Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,547)

Search Parameters:
Keywords = CRISPR-Based

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1358 KB  
Review
From Bench to Bedside: Ethical and Clinical Best Practices for Genome Editing Applications
by María Ortiz-Bueno, Federica Zinghirino, Pilar Puig Serra, Kyriaki Paschoudi, Lluis Montoliu, Erden Atilla, Yonglun Luo, Alessia Cavazza, Carsten W. Lederer and Karim Benabdellah
Int. J. Mol. Sci. 2026, 27(3), 1484; https://doi.org/10.3390/ijms27031484 - 2 Feb 2026
Abstract
Genome editing (GE) has transformed medicine by allowing precise changes to DNA, offering potential treatments for a range of inherited and acquired disorders. Several technologies support these advances, including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic [...] Read more.
Genome editing (GE) has transformed medicine by allowing precise changes to DNA, offering potential treatments for a range of inherited and acquired disorders. Several technologies support these advances, including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)-based systems, of which the latter has emerged as the most accessible, versatile, and popular. While GE holds great promise, its clinical use requires careful attention to safety, ethics and regulatory standards. Inadvertent on- and off-target DNA alterations and unintended modification of non-target cells pose major technical challenges, while bioethical considerations and the need for harmonized safety standards create regulatory challenges. The Food and Drug Administration (FDA) and European Medicines Agency (EMA), as regulatory agencies for key advanced therapy markets, provide detailed guidance on these aspects, emphasizing rigorous preclinical testing, patient monitoring, ethical consent, and compliance with legal frameworks. This concise review summarizes what is currently published in the scientific literature and recommended by regulatory agencies, providing an overview of the responsible clinical application of GE, with emphasis on patient safety, adherence to regulatory guidance, and ethical practice. Full article
(This article belongs to the Special Issue Application of Genetic Engineering in Treatments for Human Diseases)
29 pages, 888 KB  
Review
Neospora caninum: Recent Progress in Host-Pathogen Interactions, Molecular Insights, and Control Strategies
by Karim Debache and Andrew Hemphill
Microorganisms 2026, 14(2), 338; https://doi.org/10.3390/microorganisms14020338 - 2 Feb 2026
Abstract
Neospora caninum, the causative agent of abortion in cattle, has a major economic impact worldwide. This review aims to provide an overview of key advances over the last 10 years in understanding host−pathogen interactions, molecular mechanisms, and emerging control strategies and puts [...] Read more.
Neospora caninum, the causative agent of abortion in cattle, has a major economic impact worldwide. This review aims to provide an overview of key advances over the last 10 years in understanding host−pathogen interactions, molecular mechanisms, and emerging control strategies and puts them into a context with previously published important findings. More recently, novel diagnostic tools with improved sensitivity and specificity have been developed. These have supplemented the already existing methods to detect infection in clinical cases and are essential for investigations on parasite distribution, disease incidence and prevalence, and transmission of N. caninum. Epidemiological studies have revealed the influence of environmental, genetic, and ecological factors on parasite transmission dynamics, and emphasized the importance of integrated “One Health” strategies. Characteristics of different Neospora strains have been elucidated through animal models and molecular tools such as clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9)-based gene editing, high-throughput sequencing, and advanced proteomics, aiming to shed light on stage-specific gene regulation and virulence factors, contributing to the development of interventions against neosporosis. Insights into immune modulation, immune evasion, and parasite persistence contributed to the efforts towards vaccine development. In terms of therapeutics, both repurposed drugs and more targeted inhibitors have shown promising efficacy in reducing parasite burden and mitigating vertical transmission in laboratory models. Here, more recent innovations in nanoparticle-based drug delivery systems and immunomodulatory strategies are prone to enhancing therapeutic outcomes. However, a significant challenge remains the integration of molecular and immunological insights into practical applications. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

