Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (245)

Search Parameters:
Keywords = CYP-mediated metabolism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6853 KiB  
Article
Metabolomic and Molecular Mechanisms of Glycerol Supplementation in Regulating the Reproductive Function of Kazakh Ewes in the Non-Breeding Season
by Ying Nan, Baihui Jiang, Xingdong Qi, Cuifang Ye, Mengting Xie and Zongsheng Zhao
Animals 2025, 15(15), 2291; https://doi.org/10.3390/ani15152291 - 5 Aug 2025
Abstract
The activation mechanism of the reproductive axis in Kazakh ewes during the non-breeding season was explored by supplementation with glycerol complex (7% glycerol + tyrosine + vitamin B9). The experiment divided 50 ewes into five groups (n = 10). After 90 days [...] Read more.
The activation mechanism of the reproductive axis in Kazakh ewes during the non-breeding season was explored by supplementation with glycerol complex (7% glycerol + tyrosine + vitamin B9). The experiment divided 50 ewes into five groups (n = 10). After 90 days of intervention, it was found that significant changes in serum DL-carnitine, N-methyl-lysine and other differential metabolites were observed in the GLY-Tyr-B9 group (p < 0.05, “p < 0.05” means significant difference, “p < 0.01” means “highly significant difference”). The bile acid metabolic pathway was specifically activated (p < 0.01). The group had a 50% estrus rate, ovaries contained 3–5 immature follicles, and HE staining showed intact granulosa cell structure. Serum E2/P4 fluctuated cyclically (p < 0.01), FSH/LH pulse frequency increased (p < 0.01), peak Glu/INS appeared on day 60 (p < 0.05), and LEP was negatively correlated with body fat percentage (p < 0.01). Molecular mechanisms revealed: upregulation of hypothalamic kiss-1/GPR54 expression (p < 0.01) drove GnRH pulses; ovarian CYP11A1/LHR/VEGF synergistically promoted follicular development (p < 0.05); the HSL of subcutaneous fat was significantly increased (p < 0.05), suggesting involvement of lipolytic supply. Glycerol activates the reproductive axis through a dual pathway—L-carnitine-mediated elevation of mitochondrial β-oxidation efficacy synergizes with kisspeptin/GPR54 signalling enhancement to re-establish HPO axis rhythms. This study reveals the central role of metabolic reprogramming in regulating seasonal reproduction in ruminants. Full article
(This article belongs to the Section Small Ruminants)
Show Figures

Figure 1

21 pages, 3146 KiB  
Article
TnP as a Multifaceted Therapeutic Peptide with System-Wide Regulatory Capacity
by Geonildo Rodrigo Disner, Emma Wincent, Carla Lima and Monica Lopes-Ferreira
Pharmaceuticals 2025, 18(8), 1146; https://doi.org/10.3390/ph18081146 - 1 Aug 2025
Viewed by 196
Abstract
Background: The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Results: Transcriptomic profiling [...] Read more.
Background: The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Results: Transcriptomic profiling of TnP-treated larvae following tail fin amputation revealed 558 differentially expressed genes (DEGs), categorized into four functional networks: (1) drug-metabolizing enzymes (cyp3a65, cyp1a) and transporters (SLC/ABC families), where TnP alters xenobiotic processing through Phase I/II modulation; (2) cellular trafficking and immune regulation, with upregulated myosin genes (myhb/mylz3) enhancing wound repair and tlr5-cdc42 signaling fine-tuning inflammation; (3) proteolytic cascades (c6ast4, prss1) coupled to autophagy (ulk1a, atg2a) and metabolic rewiring (g6pca.1-tg axis); and (4) melanogenesis-circadian networks (pmela/dct-fbxl3l) linked to ubiquitin-mediated protein turnover. Key findings highlight TnP’s unique coordination of rapid (protease activation) and sustained (metabolic adaptation) responses, enabled by short network path lengths (1.6–2.1 edges). Hub genes, such as nr1i2 (pxr), ppara, and bcl6aa/b, mediate crosstalk between these systems, while potential risks—including muscle hypercontractility (myhb overexpression) or cardiovascular effects (ace2-ppp3ccb)—underscore the need for targeted delivery. The zebrafish model validated TnP-conserved mechanisms with human relevance, particularly in drug metabolism and tissue repair. TnP’s ability to synchronize extracellular matrix remodeling, immune resolution, and metabolic homeostasis supports its development for the treatment of fibrosis, metabolic disorders, and inflammatory conditions. Conclusions: Future work should focus on optimizing tissue-specific delivery and assessing genetic variability to advance clinical translation. This system-level analysis positions TnP as a model example for next-generation multi-pathway therapeutics. Full article
Show Figures

