Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (348)

Search Parameters:
Keywords = CTX1B

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2329 KiB  
Article
Flavonoid Extract of Senecio Scandens Buch.-Ham. Ameliorates CTX-Induced Immunosuppression and Intestinal Damage via Activating the MyD88-Mediated Nuclear Factor-κB Signaling Pathway
by Xiaolin Zhu, Lulu Zhang, Xuan Ni, Jian Guo, Yizhuo Fang, Jianghan Xu, Zhuo Chen and Zhihui Hao
Nutrients 2025, 17(15), 2540; https://doi.org/10.3390/nu17152540 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: Senecio scandens Buch.-Ham. is a flavonoid-rich traditional medicinal plant with established immunomodulatory properties. However, the mechanisms underlying the immunoregulatory and intestinal protective effects of its flavonoid extract (Senecio scandens flavonoids—SSF) remain unclear. This study characterized SSF’s bioactive components and evaluated [...] Read more.
Background/Objectives: Senecio scandens Buch.-Ham. is a flavonoid-rich traditional medicinal plant with established immunomodulatory properties. However, the mechanisms underlying the immunoregulatory and intestinal protective effects of its flavonoid extract (Senecio scandens flavonoids—SSF) remain unclear. This study characterized SSF’s bioactive components and evaluated its efficacy against cyclophosphamide (CTX)-induced immunosuppression and intestinal injury. Methods: The constituents of SSF were identified using UHPLC/Q-Orbitrap/HRMS. Mice with CTX-induced immunosuppression were treated with SSF (80, 160, 320 mg/kg) for seven days. Immune parameters (organ indices, lymphocyte proliferation, cytokine, and immunoglobulin levels) and gut barrier integrity markers (ZO-1, Occludin, Claudin-1 protein expression; sIgA secretion; microbiota composition) were assessed. Network pharmacology combined with functional assays elucidated the underlying regulatory mechanisms. Results: Twenty flavonoids were identified in SSF, with six prototype compounds detectable in the blood. The SSF treatment significantly ameliorated CTX-induced weight loss and atrophy of the thymus and spleen. It enhanced splenic T- and B-lymphocyte proliferation by 43.6% and 29.7%, respectively; normalized the CD4+/CD8+ ratio (1.57-fold increase); and elevated levels of IL-2, IL-6, IL-10, TNF-α, IFN-γ, IgM, and IgG. Moreover, SSF reinforced the intestinal barrier by upregulating tight junction protein expression and sIgA levels while modulating the gut microbiota, enriching beneficial taxa (e.g., the Lachnospiraceae_NK4A136_group, Akkermansia) and suppressing pathogenic Alistipes. Mechanistically, SSF activated the TLR/MyD88/NF-κB pathway, with isoquercitrin identified as a pivotal bioactive constituent. Conclusions: SSF effectively mitigates CTX-induced immunosuppression and intestinal damage. These findings highlight SSF’s potential as a dual-functional natural agent for immunomodulation and intestinal protection. Subsequent research should validate isoquercitrin’s molecular targets and assess SSF’s clinical efficacy. Full article
(This article belongs to the Section Nutrition and Metabolism)
14 pages, 384 KiB  
Article
Outbreak Caused by VIM-1- and VIM-4-Positive Proteus mirabilis in a Hospital in Zagreb
by Branka Bedenić, Gernot Zarfel, Josefa Luxner, Andrea Grisold, Marina Nađ, Maja Anušić, Vladimira Tičić, Verena Dobretzberger, Ivan Barišić and Jasmina Vraneš
Pathogens 2025, 14(8), 737; https://doi.org/10.3390/pathogens14080737 - 26 Jul 2025
Viewed by 205
Abstract
Background/objectives: Proteus mirabilis is a frequent causative agent of urinary and wound infections in both community and hospital settings. It develops resistance to expanded-spectrum cephalosporins (ESCs) due to the production of extended-spectrum β-lactamases (ESBLs) or plasmid-mediated AmpC β-lactamases (p-AmpCs). Recently, carbapenem-resistant isolates of [...] Read more.
Background/objectives: Proteus mirabilis is a frequent causative agent of urinary and wound infections in both community and hospital settings. It develops resistance to expanded-spectrum cephalosporins (ESCs) due to the production of extended-spectrum β-lactamases (ESBLs) or plasmid-mediated AmpC β-lactamases (p-AmpCs). Recently, carbapenem-resistant isolates of P. mirabilis emerged due to the production of carbapenemases, mostly belonging to Ambler classes B and D. Here, we report an outbreak of infections due to carbapenem-resistant P. mirabilis that were observed in a psychiatric hospital in Zagreb, Croatia. The characteristics of ESBL and carbapenemase-producing P. mirabilis isolates, associated with an outbreak, were analyzed. Materials and methods: The antibiotic susceptibility testing was performed by the disk-diffusion and broth dilution methods. The double-disk synergy test (DDST) and inhibitor-based test with clavulanic and phenylboronic acid were applied to screen for ESBLs and p-AmpCs, respectively. Carbapenemases were screened by the modified Hodge test (MHT), while carbapenem hydrolysis was investigated by the carbapenem inactivation method (CIM) and EDTA-carbapenem-inactivation method (eCIM). The nature of the ESBLs, carbapenemases, and fluoroquinolone-resistance determinants was investigated by PCR. Plasmids were characterized by PCR-based replicon typing (PBRT). Selected isolates were subjected to molecular characterization of the resistome by an Inter-Array Genotyping Kit CarbaResisit and whole-genome sequencing (WGS). Results: In total, 20 isolates were collected and analyzed. All isolates exhibited resistance to amoxicillin alone and when combined with clavulanic acid, cefuroxime, cefotaxime, ceftriaxone, cefepime, imipenem, ceftazidime–avibactam, ceftolozane–tazobactam, gentamicin, amikacin, and ciprofloxacin. There was uniform susceptibility to ertapenem, meropenem, and cefiderocol. The DDST and combined disk test with clavulanic acid were positive, indicating the production of an ESBL. The MHT was negative in all except one isolate, while the CIM showed moderate sensitivity, but only with imipenem as the indicator disk. Furthermore, eCIM tested positive in all of the CIM-positive isolates, consistent with a metallo-β-lactamase (MBL). PCR and sequencing of the selected amplicons identified VIM-1 and VIM-4. The Inter-Array Genotyping Kit CarbaResist and WGS identified β-lactam resistance genes blaVIM, blaCTX-M-15, and blaTEM genes; aminoglycoside resistance genes aac(3)-IId, aph(6)-Id, aph(3″)-Ib, aadA1, armA, and aac(6′)-IIc; as well as resistance genes for sulphonamides sul1 and sul2, trimethoprim dfr1, chloramphenicol cat, and tetracycline tet(J). Conclusions: This study revealed an epidemic spread of carbapenemase-producing P. mirabilis in two wards in a psychiatric hospital. Due to the extensively resistant phenotype (XDR), therapeutic options were limited. This is the first report of carbapenemase-producing P. mirabilis in Croatia. Full article
(This article belongs to the Special Issue Emerging and Neglected Pathogens in the Balkans)
Show Figures

