Vesicle-Based Drug Delivery Systems

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Drug Delivery and Controlled Release".

Deadline for manuscript submissions: 20 March 2026 | Viewed by 4753

Special Issue Editors


E-Mail Website
Guest Editor
INQUISUR-CONICET-UNS/Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, Bahïa Blanca 8000, Argentina
Interests: drug delivey systems based on vesicles; lipid-based systems; surfactant-based systems; sensitive polymers

E-Mail Website
Guest Editor
INQUISUR-CONICET-UNS/Department of Chemistry, Universidad Nacional del Sur, Bahïa Blanca 8000, Argentina
Interests: nanocomposites; nanostructure materials; nanoparticles; self-assembly

Special Issue Information

Dear Colleagues,

Ensuring safe and efficient drug delivery remains a critical challenge in pharmaceutical development. Recent advances in vesicle engineering, including liposomes, niosomes, exosomes, extracellular vesicles, and polymersomes, have significantly enhanced drug delivery strategies. These systems improve therapeutic efficacy by protecting active pharmaceutical ingredients (APIs) from degradation, minimizing side effects, enabling targeted delivery to disease sites, and controlling circulation time and release kinetics. Precise synthesis strategies for design can help to overcome biological barriers when applied through different administration routes, and remain key challenges that must be addressed to optimize treatment outcomes.

This Special Issue will highlight current advancements in vesicle-based platforms designed to improve formulation pharmacokinetics. We invite contributions that explore innovative approaches in vesicle design, drug loading, synthesis, isolation, targeting (both active and passive), and functionalization strategies to address these challenges in vesicle delivery.

Dr. Luciano Benedini
Prof. Dr. Paula Messina
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • liposomes
  • exosomes
  • extracellular vesicles
  • niosomes
  • polymersomes
  • active and passive targeting
  • pharmacokinetics
  • isolation/synthesis
  • functionalization
  • modified release

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Review

43 pages, 1253 KB  
Review
Smart Vesicle Therapeutics: Engineering Precision at the Nanoscale
by Luciano A. Benedini and Paula V. Messina
Pharmaceutics 2025, 17(12), 1588; https://doi.org/10.3390/pharmaceutics17121588 - 9 Dec 2025
Viewed by 211
Abstract
Smart vesicle therapeutics represent a transformative frontier in nanomedicine, offering precise, biocompatible, and adaptable platforms for drug delivery and theranostic applications. This review explores recent advances in the design and engineering of liposomes, niosomes, polymersomes, and extracellular vesicles (EVs), emphasizing their capacity to [...] Read more.
Smart vesicle therapeutics represent a transformative frontier in nanomedicine, offering precise, biocompatible, and adaptable platforms for drug delivery and theranostic applications. This review explores recent advances in the design and engineering of liposomes, niosomes, polymersomes, and extracellular vesicles (EVs), emphasizing their capacity to integrate therapeutic and diagnostic functions within a single nanoscale system. By tailoring vesicle size, composition, and surface chemistry, researchers have achieved improved pharmacokinetics, reduced immunogenicity, and fine-tuned control of drug release. Stimuli-responsive vesicles activated by pH, temperature, and redox gradients, or external fields enable spatiotemporal regulation of therapeutic action, while hybrid bio-inspired systems merge synthetic stability with natural targeting and biocompatibility. Theranostic vesicles further enhance precision medicine by allowing real-time imaging, monitoring, and adaptive control of treatment efficacy. Despite these advances, challenges in large-scale production, reproducibility, and regulatory standardization still limit clinical translation. Emerging solutions—such as microfluidic manufacturing, artificial intelligence-guided optimization, and multimodal imaging integration—are accelerating the development of personalized, high-performance vesicular therapeutics. Altogether, smart vesicle platforms exemplify the convergence of nanotechnology, biotechnology, and clinical science, driving the next generation of precision therapies that are safer, more effective, and tailored to individual patient needs. Full article
(This article belongs to the Special Issue Vesicle-Based Drug Delivery Systems)
Show Figures

Graphical abstract

42 pages, 1602 KB  
Review
Exosome-Based Drug Delivery: A Next-Generation Platform for Cancer, Infection, Neurological and Immunological Diseases, Gene Therapy and Regenerative Medicine
by Dolores R. Serrano, Francisco Juste, Brayan J. Anaya, Bianca I. Ramirez, Sergio A. Sánchez-Guirales, John M. Quispillo, Ester M. Hernandez, Jesus A. Simon, Jose M. Trallero, Celia Serrano, Satyavati Rawat and Aikaterini Lalatsa
Pharmaceutics 2025, 17(10), 1336; https://doi.org/10.3390/pharmaceutics17101336 - 15 Oct 2025
Cited by 1 | Viewed by 4420
Abstract
Exosomes, naturally derived extracellular vesicles, have emerged as powerful bio-nanocarriers in precision medicine. Their endogenous origin, biocompatibility, and ability to encapsulate and deliver diverse therapeutic payloads position them as transformative tools in drug delivery, gene therapy, and regenerative medicine. This review presents a [...] Read more.
Exosomes, naturally derived extracellular vesicles, have emerged as powerful bio-nanocarriers in precision medicine. Their endogenous origin, biocompatibility, and ability to encapsulate and deliver diverse therapeutic payloads position them as transformative tools in drug delivery, gene therapy, and regenerative medicine. This review presents a comprehensive analysis of exosome-based therapeutics across multiple biomedical domains, including cancer, neurological and infectious diseases, immune modulation, and tissue repair. Exosomes derived from stem cells, immune cells, or engineered lines can be loaded with small molecules, RNA, or CRISPR-Cas systems, offering highly specific and low-immunogenic alternatives to viral vectors or synthetic nanoparticles. We explore endogenous and exogenous loading strategies, surface functionalization techniques for targeted delivery, and innovations that allow exosomes to traverse physiological barriers such as the blood–brain barrier. Furthermore, exosomes demonstrate immunomodulatory and regenerative properties in autoimmune and degenerative conditions, with promising roles in skin rejuvenation and cosmeceuticals. Despite their potential, challenges remain in large-scale production, cargo loading efficiency, and regulatory translation. Recent clinical trials and industry efforts underscore the accelerating momentum in this field. Exosomes represent a promising platform in precision medicine, though further standardization and validation are required before widespread clinical use. This review offers critical insights into current technologies, therapeutic mechanisms, and future directions to unlock the full translational potential of exosomes in clinical practice. Full article
(This article belongs to the Special Issue Vesicle-Based Drug Delivery Systems)
Show Figures

Graphical abstract

Back to TopTop