Graphical abstract

18 pages, 4976 KiB  
Article
Mechanistic Insights into Cytokine Antagonist-Drug Interactions: A Physiologically Based Pharmacokinetic Modelling Approach with Tocilizumab as a Case Study
by Xian Pan, Cong Liu, Felix Stader, Abdallah Derbalah, Masoud Jamei and Iain Gardner
Pharmaceutics 2025, 17(7), 896; https://doi.org/10.3390/pharmaceutics17070896 - 10 Jul 2025
Viewed by 557
Abstract
Background: Understanding interactions between cytokine antagonists and drugs is essential for effective medication management in inflammatory conditions. Recent regulatory authority guidelines emphasise a systematic, risk-based approach to evaluating these interactions, underscoring the need for mechanistic insight. Proinflammatory cytokines, such as interleukin-6 (IL-6), modulate [...] Read more.
Background: Understanding interactions between cytokine antagonists and drugs is essential for effective medication management in inflammatory conditions. Recent regulatory authority guidelines emphasise a systematic, risk-based approach to evaluating these interactions, underscoring the need for mechanistic insight. Proinflammatory cytokines, such as interleukin-6 (IL-6), modulate cytochrome P450 (CYP) enzymes, reducing the metabolism of CYP substrates. Cytokine antagonists (such as IL-6 receptor antagonists) can counteract this effect, restoring CYP activity and increasing drug clearance. However, quantitative prediction of cytokine-mediated drug interactions remains challenging, as existing models often lack the mechanistic detail needed to capture the dynamic relationship between cytokine signalling, receptor engagement, and downstream modulation of drug metabolism. Methods: A physiologically based pharmacokinetic (PBPK) framework incorporating cytokine–receptor binding, subsequent downregulation of CYP expression, and blockade of the cytokine signalling by a therapeutic protein antagonist was developed to simulate and investigate cytokine antagonist-drug interactions. Tocilizumab, a humanised IL-6 receptor antagonist used to treat several inflammatory conditions associated with elevated IL-6 levels, was selected as a model drug to demonstrate the utility of the framework. Results: The developed PBPK model accurately predicted the pharmacokinetics profiles of tocilizumab and captured clinically observed dynamic changes in simvastatin exposure before and after tocilizumab treatment in rheumatoid arthritis (RA) patients. Simulated IL-6 dynamics aligned with observed clinical profiles, showing transient elevation following receptor blockade and associated restoration of CYP3A4 activity. Prospective simulations with commonly co-administered CYP substrates (celecoxib, chloroquine, cyclosporine, ibuprofen, prednisone, simvastatin, and theophylline) in RA patients revealed dose regimen- and drug-dependent differences in interaction magnitude. Conclusions: This study demonstrated the utility of PBPK models in providing a mechanistic understanding of cytokine antagonist-drug interactions, supporting enhanced therapeutic decision-making and optimising patient care in inflammatory conditions. Full article
Show Figures

Figure 1

20 pages, 4119 KiB  
Article
Insights into Lead Toxicity and Detoxification Mechanisms in the Silkworm, Bombyx mori
by Dan-Dan Bian, Yan-Xia Shi, Kai-Wen Shi, Hui-Cong Du, Bo-Ping Tang and Qiu-Ning Liu
Insects 2025, 16(7), 699; https://doi.org/10.3390/insects16070699 - 7 Jul 2025
Viewed by 596
Abstract
Bombyx mori, a key lepidopteran model with economic importance, is highly susceptible to environmental heavy metal pollution. This study investigated the mechanisms of Pb toxicity and the associated detoxification and metabolic defense responses in silkworms, employing transcriptome sequencing, enzyme activity assays, and [...] Read more.
Bombyx mori, a key lepidopteran model with economic importance, is highly susceptible to environmental heavy metal pollution. This study investigated the mechanisms of Pb toxicity and the associated detoxification and metabolic defense responses in silkworms, employing transcriptome sequencing, enzyme activity assays, and histopathological analysis. Pb exposure caused significant histopathological changes and apoptosis in the fat body, marked by structural disorganization, swollen adipocytes, and degraded extracellular matrix. Molecular analysis showed activation of antioxidant defenses, with superoxide dismutase (SOD) and catalase (CAT) activities significantly elevated (p < 0.05), while peroxidase (POD) activity declined (p < 0.05). Levels of malondialdehyde (MDA) and glutathione (GSH) also decreased. In detoxification responses, carboxylesterase (CarE) activity was reduced, whereas cytochrome P450 (P450) and glutathione S-transferase (GST) activities increased (p < 0.05). Transcriptome sequencing revealed 1,418 differentially expressed genes (DEGs), with notable upregulation of key detoxification genes (p < 0.05), including six cytochrome P450s (CYPs), five uridine diphosphate-glycosyltransferases (UGTs), three glutathione S-transferases (GSTs), and six ATP-binding cassette transporters (ABCs). KEGG enrichment analysis highlighted the involvement of these DEGs in drug metabolism, glutathione metabolism, and ABC transporter pathways (p < 0.05). Functional validation showed that knocking down Cap ‘n’ Collar C (CncC) significantly suppressed key detoxification genes (CYP18A1, CYP332A1, GSTd3, GSTt1, UGT33D8; p < 0.05). qRT-PCR and Western blot analyses confirmed that the Caspase-3 pathway mediates Pb-induced apoptosis, with increased cleaved Caspase-3 and Caspase-4 levels following CncC silencing. Overall, our findings elucidate the mechanisms of Pb toxicity in silkworms and identify CncC as a critical regulator of detoxification and defense against heavy metal stress in lepidopteran insects. Full article
(This article belongs to the Special Issue Insect Transcriptomics)
Show Figures