Figure 1

20 pages, 2552 KiB  
Article
Environmental Dispersion of Multiresistant Enterobacteriaceae in Aquatic Ecosystems in an Area of Spain with a High Density of Pig Farming
by Javier Díez de los Ríos, Noemí Párraga-Niño, María Navarro, Judit Serra-Pladevall, Anna Vilamala, Elisenda Arqué, María Baldà, Tamar Nerea Blanco, Luisa Pedro-Botet, Óscar Mascaró and Esteban Reynaga
Antibiotics 2025, 14(8), 753; https://doi.org/10.3390/antibiotics14080753 - 25 Jul 2025
Viewed by 273
Abstract
Background: This study aimed to (a) assess the prevalence of multidrug-resistant (MDR) Enterobacteriaceae in the waters of two rivers and wastewater treatment plants (WWTPs) in a region of Catalonia, Spain; (b) genetically characterize the MDR strains; and (c) compare extended-spectrum β-lactamase (ESBL)-producing [...] Read more.
Background: This study aimed to (a) assess the prevalence of multidrug-resistant (MDR) Enterobacteriaceae in the waters of two rivers and wastewater treatment plants (WWTPs) in a region of Catalonia, Spain; (b) genetically characterize the MDR strains; and (c) compare extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolates from environmental and human sources. Methods: A total of 62 samples were collected from the influent and effluent of 31 WWTPs and 29 river water samples from 11 sites. Simultaneously, 382 hospitalized patients were screened for MDR Enterobacteriaceae using rectal swabs. All isolates underwent antibiotic susceptibility testing and whole-genome sequencing. Results: MDR Enterobacteriaceae were detected in 48.4% of WWTP samples, with 18.5% ESBL-producing E. coli and 1.5% (one sample) OXA-48-producing K. pneumoniae in influents, and 12.8% ESBL-producing E. coli in effluents. In river waters, 5.6% of samples contained ESBL-producing E. coli and 1.4% (1 sample) contained VIM-producing Enterobacter cloacae complex strains. Among patients, 10.2% (39/382) carried MDR Gram-negative bacilli, of which 66.7% were ESBL-producing E. coli. In aquatic ecosystems E. coli ST131 (13.3%) and ST162 (13.3%) were the most common strains, while in humans the common were E. coli ST131 (33.3%), ST69 (11.1%) and ST410 (7.4%) in humans. The most frequent environmental antibiotic resistance genes (ARG) were blaCTX-M-15 (24%) and blaTEM-1B (20%), while the most common ARGs were blaTEM-1B (20.4%), blaCTX-M15 (18.4%) and blaCTX-M-27 (14.3%). IncF plasmids were predominant in environmental and human strains. Conclusions: ESBL-producing E. coli and carbapenemase-producing Enterobacteriaceae are present in aquatic environments in the region. Phylogenetic similarities between environmental and clinical strains suggest a possible similar origin. Further studies are necessary to clarify transmission routes and environmental impact. Full article
(This article belongs to the Special Issue A One Health Approach to Antimicrobial Resistance, 2nd Edition)
Show Figures

