CRISPR/Cas Tools for the Detection of Borrelia sensu lato in Human Samples
Abstract
1. Introduction
2. Materials and Methods
2.1. Borrelia Genospecies and Controls
2.2. Direct Borrelia Detection by Cas12/crRNA/ssDNA Reporter
2.3. qPCR and End-Point PCR
2.4. Detection of OspA Amplicon by Cas12/crRNA/ssDNA Reporter
3. Results
3.1. Borrelia Detection by Cas12/crRNA/ssDNA Reporter Without Amplification
3.2. Comparison Between Real-Time qPCR and Cas12/crRNA/ssDNA Detection System
3.3. Comparison Between End-Point Amplification and Cas12/crRNA/ssDNA Detection System
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CRISPR | Clustered regularly interspaced short palindromic repeats |
| Cas | CRISPR-associated |
| PAM | Protospacer Adjacent Motif |
| crRNA | CRISPR RNA or guide RNA |
| SNP | Single Nucleotide Polymorphism |
| qPCR | Quantitative Polymerase Chain Reaction |
References
- Mojica, F.J.; Diez-Villasenor, C.; Garcia-Martinez, J.; Soria, E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 2005, 60, 174–182. [Google Scholar] [CrossRef]
- Makarova, K.S.; Haft, D.H.; Barrangou, R.; Brouns, S.J.; Charpentier, E.; Horvath, P.; Moineau, S.; Mojica, F.J.; Wolf, Y.I.; Yakunin, A.F.; et al. Evolution and classification of the CRISPR-Cas systems. Nat. Rev. Microbiol. 2011, 9, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cui, W. CRISPR-Cas system for biomedical diagnostic platforms. VIEW 2020, 1, 20200008. [Google Scholar] [CrossRef]
- Kaminski, M.M.; Abudayyeh, O.O.; Gootenberg, J.S.; Zhang, F.; Collins, J.J. CRISPR-based diagnostics. Nat. Biomed. Eng. 2021, 5, 643–656. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.S.; Ma, E.; Harrington, L.B.; Da Costa, M.; Tian, X.; Palefsky, J.M.; Doudna, J.A. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 2018, 360, 436–439. [Google Scholar] [CrossRef] [PubMed]
- East-Seletsky, A.; O’Connell, M.R.; Knight, S.C.; Burstein, D.; Cate, J.H.; Tjian, R.; Doudna, J.A. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 2016, 538, 270–273. [Google Scholar] [CrossRef]
- Li, S.Y.; Cheng, Q.X.; Wang, J.M.; Li, X.Y.; Zhang, Z.L.; Gao, S.; Cao, R.B.; Zhao, G.P.; Wang, J. CRISPR-Cas12a-assisted nucleic acid detection. Cell Discov. 2018, 4, 20. [Google Scholar] [CrossRef] [PubMed]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef] [PubMed]
- Ivacic, L.; Reed, K.D.; Mitchell, P.D.; Ghebranious, N. A LightCycler TaqMan assay for detection of Borrelia burgdorferi sensu lato in clinical samples. Diagn. Microbiol. Infect. Dis. 2007, 57, 137–143. [Google Scholar] [CrossRef]
- Naito, Y.; Hino, K.; Bono, H.; Ui-Tei, K. CRISPRdirect: Software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 2015, 31, 1120–1123. [Google Scholar] [CrossRef]
- Trevisan, G.; Bonin, S.; Ruscio, M. A Practical Approach to the Diagnosis of Lyme Borreliosis: From Clinical Heterogeneity to Laboratory Methods. Front. Med. 2020, 7, 265. [Google Scholar] [CrossRef]
- Masséglia, S.; René-Martellet, M.; Rates, M.; Hizo-Teufel, C.; Fingerle, V.; Margos, G.; Bailly, X. Development and validation of a multi-target TaqMan qPCR method for detection of Borrelia burgdorferi sensu lato. J. Microbiol. Methods 2024, 222, 106941. [Google Scholar] [CrossRef] [PubMed]