Figure 1

14 pages, 1035 KiB  
Article
Interaction Between CYP1A2-Related Caffeine Metabolism and Vitamin B12/Folate Status in Patients with Metabolic Syndrome: A Novel Biomarker Axis
by Laura Claudia Popa, Ahmed Abu-Awwad, Simona Sorina Farcas, Simona-Alina Abu-Awwad and Nicoleta Ioana Andreescu
Metabolites 2025, 15(7), 450; https://doi.org/10.3390/metabo15070450 - 4 Jul 2025
Viewed by 749
Abstract
Background/Objectives: The prevalence of metabolic syndrome (MetS) is steadily increasing worldwide, driven by complex genetic, nutritional, and environmental factors. Caffeine metabolism, primarily mediated by CYP1A2 (though other enzymes such as CYP1A1 may also be involved), and the status of micronutrients such as [...] Read more.
Background/Objectives: The prevalence of metabolic syndrome (MetS) is steadily increasing worldwide, driven by complex genetic, nutritional, and environmental factors. Caffeine metabolism, primarily mediated by CYP1A2 (though other enzymes such as CYP1A1 may also be involved), and the status of micronutrients such as vitamin B12 and folate have each been linked to MetS components. This study investigates the interaction between CYP1A2 genetic variants and vitamin B12/folate levels in patients with MetS, aiming to identify a novel biomarker axis with potential implications for personalized interventions. Methods: This cross-sectional observational study included 356 adults diagnosed with MetS, recruited from Western Romania. Genotyping for CYP1A2 rs762551 was performed using TaqMan PCR assays. Daily caffeine intake was assessed via validated dietary questionnaires. Serum levels of folate and vitamin B12 were measured using chemiluminescence immunoassays. Results: AA genotype patients with a moderate coffee intake (1–2 cups/day) had significantly higher folate and B12 levels than AC or CC carriers. These nutritional advantages were associated with more favorable BMI and triglyceride profiles. The interaction between CYP1A2 genotype and coffee intake was significant for both micronutrient levels and metabolic parameters, particularly in the AA group. No significant associations were found in high-coffee-intake subgroups (≥3 cups/day). Conclusions: The interplay between CYP1A2 polymorphisms and B-vitamin status may represent a clinically relevant biomarker axis in MetS. Moderate caffeine intake in slow metabolizers (AA genotype) may boost micronutrient status and metabolic health, supporting personalized nutrition. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

