Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (127)

Search Parameters:
Keywords = COD fractions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 435 KB  
Systematic Review
Design Implications of Headspace Ratio VHS/Vtot on Pressure Stability, Gas Composition and Methane Productivity—A Systematic Review
by Meneses-Quelal Orlando
Energies 2026, 19(1), 193; https://doi.org/10.3390/en19010193 - 30 Dec 2025
Viewed by 291
Abstract
Headspace (HS) in anaerobic batch biodigesters is a critical design parameter that modulates pressure stability, gas–liquid equilibrium, and methanogenic productivity. This systematic review, guided by PRISMA 2020, analyzed 84 studies published between 2015 and 2025, of which 64 were included in the qualitative [...] Read more.
Headspace (HS) in anaerobic batch biodigesters is a critical design parameter that modulates pressure stability, gas–liquid equilibrium, and methanogenic productivity. This systematic review, guided by PRISMA 2020, analyzed 84 studies published between 2015 and 2025, of which 64 were included in the qualitative and quantitative synthesis. The interplay between headspace volume fraction VHS/Vtot, operating pressure, and normalized methane yield was assessed, explicitly integrating safety and instrumentation requirements. In laboratory settings, maintaining a headspace volume fraction (HSVF) of 0.30–0.50 with continuous pressure monitoring P(t) and gas chromatography reduces volumetric uncertainty to below 5–8% and establishes reference yields of 300–430 NmL CH4 g−1 VS at 35 °C. At the pilot scale, operation at 3–4 bar absolute increases the CH4 fraction by 10–20 percentage points relative to ~1 bar, while maintaining yields of 0.28–0.35 L CH4 g COD−1 and production rates of 0.8–1.5 Nm3 CH4 m−3 d−1 under OLRs of 4–30 kg COD m−3 d−1, provided pH stabilizes at 7.2–7.6 and the free NH3 fraction remains below inhibitory thresholds. At full scale, gas domes sized to buffer pressure peaks and equipped with continuous pressure and flow monitoring feed predictive models (AUC > 0.85) that reduce the incidence of foaming and unplanned shutdowns, while the integration of desulfurization and condensate management keep corrosion at acceptable levels. Rational sizing of HS is essential to standardize BMP tests, correctly interpret the physicochemical effects of HS on CO2 solubility, and distinguish them from intrinsic methanogenesis. We recommend explicitly reporting standardized metrics (Nm3 CH4 m−3 d−1, NmL CH4 g−1 VS, L CH4 g COD−1), absolute or relative pressure, HSVF, and the analytical method as a basis for comparability and coupled thermodynamic modeling. While this review primarily focuses on batch (discontinuous) anaerobic digesters, insights from semi-continuous and continuous systems are cited for context where relevant to scale-up and headspace dynamics, without expanding the main scope beyond batch systems. Full article
(This article belongs to the Special Issue Research on Conversion for Utilization of the Biogas and Natural Gas)
Show Figures

Figure 1

17 pages, 1091 KB  
Article
High-Rate Bioelectrochemical Anaerobic Digester for Biomethane Production from Food Waste
by Virender Singh, Abid Hussain, Banu Örmeci, Julien Pauzé-Foixet, Emmanuel Nwanebu, Hongbo Li and Boris Tartakovsky
Bioengineering 2026, 13(1), 31; https://doi.org/10.3390/bioengineering13010031 - 27 Dec 2025
Viewed by 345
Abstract
This study investigated methane (CH4) production in a bioelectrochemically enhanced anaerobic digester (BEAD) equipped with a pair of 3-dimensional flow-through electrodes made of conductive polypropylene biorings. The performance of the BEAD reactor was compared to that of a similarly sized Anaerobic [...] Read more.
This study investigated methane (CH4) production in a bioelectrochemically enhanced anaerobic digester (BEAD) equipped with a pair of 3-dimensional flow-through electrodes made of conductive polypropylene biorings. The performance of the BEAD reactor was compared to that of a similarly sized Anaerobic Upflow Sludge Bed (UASB) reactor. The reactors were operated at a temperature of 22 ± 1 °C using food waste (FW) leachate fed at organic loading rates of 3–8 g (LR d)−1 or at a temperature of 35 ± 1 °C using the liquid fraction of FW separated using a screw press. With both tested feedstocks, the BEAD reactor demonstrated up to 30% higher CH4 yield, reaching 0.35–0.38 L g−1 (COD consumed), compared to the UASB reactor. Additionally, reactor stability under organic overload conditions improved, with the difference more pronounced at organic loads above 6 g (LR d)−1. Energy consumption for bioelectrochemical CH4 production was estimated at 5.1–12.4 Wh L−1 (of CH4 produced), which is significantly below the energy consumption for electrochemical H2-based methanation. Overall, BEAD increases methane production and improves process stability, offering a novel sustainable solution for waste management. Full article
(This article belongs to the Special Issue Anaerobic Biotechnologies for Energy and Resource Recovery from Waste)
Show Figures