- Trevisan, G.; Cinco, M.; Trevisini, S.; di Meo, N.; Chersi, K.; Ruscio, M.; Forgione, P.; Bonin, S. Borreliae Part 1: Borrelia Lyme Group and Echidna-Reptile Group. Biology 2021, 10, 1036. [Google Scholar] [CrossRef] [PubMed]
- Sigal, L.H. Toward a more complete appreciation of the clinical spectrum of Borrelia burgdorferi infection: Early lyme disease without erythema migrans. Am. J. Med. 2003, 114, 74–75. [Google Scholar] [CrossRef] [PubMed]
- Guérin, M.; Shawky, M.; Zedan, A.; Octave, S.; Avalle, B.; Maffucci, I.; Padiolleau-Lefèvre, S. Lyme borreliosis diagnosis: State of the art of improvements and innovations. BMC Microbiol. 2023, 23, 204. [Google Scholar] [CrossRef]
- Bruch, R.; Baaske, J.; Chatelle, C.; Meirich, M.; Madlener, S.; Weber, W.; Dincer, C.; Urban, G.A. CRISPR/Cas13a-Powered Electrochemical Microfluidic Biosensor for Nucleic Acid Amplification-Free miRNA Diagnostics. Adv. Mater. 2019, 31, e1905311. [Google Scholar] [CrossRef]
- Cogswell, F.B.; Bantar, C.E.; Hughes, T.G.; Gu, Y.; Philipp, M.T. Host DNA can interfere with detection of Borrelia burgdorferi in skin biopsy specimens by PCR. J. Clin. Microbiol. 1996, 34, 980–982. [Google Scholar] [CrossRef]
- Lemieux, J.E.; Huang, W.; Hill, N.; Cerar, T.; Freimark, L.; Hernandez, S.; Luban, M.; Maraspin, V.; Bogovic, P.; Ogrinc, K.; et al. Whole genome sequencing of human Borrelia burgdorferi isolates reveals linked blocks of accessory genome elements located on plasmids and associated with human dissemination. PLoS Pathog. 2023, 19, e1011243. [Google Scholar] [CrossRef]
- Grimm, D.; Elias, A.F.; Tilly, K.; Rosa, P.A. Plasmid stability during in vitro propagation of Borrelia burgdorferi assessed at a clonal level. Infect. Immun. 2003, 71, 3138–3145. [Google Scholar] [CrossRef]
- Lager, M.; Faller, M.; Wilhelmsson, P.; Kjelland, V.; Andreassen, A.; Dargis, R.; Quarsten, H.; Dessau, R.; Fingerle, V.; Margos, G.; et al. Molecular detection of Borrelia burgdorferi sensu lato—An analytical comparison of real-time PCR protocols from five different Scandinavian laboratories. PLoS ONE 2017, 12, e0185434. [Google Scholar] [CrossRef]
- Murphy Bryan, T.; Wiepen Jacob, J.; He, H.; Pramanik Ankita, S.; Peters Jason, M.; Stevenson, B.; Zückert Wolfram, R. Inducible CRISPRi-Based Operon Silencing and Selective in Trans Gene Complementation in Borrelia burgdorferi. J. Bacteriol. 2023, 205, e00468-22. [Google Scholar] [CrossRef] [PubMed]
- Takacs, C.N.; Scott, M.; Chang, Y.; Kloos, Z.A.; Irnov, I.; Rosa, P.A.; Liu, J.; Jacobs-Wagner, C. A CRISPR interference platform for selective downregulation of gene expression in Borrelia burgdorferi. Appl. Environ. Microbiol. 2021, 87, e02519-20. [Google Scholar] [CrossRef] [PubMed]

| B. burgdorferi | B. garinii | B. afzelii | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| w/o gDNA | + a gDNA | w/o gDNA | +gDNA | w/o gDNA | +gDNA | |||||||