16 pages, 4948 KiB  
Article
CYP1A1/20-HETE/GPR75 Axis-Mediated Arachidonic Acid Metabolism Dysregulation in H-Type Hypertension Pathogenesis
by Hangyu Lv, Lingyun Liu, Baoling Bai, Kexin Zhang and Qin Zhang
Int. J. Mol. Sci. 2025, 26(13), 5947; https://doi.org/10.3390/ijms26135947 - 20 Jun 2025
Viewed by 407
Abstract
This study aims to explore the pathogenic mechanism of H-type hypertension. A rat model of H-type hypertension was established through high-methionine dietary intervention, with subsequent folic acid administration. Untargeted serum metabolomic profiling identified a significant reduction in arachidonic acid (AA) levels in the [...] Read more.
This study aims to explore the pathogenic mechanism of H-type hypertension. A rat model of H-type hypertension was established through high-methionine dietary intervention, with subsequent folic acid administration. Untargeted serum metabolomic profiling identified a significant reduction in arachidonic acid (AA) levels in the methionine-enriched group, which were effectively normalized following folic acid supplementation. Transcriptomic analysis revealed methionine-induced upregulation of AA pathway-associated genes Cyp1a1 and Gpr75. In contrast, after the intervention with folic acid, a downregulation of these genes was observed. These findings were corroborated through Western blotting and RT-qPCR validation. In vitro studies using EA.hy926 endothelial cells demonstrated that methionine exposure significantly elevated CYP1A1 expression. Furthermore, methionine stimulation induced marked upregulation of GPR75 and its downstream signaling components (NRAS, MEK1, and ERK1). Population-level evidence from the U.S. NHANES database substantiated significant correlations between essential fatty acids (AA, LA, and GLA) and H-type hypertension prevalence. Our research findings suggest that the CYP1A1/20-HETE/GPR75 axis-mediated dysregulation of AA metabolism may be one of the key pathological mechanisms of H-type hypertension. The research results provide clues for the discovery of new therapeutic targets for H-type hypertension. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Graphical abstract

18 pages, 2447 KiB  
Article
lncRNA 1700009J07Rik Impaired Male Fertility by Interfering with Sexual Behaviors in Mice
by Hongyu Wang, Xiaojun Liu, Shijue Dong, Yang Zhou, Jingyan Yu, Meng Zou, Mengqian Ding, Aiwen Kang, Nanxi Ji, Xuhui Zeng and Xiaoning Zhang
Int. J. Mol. Sci. 2025, 26(12), 5801; https://doi.org/10.3390/ijms26125801 - 17 Jun 2025
Viewed by 384
Abstract
Long non-coding (lnc) RNAs exhibit tissue-specific expression characteristics and have been shown to be involved in the regulation of various biological processes. The testis is one of the organs with the most abundant lncRNAs. However, the functions of many testis-specific or -enriched lncRNAs [...] Read more.
Long non-coding (lnc) RNAs exhibit tissue-specific expression characteristics and have been shown to be involved in the regulation of various biological processes. The testis is one of the organs with the most abundant lncRNAs. However, the functions of many testis-specific or -enriched lncRNAs in male fertility remain undisclosed. In this study, we screened lncRNA 1700009J07Rik (07Rik) to investigate its roles in spermatogenesis and male fertility using knockout (KO) mice. We found that 07Rik mainly acted as an intact lncRNA rather than a small protein, being highly expressed in various spermatogenic cells, which suggests its potential involvement in spermatogenesis. Unexpectedly, the deletion of 07Rik did not impact spermatogenesis or sperm functions. Intriguingly, two-thirds of the male KO were infertile, which was ascribed to the lack of sexual behaviors rather than abnormalities in spermatogenesis or sperm functions. Further results reveal that, compared with wild-type mice, free testosterone content in serum was significantly reduced in the KO infertile (KO-I) mice, whereas it was remarkably elevated in the testes. Correspondingly, Hsd3b2, a key gene that promotes testosterone synthesis, was dramatically upregulated. Cyp19a1 and Cyp11b1, which are responsible for testosterone metabolism, were downregulated in the testes. In addition, the expression of sex hormone-binding globulin was observably elevated in the testes of 07Rik KO-I mice, which might partially explain the decrease in testosterone in the serum. These results suggest that disruptions in testosterone synthesis and metabolism might contribute to the loss of libido in 07Rik KO-I mice. Our findings expand the understanding of lncRNA function and provide novel insights into the role of lncRNAs in male fertility, particularly in relation to hormonal turnover disorders that mediate sexual behavior defects. Full article
(This article belongs to the Special Issue Reproductive Endocrinology Research)
Show Figures

Figure 1

27 pages, 2280 KiB  
Review
Reactive Oxygen Species as Key Molecules in the Pathogenesis of Alcoholic Fatty Liver Disease and Nonalcoholic Fatty Liver Disease: Future Perspectives
by Zhiqing Zhang, Hong Yang, Fei Han and Peng Guo
Curr. Issues Mol. Biol. 2025, 47(6), 464; https://doi.org/10.3390/cimb47060464 - 17 Jun 2025
Cited by 1 | Viewed by 592
Abstract
Reactive oxygen species (ROS) are central to the progression of alcoholic fatty liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD). In ALD, ROS arise from alcohol metabolism (CYP2E1 and ADH/ALDH2), causing oxidative damage and fibrosis. In NAFLD, mitochondrial dysfunction, ER stress, and [...] Read more.
Reactive oxygen species (ROS) are central to the progression of alcoholic fatty liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD). In ALD, ROS arise from alcohol metabolism (CYP2E1 and ADH/ALDH2), causing oxidative damage and fibrosis. In NAFLD, mitochondrial dysfunction, ER stress, and lipotoxicity drive ROS overproduction due to metabolic dysregulation. Both diseases share ROS-mediated pathways, including mitochondrial/ER dysfunction, inflammation, and impaired lipid metabolism, accelerating steatosis to cirrhosis and cancer. Antioxidants, ER modulators, and lifestyle changes show therapeutic potential but require further clinical validation. Future research should leverage multi-omics and targeted therapies to optimize ROS-focused interventions for ALD and NAFLD. Full article
(This article belongs to the Special Issue Molecular Research on Free Radicals and Oxidative Stress)
Show Figures

