systematic review aimed to examine the prevalence of acute and chronic pain in 5–24-year-old cancer survivors, explore associated biopsychosocial comorbidities and evaluate the psychometric [...] Read more.
Background: Pain is a common but often under-recognized clinical feature among children and young people (CYP) cancer survivors. This systematic review aimed to examine the prevalence of acute and chronic pain in 5–24-year-old cancer survivors, explore associated biopsychosocial comorbidities and evaluate the psychometric properties of pain assessment tools used with this population. Methods: This review provides a conceptual replication to a review published in 2020 by Schulte et al. by updating and purposefully narrowing the review population to CYP (5–24 y) to better capture their pain experience. We updated the search from Schulte et al., extending the search period up to October 2024 across 5 databases. Results: Our independent search identified 18 studies, with only 1 new paper published since Schulte et al., 2020. Overall, CYP cancer survivors reported a higher prevalence of pain than the general population, with females experiencing higher levels than males, consistent with broader chronic pain literature. Fatigue, depression, and anxiety were common comorbidities, and pain substantially impacted quality of life. Key limitations included the use of unvalidated questionnaires; inconsistent definitions of chronic pain and lack of patient stratification based on diagnoses, age and treatment protocol. Moreover, data were aggregated, and we were unable to extract information from early survivorship. Conclusions: There is a critical need for more rigorous research on pain in CYP cancer survivors. Specifically, gathering data on pain experienced during the immediate post-treatment completion phase of cancer care, an area currently underrepresented in the literature, will provide valuable insights into patients’ pain trajectories. Full article
(This article belongs to the Section Pediatric Anesthesiology, Pain Medicine and Palliative Care)
Show Figures

Graphical abstract

18 pages, 3197 KB  
Article
Transcriptome Analysis Revealed the Molecular Mechanism of Cyanogenic Glycoside Synthesis in Flax
by Xixia Song, Jinhao Zhang, Lili Tang, Hongmei Yuan, Dandan Yao, Weidong Jiang, Guangwen Wu, Lili Cheng, Dandan Liu, Lie Yang, Zhongyi Sun, Caisheng Qiu, Jian Zhang, Liuxi Yi and Qinghua Kang
Agronomy 2025, 15(10), 2327; https://doi.org/10.3390/agronomy15102327 - 1 Oct 2025
Abstract
This study aims to elucidate the molecular mechanisms underlying cyanogenic glycoside accumulation in flax. As an important oil and fiber crop, the nutritional value of flax is compromised by the toxicity of cyanogenic glycoside. To clarify the key genetic regulators and temporal patterns [...] Read more.
This study aims to elucidate the molecular mechanisms underlying cyanogenic glycoside accumulation in flax. As an important oil and fiber crop, the nutritional value of flax is compromised by the toxicity of cyanogenic glycoside. To clarify the key genetic regulators and temporal patterns of cyanogenic glycoside biosynthesis, transcriptomic sequencing was performed on seeds from high- and low-cyanogenic glycoside flax varieties (‘MONTANA16’ and ‘Xilibai’) at three developmental stages: bud stage, full flowering stage, and capsule-setting stage. A total of 127.25 Gb of high-quality data was obtained, with an alignment rate exceeding 87.80%. We identified 31,623 differentially expressed genes (DEGs), which exhibited distinct variety- and stage-specific expression patterns. Principal component analysis (PCA) and hierarchical clustering demonstrated strong reproducibility among biological replicates and revealed the seed pod formation stage as the period with the most significant varietal differences, suggesting it may represent a critical regulatory window for cyanogenic glycoside synthesis. GO and KEGG enrichment analyses indicated that DEGs were primarily involved in metabolic processes (including secondary metabolism and carbohydrate metabolism), oxidoreductase activity, and transmembrane transport functions. Of these, the cytochrome P450 pathway was most significantly enriched at the full bloom stage (H2 vs. L2). A total of 15 LuCYP450 and 13 LuUGT85 family genes were identified, and their expression patterns were closely associated with cyanogenic glycoside accumulation: In high-cyanogenic varieties, LuCYP450-8 was continuously upregulated, and LuUGT85-12 was significantly activated during later stages. Conversely, in low-cyanogenic varieties, high expression of LuCYP450-2/14 may inhibit synthesis. These findings systematically reveal the genetic basis and temporal dynamics of cyanogenic glycoside biosynthesis in flax and highlight the seed pod formation stage as a decisive regulatory window for cyanogenic glycoside synthesis. This study provides new insights into the coordinated regulation of cyanogenic pathways and establishes a molecular foundation for breeding flax varieties with low CNG content without compromising agronomic traits. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