20 pages, 4571 KB  
Review
Advances in CRISPR-Cas12a/13a-Based Nucleic Acid Detection for Porcine Viral Diseases: A Comprehensive Review
by Xianyu Zhang, Xin Zhao, Yating Song, Yuewen Luo, Li Yao, Qiaolin Wu, Tingzhang Ye, Wanqin Liang, Xiaoyu Zhang, Yingyu Liang, Baizheng Liang, Jingyan Zhang and Xiangyang Li
Vet. Sci. 2026, 13(2), 141; https://doi.org/10.3390/vetsci13020141 - 31 Jan 2026
Viewed by 61
Abstract
The global swine industry suffers persistent economic losses and health challenges due to major viral pathogens such as African swine fever virus (ASFV), porcine reproductive and respiratory syndrome virus (PRRSV), classical swine fever virus (CSFV), and porcine circovirus (PCV). Traditional diagnostic methods, including [...] Read more.
The global swine industry suffers persistent economic losses and health challenges due to major viral pathogens such as African swine fever virus (ASFV), porcine reproductive and respiratory syndrome virus (PRRSV), classical swine fever virus (CSFV), and porcine circovirus (PCV). Traditional diagnostic methods, including virus isolation, serology, and quantitative PCR (qPCR), are limited by time, equipment requirements, and field applicability. Recent advances in CRISPR-based diagnostics, particularly those leveraging the collateral cleavage activity of Cas12a and Cas13a, have enabled rapid, sensitive, and field-deployable nucleic acid detection. This review outlines the principles of CRISPR-Cas12a/13a systems, their integration with isothermal amplification techniques, and their application in detecting major swine viruses. Cas12a-based platforms (e.g., DETECTR) and Cas13a-based systems (e.g., SHERLOCK) achieve detection limits as low as single-copy/μL within 25–60 min at 37 °C, offering high specificity and compatibility with visual readouts. Applications include ASFV, PRRSV, CSFV, PCV, foot-and-mouth disease virus (FMDV), porcine rotavirus (PoRV), and porcine parvovirus 7 (PPV7). Despite significant advances, challenges remain, notably the reliance on nucleic acid extraction and the need for fully integrated “sample-in, result-out” systems. Ongoing innovations in extraction-free methods, lyophilized reagents, and multiplex detection will strengthen the role of CRISPR diagnostics in swine disease surveillance and control. From an application standpoint, the technology offers a low-capital, field-adaptable alternative to qPCR, with its value proposition rooted in early outbreak containment and loss prevention. Its adoption pathway is expected to vary across production systems—serving as a sentinel tool in intensive settings, a leapfrogging solution in rapidly intensifying regions, and through shared-service models in resource-limited contexts. However, translation to routine use still requires overcoming standardization hurdles, regulatory validation, and workflow integration. Full article
36 pages, 1243 KB  
Review
Nano-Enabled Delivery of Phage-Based Antibacterials Against ESKAPE Pathogens
by Ayman Elbehiry, Eman Marzouk and Adil Abalkhail
Pharmaceutics 2026, 18(2), 185; https://doi.org/10.3390/pharmaceutics18020185 - 30 Jan 2026
Viewed by 91
Abstract
Antimicrobial resistance (AMR) remains a major clinical challenge, with Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species (ESKAPE) accounting for a substantial share of multidrug-resistant (MDR) infections worldwide. These organisms undermine antibiotic efficacy [...] Read more.
Antimicrobial resistance (AMR) remains a major clinical challenge, with Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species (ESKAPE) accounting for a substantial share of multidrug-resistant (MDR) infections worldwide. These organisms undermine antibiotic efficacy through reduced permeability, surface shielding, biofilm formation, and rapid genetic adaptation, mechanisms that primarily restrict effective exposure at infection sites. Bacteriophages, phage-derived enzymes, and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based antimicrobials provide selective and mechanistically distinct alternatives to conventional antibiotics, but their performance in vivo is often limited by instability in physiological environments, immune neutralization, uneven tissue distribution, and insufficient access to bacteria protected by biofilms or surface-associated barriers. This narrative review examines how nanotechnology-based delivery systems can address these constraints. We first outline the delivery-relevant biological barrier characteristic of ESKAPE pathogens, then summarize the therapeutic potential and inherent limitations of whole phages, phage-derived enzymes, and CRISPR-based antimicrobials when used without formulation. Major nanotechnology platforms for antibacterial delivery are reviewed, followed by analysis of how nano-enabled systems can improve stability, localization, and persistence of these biological agents. A pathogen-aware integration framework is presented that links dominant barriers in each ESKAPE pathogen to the biological modality and nano-enabled delivery strategy most likely to enhance exposure at infection sites. Translational challenges, regulatory considerations, and emerging directions, including responsive delivery systems and personalized approaches, are also discussed. Overall, nano-enabled phage-based therapeutics represent a realistic and adaptable strategy for managing MDR ESKAPE infections. Therapeutic success depends on both continued discovery and engineering of antibacterial agents and effective delivery design. Full article
(This article belongs to the Special Issue Nanotechnology in Antibacterial Drug Delivery)
15 pages, 1108 KB  
Review
A Translational Roadmap for Neurological Nonsense Mutation Disorders
by Jiaqing Li, Zhenyun Zhu and Sanqing Xu
Int. J. Mol. Sci. 2026, 27(3), 1418; https://doi.org/10.3390/ijms27031418 - 30 Jan 2026
Viewed by 218
Abstract
Nonsense mutations, responsible for ~11% of gene lesions causing human monogenic diseases, introduce premature termination codons (PTCs) that lead to truncated proteins and nonsense-mediated mRNA decay (NMD). In the central nervous system (CNS), these mutations drive severe, progressive neurological conditions such as spinal [...] Read more.
Nonsense mutations, responsible for ~11% of gene lesions causing human monogenic diseases, introduce premature termination codons (PTCs) that lead to truncated proteins and nonsense-mediated mRNA decay (NMD). In the central nervous system (CNS), these mutations drive severe, progressive neurological conditions such as spinal muscular atrophy, Rett syndrome, and Duchenne muscular dystrophy. Readthrough therapies—strategies to override PTCs and restore full-length protein expression—have evolved from early aminoglycosides to modern precision tools including suppressor tRNAs, RNA editing, and CRISPR-based platforms. Yet clinical translation remains hampered by inefficient CNS delivery, variable efficacy, and the absence of personalized stratification. In this review, we propose a translational framework—the 4 Ds of Readthrough Therapy—to systematically address these barriers. The framework dissects the pipeline into Detection (precision patient identification and biomarker profiling), Delivery (engineered vectors for CNS targeting), Decoding (context-aware molecular correction), and Durability (long-term safety and efficacy). By integrating advances in machine learning, nanocarriers, base editing, and adaptive trial designs, this roadmap provides a structured strategy to bridge the translational gap. We advocate that a synergistic, modality-tailored approach will transform nonsense suppression from palliative care to durable, precision-based cures for once-untreatable neurological disorders. Full article
Show Figures