Graphical abstract

16 pages, 1767 KiB  
Article
Population Structure, Genomic Features, and Antibiotic Resistance of Avian Pathogenic Escherichia coli in Shandong Province and Adjacent Regions, China (2008–2023)
by Shikai Song, Yao Wang, Zhihai Liu, Rongling Zhang, Kaiyuan Li, Bin Yin, Zunxiang Yan, Shifa Yang, Shuqian Lin and Yunpeng Yi
Microorganisms 2025, 13(7), 1655; https://doi.org/10.3390/microorganisms13071655 - 13 Jul 2025
Viewed by 625
Abstract
Avian pathogenic Escherichia coli (APEC) poses a global threat to poultry health and public safety due to its high lethality, limited treatment options, and potential for zoonotic transmission via the food chain. However, long-term genomic surveillance remains limited, especially in countries like China [...] Read more.
Avian pathogenic Escherichia coli (APEC) poses a global threat to poultry health and public safety due to its high lethality, limited treatment options, and potential for zoonotic transmission via the food chain. However, long-term genomic surveillance remains limited, especially in countries like China where poultry farming is highly intensive. This study aimed to characterize the population structure, virulence traits, and antimicrobial resistance of 81 APEC isolates from diseased chickens collected over 16 years from Shandong and neighboring provinces in eastern China. The isolates were grouped into seven Clermont phylogroups, with A and B1 being dominant. MLST revealed 27 STs, and serotyping identified 29 O and 16 H antigens, showing high genetic diversity. The minor phylogroups (B2, C, D, E, G) encoded more virulence genes and had higher virulence-plasmid ColV carriage, with enrichment for iron-uptake, protectins, and extraintestinal toxins. In contrast, the dominant phylogroups A and B1 primarily carried adhesin and enterotoxin genes. Antimicrobial resistance was widespread: 76.5% of isolates were multidrug-resistant. The minor phylogroups exhibited higher tetracycline resistance (mediated by tet(A)), whereas the major phylogroups showed increased resistance to third- and fourth-generation cephalosporins (due to blaCTX-M-type ESBL genes). These findings offer crucial data for APEC prevention and control, safeguarding the poultry industry and public health. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

23 pages, 1347 KiB  
Article
Antibiotic Resistance, Virulence Genes, and Molecular Diversity of Clinical Klebsiella pneumoniae Isolates from Patients of District Hospital in Central Poland
by Barbara Kot, Małgorzata Witeska, Piotr Szweda, Małgorzata Piechota, Elżbieta Kondera, Elżbieta Horoszewicz, Izabela Balak, Ahmer Bin Hafeez and Alicja Synowiec
Pathogens 2025, 14(7), 648; https://doi.org/10.3390/pathogens14070648 - 30 Jun 2025
Viewed by 311
Abstract
In hospital environments, pathogenic bacteria spread easily and acquire virulence and antibiotic resistance genes. The aim of the study was an evaluation of the genetic diversity of 109 K. pneumoniae isolates recovered from patients of a district hospital in central Poland. The frequencies [...] Read more.
In hospital environments, pathogenic bacteria spread easily and acquire virulence and antibiotic resistance genes. The aim of the study was an evaluation of the genetic diversity of 109 K. pneumoniae isolates recovered from patients of a district hospital in central Poland. The frequencies of genes coding for β-lactamases, efflux pumps, and virulence factors were determined. Genotyping of the isolates was performed with ERIC (Enterobacterial Repetitive Intergenic Consensus) and REP (Repetitive Element Sequence Based) PCR techniques, with 21 and 19 genotypes being identified, respectively. The blaSHV-1 (92.7%), blaCTX-M group 1 (83.5%), blaTEM-1 (28.4%), blaNDM-1 (16.5%), blaVEB-1 (11.0%), blaCTX-M group 9 (3.7%), blaKPC (1.8%), blaIMP, blaOXA-48, blaCTX-M group 2, blaCTX-M groups 8, and 25/26 (0% each) and efflux pumps: AcrAB (100%), tolC (93.6%), and mdtk (60.5%), and virulence genes coding: urease subunit ureA (94.5%) endotoxins wabG (92.7%) and uge (64.2%), and siderophore iucB (3.7%) were detected. The blaSHV-1, blaCTX-M group 1, mdtk, tolC, AcrAB (16.5%); blaSHV-1, blaCTX-M group 1, tolC, AcrAB (15.6%), and blaSHV-1, blaCTX-M group 1, blaNDM-1, mdtk, tolC, AcrAB (11.9%) were the most common resistance patterns. The distribution of resistance and virulence genes varied more between hospital wards than between different clinical materials. Hospital’s antibiotic-resistant and virulent K. pneumoniae, able to spread among humans, animals, and in the environment, pose a significant threat to public health. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