Figure 1

21 pages, 1915 KiB  
Article
CYP1B1 Knockout in a Bovine Hepatocyte-like Cell Line (BFH12) Unveils Its Role in Liver Homeostasis and Aflatoxin B1-Induced Hepatotoxicity
by Silvia Iori, Ludovica Montanucci, Caterina D’Onofrio, Maija Lahtela-Kakkonen, Lorena Lucatello, Anisa Bardhi, Andrea Barbarossa, Francesca Capolongo, Anna Zaghini, Marianna Pauletto, Mauro Dacasto and Mery Giantin
Toxins 2025, 17(6), 294; https://doi.org/10.3390/toxins17060294 - 10 Jun 2025
Viewed by 704
Abstract
CYP1B1 is a key enzyme involved in xenobiotic and endogenous metabolism, yet its physiological role in bovine liver homeostasis remains unclear. In this study, we generated a CYP1B1 knockout (CYP1B1KO) bovine hepatocyte-like cell line to indirectly investigate its role in [...] Read more.
CYP1B1 is a key enzyme involved in xenobiotic and endogenous metabolism, yet its physiological role in bovine liver homeostasis remains unclear. In this study, we generated a CYP1B1 knockout (CYP1B1KO) bovine hepatocyte-like cell line to indirectly investigate its role in liver function. Transcriptomic analysis revealed alterations in immune regulation, epithelial barrier integrity, and detoxification pathways, with concurrent compensatory CYP1A1 upregulation. Beyond its physiological role, CYP1B1 was found to actively participate in Aflatoxin B1 (AFB1) metabolism, a mycotoxin posing significant health risks to humans and livestock. Molecular docking suggested that CYP1B1 facilitates the conversion of AFB1 into AFM1 and AFBO. In agreement with these predictions, CYP1B1KO cells exposed to AFB1 showed reduced AFM1 production and decreased cytotoxicity. Further transcriptomic analysis indicated that CYP1B1KO cells exhibited mitigated oxidative stress and inflammatory responses, along with downregulation of CYP3A74, a key enzyme in AFB1 bioactivation. This suggests that CYP1B1 KO reduces AFB1 toxicity by directly limiting AFB1 bioactivation and indirectly modulating the broader hepatic CYP network, further limiting the formation of toxic intermediates. These findings provide novel insights into CYP1B1’s function in bovine hepatocytes, highlighting its dual role in maintaining liver homeostasis and mediating AFB1 metabolism. The observed interplay between CYP1B1, CYP1A1, and CYP3A74 underscores the complexity of AFB1 biotransformation and warrants further investigation into the coordinated regulation of xenobiotic metabolism in cattle. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Graphical abstract

14 pages, 4184 KiB  
Article
The Molecular Mechanisms Underlying Zucchini-Induced Changes in the Host Adaptation of Cotton- and Cucumber-Type Aphis gossypii
by Yibin Pan, Weili Xu, Li Wang, Kaixin Zhang, Jichao Ji, Dongyang Li, Xiangzhen Zhu, Xueke Gao, Junyu Luo and Jinjie Cui
Biomolecules 2025, 15(6), 791; https://doi.org/10.3390/biom15060791 - 29 May 2025
Viewed by 545
Abstract
The polyphagous aphid Aphis gossypii exhibits host-specific biotypes, notably the cotton (Hap1) and cucumber (Hap3) types. While both can adapt to new hosts via zucchini induction, the underlying molecular mechanisms remain unclear. Our investigation revealed that both Hap1 and Hap3 A. gossypii underwent [...] Read more.
The polyphagous aphid Aphis gossypii exhibits host-specific biotypes, notably the cotton (Hap1) and cucumber (Hap3) types. While both can adapt to new hosts via zucchini induction, the underlying molecular mechanisms remain unclear. Our investigation revealed that both Hap1 and Hap3 A. gossypii underwent significant body size enlargement following host transfer to zucchini. Transcriptomic analysis revealed that zucchini-mediated host adaptation in the A. gossypii biotypes (Hap1/Hap3) involves insulin metabolism and detoxification pathways, with 17 co-differentially expressed genes (e.g., Col-I (type I collagen), CYP450 6a13, peroxidase) potentially critical for adaptation. The findings provide new insights into the molecular mechanisms regulating A. gossypii phenotypic plasticity and contribute to the development of resistance management strategies. Full article
(This article belongs to the Special Issue Plant-Microbe-Insect Interactions)
Show Figures