Figure 1

15 pages, 1430 KB  
Systematic Review
Precision Breeding for a Global Staple Food: A Systematic Review with a Strategic Framework for CRISPR-Cas Applications in Rice (Oryza sativa L.)
by Nlhavat Gabriel Machel Gica, Wilard Tuto Gica, Honggui La, Yi Mi and Yi Zhou
Genes 2026, 17(2), 165; https://doi.org/10.3390/genes17020165 (registering DOI) - 30 Jan 2026
Viewed by 73
Abstract
Background: Rice is one of the world’s main staple crops, and improving its productivity and resilience is important to achieving food security under varying climatic conditions. Objectives: This systematic review synthesizes the existing evidence on the application, technical limitations, and potential of the [...] Read more.
Background: Rice is one of the world’s main staple crops, and improving its productivity and resilience is important to achieving food security under varying climatic conditions. Objectives: This systematic review synthesizes the existing evidence on the application, technical limitations, and potential of the development of genome editing technologies (CRISPR-Cas) in rice (Oryza sativa L.), as well as presents a novel approach called the CRISPR Trait Prioritization and Readiness Framework (CTPRF). Methods: Peer-reviewed articles that reported applications of genome editing based on the CRISPR-Cas system in the genome of rice for trait improvement or functional genomics were identified through searches fromPubMed, Scopus, Web of Science, and Google Scholar with studies published between 2012 and 2025. Studies were screened on predefined inclusion criteria related to experimental validation, reporting of editing efficiency, and clear phenotypic results. Data on CRISPR systems, target genes, methods of delivery, traits modified, and phenotypic results were extracted and synthesized by comparative analysis. Results: A wide variety of different CRISPR systems have been used in rice, and our results indicate that NHEJ-mediated knockouts are effective in average genotypes with editing efficiencies in the range of 70–90%, but HDR and prime editing are still under 10%. The CTPRF is being introduced as a strategic decision support tool to evaluate traits from four dimensions: technical feasibility, phenotypic predictability, impact potential, and regulatory pathway. We use this framework for case studies in pioneering countries (USA, Japan, China) and show how it can be useful for guiding research investment and policy. Conclusions: CRISPR-Cas technologies have transformed rice breeding, but their introduction requires overcoming genotype-dependent barriers to transformation and negotiating patchwork regulatory environments. The CTPRF offers a roadmap for the acceleration of the development of climate-resilient and nutritious rice varieties for the action plan. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