21 pages, 2764 KiB  
Article
First Report of Stenotrophomonas maltophilia from Canine Dermatological Infections: Unravelling Its Antimicrobial Resistance, Biofilm Formation, and Virulence Traits
by Ria Rajeev, Porteen Kannan, Sureshkannan Sundaram, Sandhya Bhavani Mohan, Sivachandiran Radjendirane, Chaudhary Jeetendrakumar Harnathbhai, Anbazhagan Subbaiyan, Viswanathan Naveenkumar, Nithya Quintoil Mohanadasse, Wilfred Ruban Savariraj, Charley A. Cull and Raghavendra G. Amachawadi
Antibiotics 2025, 14(7), 639; https://doi.org/10.3390/antibiotics14070639 - 23 Jun 2025
Viewed by 502
Abstract
Background/Objectives: The present study was aimed at documenting S. maltophilia occurrence in dogs with skin ailments, investigating its virulence, biofilm-forming ability, antimicrobial susceptibility, and zoonotic potential to inform preventive and therapeutic strategies against multidrug resistant S. maltophilia infections. Methods: Skin swabs [...] Read more.
Background/Objectives: The present study was aimed at documenting S. maltophilia occurrence in dogs with skin ailments, investigating its virulence, biofilm-forming ability, antimicrobial susceptibility, and zoonotic potential to inform preventive and therapeutic strategies against multidrug resistant S. maltophilia infections. Methods: Skin swabs (n = 300) were collected from dogs with dermatological ailments. Isolation was performed using selective media and confirmed with molecular methods, validated by MALDI Biotyper. Antimicrobial susceptibility testing and efflux activity assessment were conducted. Resistance genes related to sulfonamides, quinolones, and β-lactams were screened. Virulence was assessed by biofilm formation, motility, and virulence gene profiling. Results: In total, 15 S. maltophilia (5%) isolates were identified. All 15 isolates were susceptible to trimethoprim-sulfamethoxazole, enrofloxacin, gatifloxacin, levofloxacin, minocycline, and tigecycline, but resistant to cefpodoxime and aztreonam. The following resistance genes qnr (93.3%), blaOXA-48 (46.7%), blaKPC (33.3%), blaNDM (33.3%), blaCTX-M (20%), blaSHV (20%), and blaTEM (6.7%) were detected. All 15 isolates displayed high efflux activity. Overall, 9 isolates (60%) were strong biofilm producers, and 6 (40%) were moderate. Virulence genes such as virB, motA, rmlA, and fliC were present in all 15 isolates, with others varying in frequency. All isolates exhibited swimming motility. Heat map clustering showed diverse profiles, with no identical isolate patterns. Correlation analysis indicated positive associations between several antimicrobial resistance and virulence genes. Conclusions: This study underscores the zoonotic potential of S. maltophilia from dogs, advocating for a One Health approach to mitigate infection risks and limit the spread of virulent multidrug resistant pathogens. Full article
(This article belongs to the Special Issue Antimicrobial Resistance and Infections in Veterinary Settings)
Show Figures

Graphical abstract

16 pages, 2852 KiB  
Article
A Novel Hybrid Peptide VLP-Aβ Efficiently Regulates Immunity by Stimulating Myeloid Differentiation Protein and Activating the NF-κB Pathway
by Junyong Wang, Xuelian Zhao, Rijun Zhang, Jing Zhang, Yucui Tong, Zaheer Abbas, Dayong Si and Xubiao Wei
Int. J. Mol. Sci. 2025, 26(12), 5834; https://doi.org/10.3390/ijms26125834 - 18 Jun 2025
Viewed by 387
Abstract
Immunosuppression dramatically increases tissue and organ susceptibility to infection, injury, and even cancer. This poses a serious threat to human and animal health. In a previous study, we established a platform for high-throughput design and screening of multifunctional peptides. Using this platform, we [...] Read more.
Immunosuppression dramatically increases tissue and organ susceptibility to infection, injury, and even cancer. This poses a serious threat to human and animal health. In a previous study, we established a platform for high-throughput design and screening of multifunctional peptides. Using this platform, we successfully identified a novel hybrid peptide, VLP-Aβ (VA), which exhibits both immunomodulatory and antioxidant properties. This study aimed to evaluate the immunomodulatory activity of VA and investigate the underlying molecular mechanisms. In the cyclophosphamide (CTX)-induced immunodeficient mouse model, VA significantly alleviated CTX-induced weight loss. It also restored thymus and spleen indices, and increased serum immunoglobulins (IgA, IgM, IgG) and cytokines (TNF-α, IL-6, IL-1β) levels. VA also improved splenic lymphocyte proliferation, CD4+/CD8+ T cell ratios, and NK cell cytotoxicity. At the cellular level, western blot analysis showed that VA activated the TLR4-NF-κB pathway in RAW264.7 macrophages. Mechanistically, inhibition of the MD2 protein by L6H21 abolished VA’s immunomodulatory effects. This confirms MD2 as a critical mediator. Molecular docking and dynamics simulations revealed that VA binds stably to the hydrophobic pocket of MD2. These findings suggest that VA exerts immunomodulatory effects by stimulating MD2 and activating the TLR4-NF-κB pathway, which provides new ideas, techniques, and approaches for the development of novel peptide immunomodulators. Full article
(This article belongs to the Special Issue Targeted Therapy for Immune Diseases)
Show Figures