| b N° Genomes | qPCR (Ct) | Cas12 (RFU) | qPCR (Ct) | Cas12 (RFU) | qPCR (Ct) | Cas12 (RFU) | qPCR (Ct) | Cas12 (RFU) | qPCR (Ct) | Cas12 (RFU) | qPCR (Ct) | Cas12 (RFU) |
| 5000 | 31.00 | 3489 | 30.24 | 3713 | 29.23 | 3550 | 29.77 | 3464 | 30.83 | 3452 | 30.22 | 3375 |
| 5000 | 30.83 | 3711 | 30.79 | 3753 | 29.31 | 3516 | 29.71 | 3392 | 30.98 | 3593 | 30.19 | 3637 |
| 500 | 34.12 | 3680 | 33.84 | 3519 | 33.07 | 3508 | 33.78 | 3394 | 35.08 | 3354 | 34.16 | 3354 |
| 500 | 34.09 | 3443 | 33.97 | 3692 | 32.82 | 3435 | 33.7 | 3563 | 34.23 | 3596 | 34.95 | 3548 |
| 50 | 38.71 | 3634 | 37.45 | 3261 | 36.82 | 3365 | 37.09 | 2946 | 37.33 | 3842 | 38.41 | 3595 |
| 50 | 38.67 | 3096 | 37.74 | 3748 | 37.01 | 3293 | 36.28 | 3274 | 38.54 | 3601 | 38.33 | 3520 |
| 5 | N/A c | 2639 | N/A | 2663 | 39.63 | 3322 | 42.85 | 3367 | 39.29 | 3670 | N/A | 2672 |
| 5 | 41.09 | 3111 | 38.64 | 3788 | 38.68 | 3118 | N/A | 2690 | N/A | 2763 | N/A | 2687 |
| 0.5 | N/A | 2580 | N/A | 2637 | N/A | 2655 | N/A | 2648 | N/A | 2623 | N/A | 2680 |
| 0.5 | N/A | 2666 | N/A | 2647 | N/A | 2652 | N/A | 2657 | N/A | 2662 | N/A | 2702 |
| 0 | N/A | 2661 | N/A | 2562 | N/A | 2698 | N/A | 2682 | N/A | 2698 | N/A | 2583 |
| B. burgdorferi | B. garinii | B. afzelii | |||||||
|---|---|---|---|---|---|---|---|---|---|
| N° Genomes | qPCR (Ct) | End-Point (RFU) | End-Point +DNA (RFU) | qPCR (Ct) | End-Point (RFU) | End-Point +DNA (RFU) | qPCR (Ct) | End-Point (RFU) | End-Point +DNA (RFU) |
| 500 | 30.57 | 7017 | 7779 | 33.16 | 8459 | 8380 | 33.25 | 8080 | 8565 |
| 500 | 30.41 | 7690 | 6163 | 33.16 | 7777 | 8053 | 33.05 | 8541 | 7582 |
| 50 | 34.28 | 7124 | 7015 | 36.05 | 8872 | 8606 | 37.00 | 7529 | 8813 |
| 50 | 34.54 | 7190 | 6317 | 37.11 | 8491 | 7902 | 36.61 | 8682 | 8182 |
| 5 | 38.02 | 6496 | 6777 | 39.9 | 8190 | 8156 | 38.35 | 8622 | 8650 |
| 5 | 38.27 | 6732 | 6150 | 39.76 | 8052 | 7654 | 39.37 | 8124 | 8248 |
| 0.5 | 40.11 | 7757 | 7171 | 49.84 | 8577 | 3478 | 40.51 | 7798 | 3326 |
| 0.5 | N/A | 3302 | 3150 | N/A | 7846 | 3331 | N/A | 8494 | 3550 |
| 0.05 | N/A | 3091 | 3093 | N/A | 3374 | 3459 | N/A | 3250 | 3412 |
| 0.05 | N/A | 3153 | 3042 | N/A | 3423 | 3522 | N/A | 3438 | 3471 |
| 0 | N/A | 2950 | 3150 | N/A | 3370 | 2933 | N/A | 3279 | 3495 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nardon, E.; Azzalini, E.; Paladin, D.; Boscarino, D.; Bonin, S. CRISPR/Cas Tools for the Detection of Borrelia sensu lato in Human Samples. Genes 2025, 16, 1233. https://doi.org/10.3390/genes16101233
Nardon E, Azzalini E, Paladin D, Boscarino D, Bonin S. CRISPR/Cas Tools for the Detection of Borrelia sensu lato in Human Samples. Genes. 2025; 16(10):1233. https://doi.org/10.3390/genes16101233
Chicago/Turabian StyleNardon, Ermanno, Eros Azzalini, Dino Paladin, Diego Boscarino, and Serena Bonin. 2025. "CRISPR/Cas Tools for the Detection of Borrelia sensu lato in Human Samples" Genes 16, no. 10: 1233. https://doi.org/10.3390/genes16101233
APA StyleNardon, E., Azzalini, E., Paladin, D., Boscarino, D., & Bonin, S. (2025). CRISPR/Cas Tools for the Detection of Borrelia sensu lato in Human Samples. Genes, 16(10), 1233. https://doi.org/10.3390/genes16101233