29 pages, 3408 KB  
Review
Advancing Bongkrekic Acid Detection: From Conventional Instrumental Analysis to Advanced Biosensing for Cross-Toxin Applications
by Zhen Chen, Danni He, Wenhan Yu, Xianshu Fu, Lingling Zhang, Mingzhou Zhang, Xiaoping Yu and Zihong Ye
Foods 2026, 15(3), 476; https://doi.org/10.3390/foods15030476 - 30 Jan 2026
Viewed by 103
Abstract
Bongkrekic acid (BKA), a highly lethal toxin, has been implicated in frequent poisoning incidents in recent years, posing a serious threat to global food safety and creating an urgent need for rapid and sensitive detection methods. This review provides a systematic analysis of [...] Read more.
Bongkrekic acid (BKA), a highly lethal toxin, has been implicated in frequent poisoning incidents in recent years, posing a serious threat to global food safety and creating an urgent need for rapid and sensitive detection methods. This review provides a systematic analysis of the entire BKA detection technologies, covering sample pretreatment techniques, instrumental analysis, immunoassays, and biosensing methods. It assesses the merits of key methods and also explores the strategic cross-application of detection paradigms developed for analogous toxins. This review delivers a comprehensive and critical evaluation of BKA detection technologies. First, it discusses sample pretreatment strategies, notably solid-phase extraction (SPE) and QuEChERS. Subsequently, it analyzes the principles, performance, and applications of core detection methods, including high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS), high-resolution mass spectrometry (HRMS), time-resolved fluorescence immunoassay (TRFIA), dual-mode immunosensors and nanomaterial-based sensors. Instrumental methods (e.g., HRMS) offer unmatched sensitivity [with a limit of detection (LOD) as low as 0.01 μg/kg], yet remain costly and laboratory-dependent. Immunoassay and biosensor approaches (TRFIA and dual-mode sensors) enable rapid on-site detection with high sensitivity (ng/mL to pg/mL), though challenges in stability and specificity remain. Looking forward, the development of next-generation BKA detection could be accelerated by cross-applying cutting-edge strategies proven for toxins—such as Fumonisin B1 (FB1), Ochratoxin A (OTA), and Aflatoxin B1 (AFB1)—including nanobody technology, CRISPR-Cas-mediated signal amplification, and multimodal integrated platforms. To translate this potential into practical tools, future research should prioritize the synthesis of high-specificity recognition elements, innovative signal amplification strategies, and integrated portable devices, aiming to establish end-to-end biosensing systems capable of on-site rapid detection through multitechnology integration. Full article
(This article belongs to the Special Issue Mycotoxins in Foods: Occurrence, Detection, and Control)
Show Figures