Figure 1

16 pages, 803 KiB  
Article
Virulence and Antibiotic Resistance of aEPEC/STEC Escherichia coli Pathotypes with Serotype Links to Shigella boydii 16 Isolated from Irrigation Water
by Yessica Enciso-Martínez, Edwin Barrios-Villa, Manuel G. Ballesteros-Monrreal, Armando Navarro-Ocaña, Dora Valencia, Gustavo A. González-Aguilar, Miguel A. Martínez-Téllez, Julián Javier Palomares-Navarro and Fernando Ayala-Zavala
Pathogens 2025, 14(6), 549; https://doi.org/10.3390/pathogens14060549 - 1 Jun 2025
Viewed by 805
Abstract
Irrigation water can serve as a reservoir and transmission route for pathogenic Escherichia coli, posing a threat to food safety and public health. This study builds upon a previous survey conducted in Hermosillo, Sonora (Mexico), where 445 samples were collected from a [...] Read more.
Irrigation water can serve as a reservoir and transmission route for pathogenic Escherichia coli, posing a threat to food safety and public health. This study builds upon a previous survey conducted in Hermosillo, Sonora (Mexico), where 445 samples were collected from a local Honeydew melon farm and associated packing facilities. Among the 32 E. coli strains recovered, two strains, A34 and A51, were isolated from irrigation water and selected for further molecular characterization by PCR, due to their high pathogenic potential. Both strains were identified as hybrid aEPEC/STEC pathotypes carrying bfpA and stx1 virulence genes. Adhesion assays in HeLa cells revealed aggregative and diffuse patterns, suggesting enhanced colonization capacity. Phylogenetic analysis classified A34 within group B2 as associated with extraintestinal pathogenicity and antimicrobial resistance, while A51 was unassigned to any known phylogroup. Serotyping revealed somatic antigens shared with Shigella boydii 16, suggesting possible horizontal gene transfer or antigenic convergence. Antibiotic susceptibility testing showed resistance to multiple β-lactam antibiotics, including cephalosporins, linked to the presence of blaCTX-M-151 and blaCTX-M-9. Although no plasmid-mediated quinolone resistance genes were detected, resistance may involve efflux pumps or mutations in gyrA and parC. These findings are consistent with previous reports of E. coli adaptability in agricultural environments, suggesting potential genetic adaptability. While our data support the presence of virulence and resistance markers, further studies would be required to demonstrate mechanisms such as horizontal gene transfer or adaptive evolution. Full article
Show Figures

Graphical abstract

13 pages, 263 KiB  
Article
Report of High-Risk Carbapenem-Resistant K. pneumoniae ST307 Clone Producing KPC-2, SHV-106, CTX-M-15, and VEB-1 in Greece
by Maria Chatzidimitriou, Pandora Tsolakidou, Maria Anna Kyriazidi, Sotiris Varlamis, Ilias S. Frydas, Maria Mavridou and Stella Mitka
Antibiotics 2025, 14(6), 567; https://doi.org/10.3390/antibiotics14060567 - 31 May 2025
Viewed by 592
Abstract
Background/Objectives: Klebsiella pneumoniae ST307 is emerging as a significant global high-risk antimicrobial-resistant (AMR) clone with a notable capacity to acquire and disseminate resistance genes. However, there is limited research on the pathogenicity, virulence, and adaptation of ST307 strains and on the clinical characteristics [...] Read more.
Background/Objectives: Klebsiella pneumoniae ST307 is emerging as a significant global high-risk antimicrobial-resistant (AMR) clone with a notable capacity to acquire and disseminate resistance genes. However, there is limited research on the pathogenicity, virulence, and adaptation of ST307 strains and on the clinical characteristics of infected patients. Methods: In this study, a carbapenem-resistant K. pneumoniae (CRKP) ST307 strain named U989 was isolated from a urine culture of a hospitalized patient in Volos, Greece, in July 2024. Whole-genome sequencing was performed to identify resistance genes to β-lactams blaKPC-2, blaCTX-M-15, blaTEM-1B, blaOXA-1, blaOXA-10, blaSHV-106, and blaVEB-1 and resistance genes to other antibiotics. Results: A genomic analysis also revealed the presence of virulence factors such as iutA, clpK1, fyuA, fimH, mrkA, Irp2, and TraT and an IncFiB(pQil)/IncFII(K) replicon, which harbors the blaKPC-2 gene. Additionally, the transposable element Tn4401 was identified as a key vehicle for the mobilization of the blaKPC-2 resistance gene. Finally, this is the report of a high-risk CRKP ST307 clone expressing KPC-2, SHV-106, CTX-M-15, and VEB-1 bla genes in Greece. Conclusions: The coexistence of these resistance genes in addition to aminoglycoside, quinolone, and other resistance genes results in difficult-to-treat infections caused by respective carrier strains, often requiring the use of last-resort antibiotics and contributing to the global challenge of antimicrobial resistance. Full article
18 pages, 546 KiB  
Article
Outbreak of NDM-5-Producing Proteus mirabilis During the COVID-19 Pandemic in an Argentine Hospital
by Barbara Ghiglione, Ana Paula Rodriguez, María Sol Haim, Laura Esther Friedman, Nilton Lincopan, María Eugenia Ochiuzzi and José Alejandro Di Conza
Antibiotics 2025, 14(6), 557; https://doi.org/10.3390/antibiotics14060557 - 29 May 2025
Viewed by 631
Abstract
Background: During the COVID-19 pandemic, the emergence of multidrug-resistant (MDR) pathogens, driven by heightened antibiotic usage and device-associated infections, has posed significant challenges to healthcare. This study reports an outbreak of Proteus mirabilis producing NDM-5 and CTX-M-15 β-lactamases in a hospital in Buenos [...] Read more.
Background: During the COVID-19 pandemic, the emergence of multidrug-resistant (MDR) pathogens, driven by heightened antibiotic usage and device-associated infections, has posed significant challenges to healthcare. This study reports an outbreak of Proteus mirabilis producing NDM-5 and CTX-M-15 β-lactamases in a hospital in Buenos Aires, Argentina, from October 2020 to April 2021. To our knowledge, this represents the first documented outbreak of NDM-5-producing P. mirabilis in the country. Methods: A total of 82 isolates were recovered from 40 patients, with 41.5% from blood cultures and 18.3% from respiratory and urinary samples, among others. Antimicrobial susceptibility testing, PCR-based methods, and MALDI-TOF MS cluster analysis were conducted. Whole genome sequencing (WGS) was performed to characterize the MLST, resistome and plasmid content. Biofilm formation assays and in vitro rifampicin susceptibility tests were also conducted. Result: Most isolates exhibited resistance to carbapenems, cephalosporins, aminoglycosides, and fluoroquinolones, while retaining susceptibility to aztreonam. Genetic analysis confirmed the co-presence of the blaNDM-5 and blaCTX-M-15 genes. Clonal relationships was supported by PCR-based typing and MALDI-TOF MS cluster analysis. WGS revealed a resistome comprising 25 resistance genes, including rmtB and both β-lactamases, as well as the presence of an incomplete IncQ1 replicon associated with multiple resistance determinants. MLST classified this clone as belonging to ST135. Despite the biofilm-forming capacity observed across strains, rifampicin demonstrated potential for disrupting established biofilms at concentrations ≥32 µg/mL in vitro. The MDR profile of the outbreak strain significantly limited therapeutic options. Conclusions: This study highlights the growing threat of NDM-producing P. mirabilis in Argentina. The absence of surveillance cultures from the index case limits insights into the outbreak’s origin. These findings underscore the importance of integrating genomic surveillance into infection control protocols to mitigate the spread of MDR pathogens. Full article
(This article belongs to the Special Issue Multidrug-Resistance Patterns in Infectious Pathogens)
Show Figures