Graphical abstract

18 pages, 2940 KiB  
Article
Proactive Resistance Management Studies Highlight the Role of Cytochrome P450 Genes in the Resistance of Tuta absoluta Against Tetraniliprole
by Farman Ullah, Zeeshan Ullah, Hina Gul, Xiaowei Li, Yuhan Pan, Haixia Zhang, Zhijun Zhang, Jun Huang, Roditakis Emmanouil, Raul Narciso C. Guedes, Nicolas Desneux and Yaobin Lu
Int. J. Mol. Sci. 2025, 26(11), 5180; https://doi.org/10.3390/ijms26115180 - 28 May 2025
Cited by 2 | Viewed by 609
Abstract
The diamide insecticide tetraniliprole is a valuable tool for managing major insect pests like the invasive tomato pinworm, Tuta absoluta (Meyrick). However, the mechanisms underlying tetraniliprole resistance, as well as its associated fitness costs, remain unclear. In this study, we assessed the fitness [...] Read more.
The diamide insecticide tetraniliprole is a valuable tool for managing major insect pests like the invasive tomato pinworm, Tuta absoluta (Meyrick). However, the mechanisms underlying tetraniliprole resistance, as well as its associated fitness costs, remain unclear. In this study, we assessed the fitness of tetraniliprole-resistant (TetraRS) and susceptible (SS) strains of T. absoluta and conducted Illumina RNA-seq to compare their transcriptomes. We also used nanocarrier-mediated RNA interference (RNAi) to knockdown P450 genes and evaluate their role in tetraniliprole resistance. After eight generations of selection, T. absoluta developed a 20.80-fold resistance to tetraniliprole, accompanied by fitness costs. RNA-seq analysis revealed 3332 differentially expressed genes (DEGs), with 1707 upregulated and 1625 downregulated in the TetraRS compared to the SS strain. Gene Ontology (GO) annotations showed significant enrichment in categories related to metabolic processes, cellular processes, catalytic activity, cellular anatomical entity, and binding. These genes were also identified in key KEGG pathways such as cytochrome P450, drug metabolism, carbon metabolism, oxidative phosphorylation, fatty acid metabolism, and protein processing. RT-qPCR analysis confirmed that P450 genes (CYP405D1, CYP6AB269, and CYP4AU1) were upregulated in TetraRS insects, in line with the RNA-seq results. Cytochrome P450 activity was significantly higher in the TetraRS strain than in the SS strain. Notably, nano-encapsulated dsRNA targeting these overexpressed P450 genes increased the susceptibility of T. absoluta to tetraniliprole. Further, cytochrome P450 activity was significantly reduced following silencing of P450 genes. These findings suggest that multiple genes and pathways, particularly P450 genes, contribute to tetraniliprole resistance in T. absoluta. This study provides valuable insights into the molecular mechanisms underlying insecticide resistance in this key pest species. Full article
Show Figures