Graphical abstract

19 pages, 5687 KB  
Article
Tyrosinase-Deficient Skin Melanophore Lineage in Xenopus tropicalis Tadpoles Shows Strong Autofluorescence
by Yuyan Jiang, Yijian Chen, Zeri Huang, Lian Chen and Xiao Huang
Int. J. Mol. Sci. 2026, 27(3), 1367; https://doi.org/10.3390/ijms27031367 - 29 Jan 2026
Viewed by 113
Abstract
Tyrosinase, encoded by Tyr, is a key rate-limiting enzyme in melanin biosynthesis. Knockout of Tyr results in a distinct albino phenotype, making it a widely used target for evaluating gene-editing efficiency. Here, we found that the tyrosinase-deficient skin melanophore lineage of Xenopus [...] Read more.
Tyrosinase, encoded by Tyr, is a key rate-limiting enzyme in melanin biosynthesis. Knockout of Tyr results in a distinct albino phenotype, making it a widely used target for evaluating gene-editing efficiency. Here, we found that the tyrosinase-deficient skin melanophore lineage of Xenopus tropicalis (X. tropicalis) tadpoles shows strong autofluorescence under the GFP filter, which may interfere with in vivo fluorescence imaging. Through spectral scanning analysis, we characterized the emission spectrum of the autofluorescence under commonly used excitation wavelengths for fluorescent proteins. Based on this, we established a reference protocol for identifying and excluding such interference in Tyr-targeted knockin studies. Furthermore, knockout of the GTP cyclohydrolase 2 gene (Gch2) using CRISPR-Cas9 significantly reduced the fluorescence intensity induced by tyrosinase deficiency, indicating an essential role of the enzyme and its mediated pterine biosynthesis in the generation of the autofluorescence. This study systematically characterized these fluorescent mutant melanophores in X. tropicalis tadpoles, providing a practical basis for avoiding fluorescent interference in experimental science and a new perspective on pigment cell development and evolution. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

27 pages, 573 KB  
Review
From GWAS Signals to Causal Genes in Chronic Kidney Disease
by Charlotte Delrue, Reinhart Speeckaert and Marijn M. Speeckaert
Curr. Issues Mol. Biol. 2026, 48(2), 148; https://doi.org/10.3390/cimb48020148 - 28 Jan 2026
Viewed by 86
Abstract
Genome-wide association studies (GWAS) have transformed the study of chronic kidney disease (CKD) by identifying hundreds of genetic loci associated with multiple aspects of kidney function, including albuminuria and CKD risk factors, in diverse populations. A major challenge is translating statistically significant signals [...] Read more.
Genome-wide association studies (GWAS) have transformed the study of chronic kidney disease (CKD) by identifying hundreds of genetic loci associated with multiple aspects of kidney function, including albuminuria and CKD risk factors, in diverse populations. A major challenge is translating statistically significant signals into causal genes and mechanisms, as most CKD-associated variants lie in non-coding regulatory regions and often act in a cell type- and context-specific manner. In this review, we provide an overview of the current strategies for moving from GWAS signals toward the identification of causal genes for CKD. We discuss advances in four areas: statistical and functional fine-mapping, molecular quantitative trait locus (QTL) mapping, colocalization, and transcriptome-wide associations, highlighting the advantages and disadvantages of each. We further examined how emerging kidney-specific single-cell, single-nucleus, and spatial transcriptomic atlases have enabled the mapping of genetic risk to specific renal cell types and microanatomical niches. By combining these approaches with chromatin interaction data, multi-omics analytics, and clustered regularly interspaced short palindromic repeats (CRISPR)-based studies, the process of generating causal relationships and mechanistic understanding has been further refined. Importantly, this review provides a unifying framework that synthesizes cross-sectional and longitudinal GWAS with kidney-specific functional genomics to distinguish genetic determinants of CKD susceptibility from modifiers of disease progression, thereby highlighting how regulatory variation and disease trajectories inform precision nephrology. As a result, we can provide insights into the role of genetically informed gene prioritization for experimentation, therapeutic target discovery, and the development of a framework for precision nephrology. Together, these advancements highlight how human genetics, in conjunction with functional genomics and experimental biology, can link an association signal to a clinically relevant interpretation of CKD. Full article
Show Figures