Figure 1

15 pages, 355 KiB  
Article
Carriage of Rifampicin- and Multidrug-Resistant Pseudomonas aeruginosa in Apparently Healthy Camels: A View Through a Zoonosis Lens
by Dalia Hamza and Hala M. Zaher
Microbiol. Res. 2025, 16(6), 107; https://doi.org/10.3390/microbiolres16060107 - 25 May 2025
Viewed by 731
Abstract
Pseudomonas aeruginosa poses a significant global concern in human and veterinary medicine due to its resistance to multiple antimicrobials. Limited research has been carried out on rifampicin-resistant P. aeruginosa, particularly in food-producing animals such as camels. Therefore, the purpose of this study [...] Read more.
Pseudomonas aeruginosa poses a significant global concern in human and veterinary medicine due to its resistance to multiple antimicrobials. Limited research has been carried out on rifampicin-resistant P. aeruginosa, particularly in food-producing animals such as camels. Therefore, the purpose of this study was to investigate the occurrence of rifampicin- and multidrug-resistant P. aeruginosa in apparently healthy camels. Nasal swabs and tissue samples were collected from one hundred apparently healthy slaughtered camels, and they were subjected to bacteriological isolation and identification of P. aeruginosa. Antimicrobial susceptibility testing was performed, followed by phenotypic and genotypic detection of ESBL-producing P. aeruginosa isolates. Twenty-two P. aeruginosa strains were investigated for the rpoB gene, including rifampicin-resistant isolates. P. aeruginosa was found in 16% (16/100) of the investigated apparently healthy slaughtered camels. P. aeruginosa was confirmed in sixteen and six isolates from nasal swabs and tissue samples, respectively, by pigment production on cetrimide agar. The most predominant beta-lactamase-encoding gene in twenty-two ESBL-producing isolates was blaPER (40.9%), followed by blaCTX-M (36.4%), blaTEM (31.8%), and blaSHV (27.3%). Multidrug resistance was identified in 54.5% (12/22) of P. aeruginosa isolates. The rpoB gene was detected in 11 (50%) out of 22 P. aeruginosa strains, with eleven positive isolates being regarded as rifampicin-resistant. Furthermore, phylogenetic analysis of a rifampicin- and multidrug-resistant P. aeruginosa rpoB gene sequence revealed a genetic relatedness to P. aeruginosa strains retrieved from human clinical cases. In conclusion, this study provides a snapshot on the occurrence of rifampicin- and multidrug-resistant P. aeruginosa among apparently healthy camels. In line with a possible risk of animal-to-human transfer, further molecular studies on rifampicin-resistant P. aeruginosa in animals are required to better understand and combat this serious zoonotic pathogen. Full article
Show Figures