Figure 1

11 pages, 1072 KiB  
Article
Integrating Cytochrome P450-Mediated Herbicide Tolerance into Anthocyanin-Rich Maize Through Conventional Breeding
by Sergio Arias-Martínez, Luis Jesús Peña-Vázquez, Jose Manuel Oregel-Zamudio, José Andrés Barajas-Chávez, Ernesto Oregel-Zamudio and Jesús Rubén Torres-García
Agronomy 2025, 15(6), 1308; https://doi.org/10.3390/agronomy15061308 - 27 May 2025
Viewed by 487
Abstract
Meeting the rising demand for staple grains now requires cultivars that combine high yield, enhanced nutritional value, and strong chemical resilience. Blue-kernel landraces from central Mexico are rich in anthocyanins yet remain highly susceptible to post-emergence herbicides, whereas modern hybrids detoxify these compounds [...] Read more.
Meeting the rising demand for staple grains now requires cultivars that combine high yield, enhanced nutritional value, and strong chemical resilience. Blue-kernel landraces from central Mexico are rich in anthocyanins yet remain highly susceptible to post-emergence herbicides, whereas modern hybrids detoxify these compounds through cytochrome P450 (CYP450) enzymes. We crossed the anthocyanin-rich variety Polimaize with a CYP450-tolerant hybrid and evaluated the two parents and their F1 segregants (designated “White” and “Yellow”) under greenhouse applications of mesotrione (75 g a.i. ha−1), nicosulfuron (30 g a.i. ha−1), and their mixture. Across 160 plants, the hybrid retained 95% of control dry matter and showed ≤7% foliar injury under all treatments, whereas Polimaize lost 28% biomass and exhibited 36% injury after nicosulfuron. The Yellow class matched hybrid performance while maintaining a blue pericarp and a β-carotene-rich endosperm, demonstrating that nutritional and agronomic traits can be stacked. The White class displayed heterosis-driven compensatory growth, exceeding its untreated biomass by 60% with nicosulfuron and by 82% with the mixture despite transient bleaching. Chlorophyll and carotenoid fluorescence revealed rapid, zeaxanthin-linked photoprotection in all tolerant genotypes, consistent with accelerated CYP450-mediated detoxification. These findings show that broad-spectrum herbicide tolerance can be introgressed into pigment-rich germplasm through conventional breeding, providing a non-transgenic path to herbicide-ready, anthocyanin-rich maize. The strategy preserves local biodiversity while delivering cultivars suited to intensive, weed-competitive agriculture and offers a template for integrating metabolic resilience into other native crops. Full article
(This article belongs to the Special Issue Maize Germplasm Improvement and Innovation)
Show Figures

Figure 1

16 pages, 596 KiB  
Review
Targeted but Troubling: CYP450 Inhibition by Kinase and PARP Inhibitors and Its Clinical Implications
by Martin Kondža, Josipa Bukić, Ivan Ćavar and Biljana Tubić
Drugs Drug Candidates 2025, 4(2), 24; https://doi.org/10.3390/ddc4020024 - 26 May 2025
Viewed by 1165
Abstract
Cytochrome P450 (CYP450) enzymes are pivotal in the metabolism of numerous anticancer agents, with CYP3A4 being the predominant isoform involved. Inhibition of CYP450 enzymes is a major mechanism underlying clinically significant drug-drug interactions (DDIs), particularly in oncology, where polypharmacy is frequent. This review [...] Read more.
Cytochrome P450 (CYP450) enzymes are pivotal in the metabolism of numerous anticancer agents, with CYP3A4 being the predominant isoform involved. Inhibition of CYP450 enzymes is a major mechanism underlying clinically significant drug-drug interactions (DDIs), particularly in oncology, where polypharmacy is frequent. This review aims to provide a comprehensive and critical overview of CYP450 enzyme inhibition, focusing specifically on the impact of kinase inhibitors (KIs) and poly adenosine diphosphate-ribose polymerase (PARP) inhibitors. A systematic review of the current literature was conducted, focusing on the molecular mechanisms of CYP450 inhibition, including reversible, time-dependent, mechanism-based, and pseudo-irreversible inhibition. Specific attention was given to the inhibitory profiles of clinically relevant KIs and PARP inhibitors, with analysis of pharmacokinetic consequences and regulatory considerations. Many KIs, such as abemaciclib and ibrutinib, demonstrate time-dependent or quasi-irreversible inhibition of CYP3A4, while PARP inhibitors like olaparib and rucaparib exhibit moderate reversible and time-dependent CYP3A4 inhibition. These inhibitory activities can significantly alter the pharmacokinetics of co-administered drugs, leading to increased risk of toxicity or therapeutic failure. Regulatory guidelines now recommend early identification of time-dependent and mechanism-based inhibition using physiologically based pharmacokinetic) (PBPK) modeling. CYP450 inhibition by KIs and PARP inhibitors represents a critical but often underappreciated challenge in oncology pharmacotherapy. Understanding the mechanistic basis of these interactions is essential for optimizing treatment regimens, improving patient safety, and supporting personalized oncology care. Greater clinical vigilance and the integration of predictive modeling tools are necessary to mitigate the risks associated with CYP-mediated DDIs. Full article
(This article belongs to the Section Marketed Drugs)
Show Figures