Figure 1

15 pages, 297 KB  
Review
Fetal Hemoglobin Modulation in Sickle Cell Disease: βs Haplotypes, Key Polymorphisms Identified by GWAS, and Advances in γ-Globin Editing: An Updated Overview
by Yusselfy Márquez-Benitez, Valeria Isabela Osorio-Garzón, Jaime Eduardo Bernal-Villegas and Ignacio Briceño-Balcázar
Genes 2026, 17(2), 135; https://doi.org/10.3390/genes17020135 - 27 Jan 2026
Viewed by 247
Abstract
Fetal hemoglobin (HbF) plays a central role in mitigating the pathophysiological effects of sickle cell disease (SCD). Understanding the genetic determinants influencing HbF expression is essential for identifying the factors contributing to its modulation. This review provides an updated synthesis of evidence on [...] Read more.
Fetal hemoglobin (HbF) plays a central role in mitigating the pathophysiological effects of sickle cell disease (SCD). Understanding the genetic determinants influencing HbF expression is essential for identifying the factors contributing to its modulation. This review provides an updated synthesis of evidence on HbF modulation, focusing on βs haplotypes and their molecular characterization through Sanger sequencing, polymorphisms consistently associated with HbF levels in genome-wide association studies (GWAS), and recent advances in gene editing targeting HbF expression. An integrative review (2016–2025) was conducted using PubMed/MEDLINE, Scopus, and Web of Science, encompassing original research, experimental studies, systematic reviews, and genomic analyses. Key regulatory loci such as BCL11A, HBS1L-MYB (HMIP), and the HBB cluster explain a significant proportion of HbF variability across populations. Furthermore, additional variants in KLF1, NFIX, BACH2, and ZBTB7A have emerged as potential modulators in specific cohorts. Regarding advances in γ-globin editing, “prime editing”, although still in the experimental phase, has recently emerged as an innovative approach capable of introducing multiple HPFH-like mutations within γ-globin promoters, expanding future therapeutic possibilities in SCD. This review also provides a comparative overview of prime editing and other gene-editing strategies for HbF modulation, such as CRISPR-Cas9 and Base editing. Collectively, this work outlines the current landscape of HbF modulation and provides an informative basis for future research aimed at advancing precision-oriented therapeutic strategies in sickle cell disease. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
12 pages, 1333 KB  
Article
Rapid and Sensitive Detection of Candida albicans Using Microfluidic-Free Droplet Digital Non-Amplification Dependent CRISPR/Cas12a Assay
by Jie Peng, Chao Guo, Ze-Yun Huang, Wen-Fei Xu and Xu-Hui Li
Biosensors 2026, 16(2), 72; https://doi.org/10.3390/bios16020072 - 26 Jan 2026
Viewed by 196
Abstract
Candida albicans is a major fungal pathogen associated with vulvovaginal candidiasis, and rapid, sensitive detection remains challenging, particularly in amplification-free formats. Here, we report NaPddCas, a microfluidic-free, droplet-based CRISPR/Cas12a detection strategy for qualitative identification of Candida albicans DNA. Unlike conventional bulk CRISPR assays, [...] Read more.
Candida albicans is a major fungal pathogen associated with vulvovaginal candidiasis, and rapid, sensitive detection remains challenging, particularly in amplification-free formats. Here, we report NaPddCas, a microfluidic-free, droplet-based CRISPR/Cas12a detection strategy for qualitative identification of Candida albicans DNA. Unlike conventional bulk CRISPR assays, NaPddCas partitions the reaction mixture into vortex-generated polydisperse droplets, enabling spatial confinement of Cas12a activation events and effective suppression of background fluorescence. This compartmentalization substantially enhances detection sensitivity without nucleic acid amplification or microfluidic devices. Using plasmid and genomic DNA templates, NaPddCas achieved reliable detection at concentrations several orders of magnitude lower than bulk CRISPR/Cas12a reactions. The assay further demonstrated high specificity against non-target bacterial and fungal species and was successfully applied to clinical vaginal secretion samples. Importantly, NaPddCas is designed as a qualitative or semi-qualitative droplet-dependent digital detection method rather than a quantitative digital assay. Owing to its simplicity, sensitivity, and amplification-free workflow, NaPddCas represents a practical approach for laboratory-based screening of Candida albicans infections. Full article
(This article belongs to the Special Issue Biosensing and Diagnosis—2nd Edition)
Show Figures