Figure 1

25 pages, 7392 KiB  
Article
Icariin Ameliorates Cyclophosphamide-Induced Renal Encephalopathy by Modulating the NF-κB and Keap1-Nrf2 Signaling Pathways
by Meiling Shi, Hong Kan, Yijia Tang, Lanshi Tian, Xiangjuan Guo, Weijia Chen, Jianan Geng, Ying Zong, Yunfeng Bi and Zhongmei He
Int. J. Mol. Sci. 2025, 26(10), 4838; https://doi.org/10.3390/ijms26104838 - 19 May 2025
Viewed by 588
Abstract
Chemotherapy-induced renal encephalopathy (RE) is a disease characterized by cognitive impairment of the brain caused by impaired kidney function for which there is no definitive treatment. Icariin (ICA), the main active component of Epimedium, has a good nervous system protection and anti-neuroinflammation [...] Read more.
Chemotherapy-induced renal encephalopathy (RE) is a disease characterized by cognitive impairment of the brain caused by impaired kidney function for which there is no definitive treatment. Icariin (ICA), the main active component of Epimedium, has a good nervous system protection and anti-neuroinflammation effect, but its effect on the brain injury caused by renal insufficiency as a result of chemotherapy remains unclear. In this study, we demonstrated that 100 mg/kg ICA can not only successfully interface with serotonin and regulate hormone levels but also ameliorates kidney damage and cognitive impairment in cyclophosphamide (CTX)-induced RE mouse models and inhibits inflammation, oxidation, and apoptosis by regulating NF-κB, keap1-Nrf2, and apoptosis pathways. In order to further study the protective effect of ICA on RE, we used CTX-induced HT22 and HEK293 cell injury models, and the ICA intervention showed that ICA could prevent apoptosis by regulating the expression of the apoptosis-related proteins caspase-3, Bcl-2, Bax and BDNF. Overall, our study provides a basis for further investigation of the therapeutic potential of ICA in the treatment of neurodegenerative diseases in the context of renal dysfunction, and further studies are needed at a later stage to fully elucidate the underlying molecular mechanisms. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

15 pages, 1501 KiB  
Article
Curcumin Reverses Antibiotic Resistance and Downregulates Shiga Toxin Expression in Enterohemorrhagic E. coli
by Martin Zermeño-Ruiz, Mirian Cobos-Vargas, Mauro Donaldo Saucedo-Plascencia, Rafael Cortés-Zárate, Leonardo Hernandez-Hernandez, Teresa Arcelia Garcia-Cobian, Teresa Estrada-Garcia and Araceli Castillo-Romero
Diseases 2025, 13(5), 154; https://doi.org/10.3390/diseases13050154 - 17 May 2025
Viewed by 557
Abstract
Background: Enterohemorrhagic Escherichia coli (EHEC) is a considerable public health concern associated with several foodborne outbreaks of bloody diarrhea (BD) and the potentially lethal hemolytic uremic syndrome (HUS), the pathophysiology of which is attributable to the Shiga toxin (Stx) produced by this bacterium. [...] Read more.
Background: Enterohemorrhagic Escherichia coli (EHEC) is a considerable public health concern associated with several foodborne outbreaks of bloody diarrhea (BD) and the potentially lethal hemolytic uremic syndrome (HUS), the pathophysiology of which is attributable to the Shiga toxin (Stx) produced by this bacterium. In most patients, supportive treatment will be sufficient; however, in some cases, antibiotic treatment may be necessary. Most antibiotics are not recommended for EHEC infection treatment, particularly those that kill the bacteria, since this triggers the release of Stx in the body, inducing or worsening HUS. Azithromycin, which prevents the release of Stx and is a weaker inducer of the SOS system, has been successfully used to reduce EHEC shedding. It is necessary to identify compounds that eliminate EHEC without inducing Stx release. The use of natural compounds such as curcumin (CUR), a polyphenol derived from turmeric, has been highlighted as an alternative bactericidal treatment approach. Objective: The objective of this study was to establish the effect of CUR and its interactions with selected antibiotics on resistant EHEC O157/H7/EDL933. Methods: Bacterial cultures were exposed to CUR at three different concentrations (110, 220, and 330 µg/mL) and 1.2% DMSO, and the antimicrobial activity of CUR was assessed by measuring the optical density at 600 nm (OD600). The synergy of CUR and the antibiotics was determined with the FIC method. RT-PCR was performed to determine the expression levels of the blaCTX-M-15, catA1, acrAB-tolC stx2A, and stx2B genes. Results: Our data indicate that CUR did not affect the growth of EHEC, but when combined with the antibiotics, it acted as a bacterial resistance breaker. Synergistic combinations of CUR and cefotaxime or chloramphenicol significantly reduced colony counts. Conclusions: Our findings support the potential of CUR as a sensitizer or in combination therapy against EHEC. Full article
(This article belongs to the Section Infectious Disease)
Show Figures