Figure 1

19 pages, 1424 KiB  
Article
Jasmonates in the Ethylene-Induced Resistance of Detached Citrus Fruits to Peel Damage
by María T. Lafuente, Raúl Sampedro and Paco Romero
Int. J. Mol. Sci. 2025, 26(10), 4805; https://doi.org/10.3390/ijms26104805 - 17 May 2025
Viewed by 389
Abstract
It is known that nutrient deprivation following detachment can cause non-chilling peel pitting (NCPP) in citrus fruits when stored under a non-stressful environment and that this damage is reduced by pretreating the fruit with ethylene (ETH) (4 d, 10 µL L−1). [...] Read more.
It is known that nutrient deprivation following detachment can cause non-chilling peel pitting (NCPP) in citrus fruits when stored under a non-stressful environment and that this damage is reduced by pretreating the fruit with ethylene (ETH) (4 d, 10 µL L−1). The present work investigates the effect of this pretreatment on jasmonate (JA) accumulation and transcriptional regulation in mature Navelate oranges (Citrus sinensis L. Osbeck) stored under non-stressful conditions. ETH increased the expression of abundant genes participating in the synthesis of cis-(+)-12-oxo-phytodienoic acid (OPDA), jasmonic acid (JA), and methyl jasmonate (MeJA). ETH also upregulated genes involved in jasmonoyl–isoleucine (JAIle) synthesis (CsJAR1) and decrease (CsCYP94B3 and CYP94C1), and CsSTA2, related to JA sulfation. The levels of these JA metabolites increased during fruit holding in ETH and after shifting them to air, with MeJA accumulation being especially remarkable. Overall, the beneficial effect of ETH on reducing NCPP appears to be related not only to this redirection of OPDA and JA metabolism towards the formation of JA derivatives but also to the regulation of JA signalling. Indeed, the repression of the receptor CsCOI1 and upregulation of various CsJAZs repressors caused by nutrient deprivation, together with the ETH-mediated induction of CsCOI1, CsTOPLESS, and abundant CsJAZs during long-term storage, suggests the occurrence of an ETH-enhanced negative transcriptional regulatory feedback loop in JA metabolism and signalling, by which the susceptibility of detached Navelate oranges to NCPP might be reduced. Full article
(This article belongs to the Special Issue Phytohormones: From Physiological Response to Application)
Show Figures

Figure 1

20 pages, 718 KiB  
Systematic Review
The Relevance of Pharmacokinetic Biomarkers in Response to Methadone Treatment: A Systematic Review
by Sheila Recarey-Rama, Jesús Gómez-Trigo, Almudena Gil-Rodriguez, Eduardo Dominguez, Inés Sánchez-Martínez, Ángela Riveiro-Recimil, Alba Barral-Raña, Jose de Leon, Ana Rodriguez-Viyuela, Manuel Arrojo, Angel Carracedo and Olalla Maroñas
Pharmaceuticals 2025, 18(5), 623; https://doi.org/10.3390/ph18050623 - 25 Apr 2025
Viewed by 1011
Abstract
Background/Objectives: Methadone maintenance treatment (MMT) is widely used in opioid use disorder (OUD). Its efficacy is influenced by its metabolism, primarily mediated by Cytochrome P450 (CYP450) enzymes in the liver. Genetic polymorphisms in CYP450 genes and other factors, such as age, sex, [...] Read more.
Background/Objectives: Methadone maintenance treatment (MMT) is widely used in opioid use disorder (OUD). Its efficacy is influenced by its metabolism, primarily mediated by Cytochrome P450 (CYP450) enzymes in the liver. Genetic polymorphisms in CYP450 genes and other factors, such as age, sex, and concomitant treatments, contribute to interindividual variability in methadone response. This article addresses the relevance of pharmacokinetic biomarkers in methadone metabolism and its impact on treatment outcomes in European populations over the past 25 years. Methods: A systematic review was conducted using four databases (PsycINFO, PubMed, Scopus, and Web of Science) for studies published between 2000 and 2024 following the PRISMA 2020 guidelines (CRD42025641373 in PROSPERO). Two independent reviewers screened and assessed the study quality using NHLBI tools. Discrepancies were solved through consensus. Relevant data including sample size, genetic biomarkers, and key findings were extracted for each study. Data were synthesized and described in detail. Results: Fourteen studies on pharmacogenetic biomarkers influencing methadone metabolism in European populations were analyzed, encompassing a total of 3180 subjects. CYP2B6*6 was identified as a key variant associated with increased (S)-methadone plasma levels, potentially leading to cardiac complications, while the role of other pharmacokinetic genes, including ABCB1 and CYP2D6, was inconclusive. Conclusions: Genetic polymorphisms significantly influence methadone metabolism, with the CYP2B6*6 allele playing a key role in (S)-methadone metabolism and associated with cardiac risks. Pharmacogenetic studies integrating co-mediation—the principal cause of phenoconversion—as a potential variable alongside gender differences and encompassing adequate sample sizes could improve outcomes and establish the basis for personalized medicine of MMT. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

Back to TopTop