Figure 1

18 pages, 940 KB  
Review
Advancements, Challenges, and Future Perspectives of Soybean-Integrated Pest Management, Emphasizing the Adoption of Biological Control by the Major Global Producers
by Adeney de F. Bueno, William W. Hoback, Yelitza C. Colmenarez, Ivair Valmorbida, Weidson P. Sutil, Lian-Sheng Zang and Renato J. Horikoshi
Plants 2026, 15(3), 366; https://doi.org/10.3390/plants15030366 - 24 Jan 2026
Viewed by 370
Abstract
Soybean, Glycine max (L.) Merrill, is usually grown on a large scale, with pest control based on chemical insecticides. However, the overuse of chemicals has led to several adverse effects requiring more sustainable approaches to pest control. Results from Integrated Pest Management (IPM) [...] Read more.
Soybean, Glycine max (L.) Merrill, is usually grown on a large scale, with pest control based on chemical insecticides. However, the overuse of chemicals has led to several adverse effects requiring more sustainable approaches to pest control. Results from Integrated Pest Management (IPM) employed on Brazilian soybean farms indicate that adopters of the technology have reduced insecticide use by approximately 50% relative to non-adopters, with yields comparable to or slightly higher than those of non-adopters. This reduction can be explained not only by the widespread use of Bt soybean cultivars across the country but also by the adoption of economic thresholds (ETs) in a whole Soybean-IPM package, which has reduced insecticide use. However, low refuge compliance has led to the first cases of pest resistance to Cry1Ac, thereby leading to the return of overreliance on chemical control and posing additional challenges for IPM practitioners. The recent global agenda for decarbonized agriculture might help to support the adoption of IPM since less chemical insecticides sprayed over the crops reduces CO2-equivalent emissions from its application. In addition, consumers’ demand for less pesticide use in food production has favored the increased use of bio-inputs in agriculture, helping mitigate overdependence of agriculture on chemical inputs to preserve yields. Despite the challenges of adopting IPM discussed in this review, the best way to protect soybean yield and preserve the environment remains as IPM, integrating plant resistance (including Bt cultivars), ETs, scouting procedures, selective insecticides, biological control, and other sustainable tools, which help sustain environmental quality in an ecological and economical manner. Soon, those tools will include RNAi, CRISPR-based control strategies, among other sustainable alternatives intensively researched around the world. Full article
(This article belongs to the Special Issue Integrated Pest Management of Field Crops)
Show Figures

Figure 1

24 pages, 378 KB  
Review
Durable Management of Plant Viruses: Insights into Host Resistance and Tolerance Mechanisms
by Muhammad Zeshan Ahmed, Chenchen Zhao, Calum Wilson and Meixue Zhou
Biology 2026, 15(2), 205; https://doi.org/10.3390/biology15020205 - 22 Jan 2026
Viewed by 143
Abstract
Plant viruses cause substantial yield and quality losses worldwide, and their rapid evolution can erode deployed host resistance. This review synthesizes current knowledge of antiviral resistance and tolerance mechanisms, using barley yellow dwarf virus (BYDV) in cereals as an illustrative case study. We [...] Read more.
Plant viruses cause substantial yield and quality losses worldwide, and their rapid evolution can erode deployed host resistance. This review synthesizes current knowledge of antiviral resistance and tolerance mechanisms, using barley yellow dwarf virus (BYDV) in cereals as an illustrative case study. We first summarize key layers of plant antiviral immunity, including pre-formed physical and chemical barriers, dominant and recessive resistance genes, RNA silencing, hormone-regulated defense signaling, and degradation pathways such as the ubiquitin–proteasome system and selective autophagy. We then discuss how these mechanisms are exploited in breeding and biotechnology, covering conventional introgression, marker-assisted selection, QTL mapping and pyramiding, induced variation (mutation breeding and TILLING/ecoTILLING), transgenic strategies (pathogen-derived resistance and plantibodies), RNA interference-based approaches, and CRISPR-enabled editing of susceptibility factors. Finally, we highlight emerging nano-enabled tools and propose integrated strategies that combine genetic resistance with surveillance and vector management to improve durability under climate change and ongoing viral diversification. Full article
(This article belongs to the Section Plant Science)
13 pages, 1519 KB  
Article
Intestine-Specific Ferroportin Ablation Rescues from Systemic Iron Overload in Mice
by Cristina Castillo, Sharon Gim and Nupur K. Das
Nutrients 2026, 18(2), 352; https://doi.org/10.3390/nu18020352 - 22 Jan 2026
Viewed by 142
Abstract
Background/Objectives: The hepcidin–ferroportin (Fpn1) axis is central to intestinal iron absorption, and dysregulation of this axis underlies all known forms of iron disorders. Hemochromatosis, the most common iron overload disorder in humans, results from systemic iron accumulation due to decades of uncontrolled [...] Read more.
Background/Objectives: The hepcidin–ferroportin (Fpn1) axis is central to intestinal iron absorption, and dysregulation of this axis underlies all known forms of iron disorders. Hemochromatosis, the most common iron overload disorder in humans, results from systemic iron accumulation due to decades of uncontrolled intestinal absorption. Despite major advances in medicine in recent years, strategies for iron overload management are still lagging as they primarily rely on iron chelation and repeated phlebotomies. Fpn1, the cellular iron exporter, is ubiquitously expressed and plays a critical role in maintaining systemic iron homeostasis. Methods: To investigate the specific contribution of intestinal Fpn1 to systemic iron overload, we employed a CRISPR-based adenoviral hepcidin knockout mediated mouse iron overload model, combined with intestine-specific deletion of Fpn1. Results: An initial time-dependent experiment establishes the efficiency of hepcidin knockout (KO) by as early as 1 week of adenovirus injection. At 2 weeks of injection, a perfect reciprocal relationship between hepcidin gene suppression and liver iron levels (5–7-fold induction from the baseline) was established. Finally, intestine-specific Fpn1 deletion effectively prevented iron accumulation in hepcidin KO mice, as evidenced by nearly 4-fold lower liver iron levels compared to hepcidin KO animals with intact intestinal Fpn1. Conclusions: In summary, our results demonstrate that ablation of intestinal Fpn1 is sufficient to attenuate systemic iron accumulation in this mouse model of hemochromatosis. These findings suggest that selective targeting of intestinal Fpn1 may represent a promising strategy for the management of iron overload. Full article
Show Figures