Figure 1

41 pages, 5959 KiB  
Review
Biomarker-Driven Approaches to Bone Metastases: From Molecular Mechanisms to Clinical Applications
by Youssef Elshimy, Abdul Rahman Alkhatib, Bilal Atassi and Khalid S. Mohammad
Biomedicines 2025, 13(5), 1160; https://doi.org/10.3390/biomedicines13051160 - 10 May 2025
Cited by 1 | Viewed by 1639
Abstract
Bone metastases represent a critical complication in oncology, frequently indicating advanced malignancy and substantially reducing patient quality of life. This review provides a comprehensive analysis of the complex interactions between tumor cells and the bone microenvironment, emphasizing the relevance of the “seed and [...] Read more.
Bone metastases represent a critical complication in oncology, frequently indicating advanced malignancy and substantially reducing patient quality of life. This review provides a comprehensive analysis of the complex interactions between tumor cells and the bone microenvironment, emphasizing the relevance of the “seed and soil” hypothesis, the RANK/RANKL/OPG signaling axis, and Wnt signaling pathways that collectively drive metastatic progression. The molecular and cellular mechanisms underlying the formation of osteolytic and osteoblastic lesions are examined in detail, with a particular focus on their implications for bone metastases associated with breast, prostate, lung, and other cancers. A central component of this review is the categorization of pathological biomarkers into four types: diagnostic, prognostic, predictive, and monitoring. We provide a comprehensive evaluation of circulating tumor cells (CTCs), bone turnover markers (such as TRACP-5b and CTX), advanced imaging biomarkers (including PET/CT and MRI), and novel genomic signatures. These biomarkers offer valuable insights for early detection, enhanced risk stratification, and optimized therapeutic decision-making. Furthermore, emerging strategies in immunotherapy and bone-targeted treatments are discussed, highlighting the potential of biomarker-guided precision medicine to enhance personalized patient care. The distinctiveness of this review lies in its integrative approach, combining fundamental pathophysiological insights with the latest developments in biomarker discovery and therapeutic innovation. By synthesizing evidence across various cancer types and biomarker categories, we provide a cohesive framework aimed at advancing both the scientific understanding and clinical management of bone metastases. Full article
(This article belongs to the Special Issue Pathological Biomarkers in Precision Medicine)
Show Figures

Figure 1

25 pages, 1360 KiB  
Article
Phenotypic and Genotypic Characterization of ESBL-, AmpC-, and Carbapenemase-Producing Klebsiella pneumoniae and High-Risk Escherichia coli CC131, with the First Report of ST1193 as a Causative Agent of Urinary Tract Infections in Human Patients in Algeria
by Hajer Ziadi, Fadela Chougrani, Abderrahim Cheriguene, Leticia Carballeira, Vanesa García and Azucena Mora
Antibiotics 2025, 14(5), 485; https://doi.org/10.3390/antibiotics14050485 - 9 May 2025
Viewed by 1243
Abstract
Background: High-risk Escherichia coli clones, such as sequence type (ST)131 and ST1193, along with multidrug-resistant (MDR) Klebsiella pneumoniae, are globally recognized for their significant role in urinary tract infections (UTIs). This study aimed to provide an overview of the virulence factors, clonal [...] Read more.
Background: High-risk Escherichia coli clones, such as sequence type (ST)131 and ST1193, along with multidrug-resistant (MDR) Klebsiella pneumoniae, are globally recognized for their significant role in urinary tract infections (UTIs). This study aimed to provide an overview of the virulence factors, clonal diversity, and antibiotic resistance profiles of extended-spectrum cephalosporin (ESC)-E. coli and K. pneumoniae causing UTIs in humans in the Tebessa region of Algeria. Methods: Forty E. coli and 17 K. pneumoniae isolates exhibiting ESC-resistance were recovered (July 2022–January 2024) from urine samples of patients at three healthcare facilities to be phenotypically and genotypically characterized. Whole genome sequencing (WGS) was performed on the ST1193 clone. Results: Among K. pneumoniae isolates, all except one harbored CTX-M-15, with a single isolate carrying blaCTX-M-194. Additionally, two K. pneumoniae isolates co-harboring blaCTX-M-15 and blaNDM exhibited phenotypic and genotypic hypervirulence traits. Fluoroquinolone resistance (FQR) was detected in 94.1% of K. pneumoniae isolates. The E. coli isolates carried diverse ESC-resistance genes, including CTX-M-15 (87.5%), CTX-M-27 (5%), CTX-M-1, CMY-59, and CMY-166 (2.5% each). Co-carriage of blaESC and blaOXA-48 was identified in three E. coli isolates, while 62.5% exhibited FQR. Phylogenetic analysis revealed that 52.5% of E. coli belonged to phylogroup B2, including the high-risk clonal complex (CC)131 CH40-30 (17 isolates) and ST1193 (one isolate). In silico analysis of the ST1193 genome determined O75:H5-B2 (CH14-64), and the carriage of IncI1-I(Alpha) and IncF [F-:A1:B10] plasmids. Notably, core genome single-nucleotide polymorphism (SNP) analysis demonstrated high similarity between the Algerian ST1193 isolate and a previously annotated genome from a hospital in Northwest Spain. Conclusions: This study highlights the spread and genetic diversity of E. coli CC131 CH40-30 and hypervirulent K. pneumoniae clones in Algeria. It represents the first report of a CTX-M-15-carrying E. coli ST1193 in the region. The findings emphasize the urgent need for antibiotic optimization programs and enhanced surveillance to curb the dissemination of high-risk clones that pose an increasing public health threat in Algeria. A simplified method based on virulence traits for E. coli and K. pneumoniae is proposed here for antimicrobial resistance (AMR) monitoring. Full article
(This article belongs to the Special Issue Genomic Analysis of Antimicrobial Drug-Resistant Bacteria)
Show Figures

Figure 1

Back to TopTop