28 pages, 531 KB  
Review
Drug-Induced Autoimmune Hepatitis by Varenicline and Infliximab as a Continuous Disease Spectrum with Two Different Flares: Acute Liver Injury Followed by Hepatic Autoimmunity
by Rolf Teschke
Int. J. Mol. Sci. 2025, 26(19), 9574; https://doi.org/10.3390/ijms26199574 - 30 Sep 2025
Abstract
Drug-induced autoimmune hepatitis (DIAIH) is a rare and complex disorder caused by drugs that are commonly metabolized by hepatic microsomal cytochrome P450 (CYP) pathways. Whereas DIAIH presents generally with a single clinical flare, in rare cases its clinical course shows two different, consecutively [...] Read more.
Drug-induced autoimmune hepatitis (DIAIH) is a rare and complex disorder caused by drugs that are commonly metabolized by hepatic microsomal cytochrome P450 (CYP) pathways. Whereas DIAIH presents generally with a single clinical flare, in rare cases its clinical course shows two different, consecutively emerging flares. The aim of this report was to analyze details of this rare but interesting phenomenon and to help improve appropriate causality evaluation in patients with suspected iDILI or DIAIH to provide better insight into the pathomechanistic steps leading the diseases. A clinical course with two flares was found in a DIAIH patient treated with varenicline, a smoking cessation drug, and in another patient experiencing DIAIH following intravenous application of infliximab used to treat ankylosing spondylitis. In both patients, the first flare was determined as a typical liver injury with increased serum activities of alanine aminotransferase (ALT) and normal titers of serum autoimmune parameters, classified as an acute liver injury analogous to idiosyncratic DILI (iDILI), with verified causality using a modified version of RUCAM (Roussel Uclaf Causality Assessment Method). After an interval of around two months from the cessation of varenicline use, the second flare emerged, as evidenced by increased serum ALT values now associated with newly increased serum autoimmune titers of antinuclear antibodies (ANAs), classifying this flare as hepatic autoimmune injury with verified causality for varenicline using the simplified autoimmune hepatitis (AIH) score. A similar clinical DIAIH course of a continuous disease with two flares was described for the second patient, who received infliximab and experienced an interval of one month between the first and second flare. Interestingly to note, neither varenicline nor infliximab is degraded via a CYP pathway, and the metabolic disposition of both drugs is low. In sum, DIAIH can develop with two consecutive flares caused by two drugs not metabolized by CYPs and with slow drug disposition, raising the question of whether this phenomenon of two flares can occur in additional cases of DIAIH due to other drugs metabolized by CYPs or non-CYPs, a question to be resolved by DILI experts in future cases of iDILI and DIAIH. Full article
39 pages, 16563 KB  
Article
Innovative Amino-Functionalization of Pyrido[2,3-d]pyrimidine Scaffolds for Broad Therapeutic Applications Supported by Computational Analyses
by Hagar S. El-Hema, Haitham E. Shehata, Mohamed A. Hawata, Eman S. Nossier, Ahmed F. El-Sayed, Najla A. Altwaijry, Asmaa Saleh, Modather F. Hussein, Amr Sabry and Adel A.-H. Abdel-Rahman
Pharmaceuticals 2025, 18(10), 1472; https://doi.org/10.3390/ph18101472 - 30 Sep 2025
Abstract
Background: Derivatives of Pyrido[2,3-d]pyrimidine-6-carboxylate are promising multi-target scaffolds. This study focused on synthesizing 16 amino-functionalized derivatives and evaluating their dual anticancer and antibacterial activities, supported by mechanistic and computational analyses. Objectives: Design and synthesize derivatives, evaluate cytotoxicity against HeLa, HepG-2, and [...] Read more.
Background: Derivatives of Pyrido[2,3-d]pyrimidine-6-carboxylate are promising multi-target scaffolds. This study focused on synthesizing 16 amino-functionalized derivatives and evaluating their dual anticancer and antibacterial activities, supported by mechanistic and computational analyses. Objectives: Design and synthesize derivatives, evaluate cytotoxicity against HeLa, HepG-2, and MCF-7 (selectivity against WI-38), investigate EGFRWT and EGFRT790M inhibition, assess cell cycle, apoptosis, and migration effects, antibacterial efficacy against E. coli and P. aeruginosa, and perform in silico ADMET, docking, molecular dynamics, DFT, and antiviral predictions. Methods: Synthesized 16 derivatives; tested for cytotoxicity, EGFR inhibition, cell cycle, apoptosis, migration; assessed antibacterial activity; performed ADMET profiling, molecular docking, molecular dynamics, and DFT calculations. Results: Derivatives 1, 2, and 7 showed highest cytotoxicity (IC50 = 3.98–17.52 μM; WI-38 IC50 = 64.07–81.65 μM). Compound 1 potently inhibited EGFRWT (IC50 = 0.093 μM) and EGFRT790M (IC50 = 0.174 μM), induced G0/G1 arrest (74.86%) and apoptosis (26.37%), and reduced MCF-7 migration (69.63%). Moderate antibacterial activity observed (MIC = 50 μg/mL). ADMET indicated favorable pharmacokinetics, low CYP inhibition, negative mutagenicity, and oral toxicity class III. Molecular dynamics confirmed stable binding (EGFRWT RMSD 3 Å; EGFRT790M 3.5–4.6 Å) with persistent hydrogen bonds. In silico antiviral evaluation suggested strong binding to HCV NS5A (–9.36 kcal/mol), SARS-CoV-2 Mpro (–9.82 kcal/mol), and E.coli DNA gyrase (–10.25 kcal/mol). Conclusions: Compound 1 exhibits dual anticancer and antibacterial activity, supported by mechanistic and computational analyses, highlighting pyrido[2,3-d]pyrimidines as promising multi-target therapeutic scaffolds. Full article
Show Figures