Figure 1

12 pages, 949 KB  
Perspective
An Integrative Roadmap for Advancing Colorectal Cancer Organoid
by Youqing Zhu, Ke He and Zhi Shi
Biomedicines 2026, 14(1), 248; https://doi.org/10.3390/biomedicines14010248 - 22 Jan 2026
Viewed by 176
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Compared with traditional two-dimensional (2D) models, patient-derived CRC organoids more faithfully preserve the genomic, transcriptomic, and architectural features of primary tumors, making them a powerful intermediate platform bridging basic discovery [...] Read more.
Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Compared with traditional two-dimensional (2D) models, patient-derived CRC organoids more faithfully preserve the genomic, transcriptomic, and architectural features of primary tumors, making them a powerful intermediate platform bridging basic discovery and clinical translation. Over the past several years, organoid systems have rapidly expanded beyond conventional epithelial-only cultures toward increasingly complex architectures, including immune-organoid co-culture models and mini-colon systems that enable long-term, spatially resolved tracking of tumor evolution. These advanced platforms, combined with high-throughput technologies and clustered regularly interspaced short palindromic repeats (CRISPR)-based functional genomics, have substantially enhanced our ability to dissect CRC mechanisms, identify therapeutic vulnerabilities, and evaluate drug responses in a physiologically relevant context. However, current models still face critical limitations, such as the lack of systemic physiology (e.g., gut–liver or gut–brain axes), limited standardization across platforms, and the need for large-scale, prospective clinical validation. These gaps highlight an urgent need for next-generation platforms and computational frameworks. The development of high-throughput multi-omics, CRISPR-based perturbation, drug screening technologies, and artificial intelligence-driven predictive approaches will offer a promising avenue to address these challenges, accelerating mechanistic studies of CRC, enabling personalized therapy, and facilitating clinical translation. In this perspective, we propose a roadmap for CRC organoid research centered on two major technical pillars: advanced organoid platforms, including immune co-culture and mini-colon systems, and mechanistic investigations leveraging multi-omics and CRISPR-based functional genomics. We then discuss translational applications, such as high-throughput drug screening, and highlight emerging computational and translational strategies that may support future clinical validation and precision medicine. Full article
(This article belongs to the Section Drug Discovery, Development and Delivery)
Show Figures

Figure 1

Back to TopTop