Figure 1

20 pages, 5668 KB  
Article
Dietary Bile Acid Influences the Physiological, Morphological, Lipid Metabolism-Related Responses, and Transcriptomic Profile of Hepatopancreas in High-Fat Diet-Fed Juvenile Gibel Carp (Carassius auratus gibelio)
by Xiaoyang Huang, Zikui Yang, Xiangning Chen, Jingjing Zhang, Yanru Wu, Huiqing Li, Haiming Yuan, Rui Feng, Chaoqing Wei, Zhujin Ding, Jianhe Xu and Hanliang Cheng
Animals 2025, 15(19), 2853; https://doi.org/10.3390/ani15192853 - 30 Sep 2025
Abstract
To assess the influence of dietary bile acid (BA) on the phenotype associated with hepatic lipid metabolism and its regulation of lipid homeostasis in gibel carp (Carassius auratus gibelio) under high-fat diet (HFD) conditions, five HFDs were designed using soybean oil [...] Read more.
To assess the influence of dietary bile acid (BA) on the phenotype associated with hepatic lipid metabolism and its regulation of lipid homeostasis in gibel carp (Carassius auratus gibelio) under high-fat diet (HFD) conditions, five HFDs were designed using soybean oil (SO) as the single lipid source and supplemented with 0, 200, 400, 600, and 800 mg/kg BA (designated as BA0, BA200, BA400, BA600, and BA800, respectively). Juvenile fish (32.37 ± 0.13 g) were fed five BA-added HFDs (12% SO) for 8 weeks. Considerably lower levels of aspartate transaminase, alanine aminotransferase, low-density lipoprotein, triglyceride, and total cholesterol in the serum were observed in gibel carp fed with HFDs with 400–600 mg/kg BA (p < 0.05). The hepatocytes of the BA400 and BA600 groups were intact without abnormal architecture or histopathological changes, compared to other groups. The presence of most genes related to fatty acid biosynthesis decreased significantly with the addition of 400–600 mg/kg BA (p < 0.05), while the gene expressions of hormone-sensitive lipase, adiponectin receptor 2, and peroxisome proliferator-activated receptor α were variably up-regulated, along with the elevation of dietary BA (p < 0.05). Critical genes involved in bile acid and cholesterol synthesis were obviously down-regulated in gibel carp receiving 600–800 mg/kg dietary BA (p < 0.05), despite the sterol 27-hydroxylase (cyp27a1) gene in the BA800 group (p < 0.05). Moreover, hepatopancreas from the BA0 and BA600 groups were isolated for transcriptome sequencing, identifying 7040 differentially expressed genes (DEGs). The enriched KEGG pathways of DEGs mainly included steroid biosynthesis, protein digestion and absorption, etc. Seven randomly selected DEGs were validated using qRT-PCR and were in agreement with the RNA-seq results. Consequently, the appropriate supplementation of dietary BA for juvenile gibel carp is recommended at doses of 400–600 mg/kg in SO-based HFDs, which could contribute to the amelioration of HFD-induced excessive fat deposition in the hepatopancreas of gibel carp by both inhibiting fatty acid intake, biosynthesis, and steroid production and enhancing lipid decomposition. The findings may elucidate the physiological role of exogenous BA in fish and its underlying mechanism, providing references for the reasonable application of BA in aquafeeds and the prevention of HFD-induced metabolic dysfunction in fish. Full article
(This article belongs to the Special Issue Novel Insights into Lipid Metabolism in Aquatic Animals)
Show Figures

Figure 1

Back to TopTop