Graphical abstract

19 pages, 3961 KB  
Article
Retinal Degeneration in Alzheimer’s Disease 5xFAD Mice Fed DHA-Enriched Diets
by Mário S. Pinho, Husaifa Ahfaz, Sandra Carvalho, Jorge Correia, Maria Spínola, José M. Pestana, Narcisa M. Bandarra and Paula A. Lopes
Cells 2026, 15(1), 8; https://doi.org/10.3390/cells15010008 - 19 Dec 2025
Viewed by 501
Abstract
Alzheimer’s disease (AD) is marked by cognitive decline, and also by retinal degeneration. Having in mind that docosahexaenoic acid (DHA, 22:6n − 3) is a safe, low-cost, and pivotal fatty acid for brain health and sustained cognitive function, this study exploits environmentally friendly [...] Read more.
Alzheimer’s disease (AD) is marked by cognitive decline, and also by retinal degeneration. Having in mind that docosahexaenoic acid (DHA, 22:6n − 3) is a safe, low-cost, and pivotal fatty acid for brain health and sustained cognitive function, this study exploits environmentally friendly non-fish sources as potential dietary supplements enriched with DHA to prevent or reverse AD. Forty 5xFAD transgenic male mice, aged five weeks old, were randomly distributed by five body weight-matched dietary groups (with eight animals each) and fed isocaloric diets based on the AIN-93M standard formulation for rodents for 6 months. Except for the control feed (without supplementation), each diet contained a modified lipidic fraction supplemented with 2% of the following: (1) linseed oil (LSO, rich in alpha-linolenic acid (ALA, 18:3n − 3)); (2) cod liver oil (fish oil, FO, rich in both DHA and eicosapentaenoic acid (EPA, 20:5n − 3)); (3) Schizochytrium sp. microalga oil (Schizo, with 40% of DHA); and (4) commercial DHASCO (DHASCO, with 70% of DHA). The aim of this study was to measure retinal neural layer thickness, calculate ganglion cell layer (GCL) density, and assess retinal injury by means of immunohistochemical staining for β-amyloid plaques deposition, TAU protein levels, and IBA1, as hallmark features of AD progression, in order to elucidate the effects of different dietary DHA treatments in Alzheimer’s retinas. Although no statistical differences were observed across retinal layer thicknesses depending on the diet (p > 0.05), there was a consistent pattern for slightly increased retinal thickness in 5xFAD mice fed fish oil relative to the others for the measurement of total layers, in general and for the inner segment/outer segment layer, the outer nuclear layer, the outer plexiform layer, the inner nuclear layer, and the inner plexiform layer, in particular. The ganglion cell layer (GCL) density was increased in 5xFAD mice fed the DHASCO oil diet relative to the control (p < 0.05), suggesting a benefit of DHA supplementation on the number of viable ganglion cells. No positive staining was observed for β-amyloid plaques deposition or the neuroinflammatory marker, IBA1, corroborating previous findings in human AD retinas. Conversely, the internal retinal layers showed intense TAU immunostaining. Immnunostained TAU area was significantly reduced in 5xFAD mice fed a fish oil diet compared to control (p < 0.05), although the number of TAU-positive cells did not differ across diets (p > 0.05). The retinal protected integrity derived from the benefits of DHA supplementation found, either from fish oil or DHASCO oil, underscores the potential of retinal biomarkers as non-invasive indicators of cognitive decline and overall brain health, opening new avenues for investigating AD pathophysiology in the retina. Full article
(This article belongs to the Special Issue Advances in the Discovery of Retinal Degeneration)
Show Figures

Figure 1

36 pages, 17317 KB  
Article
Spectral Unmixing of Coastal Dune Plant Species from Very High Resolution Satellite Imagery
by Katerina Kombiadou, Susana Costas, Juan Bautista Gallego-Fernández, Zhicheng Yang, Luisa Bon de Sousa and Sonia Silvestri
Remote Sens. 2025, 17(24), 3991; https://doi.org/10.3390/rs17243991 - 10 Dec 2025
Viewed by 339
Abstract
While improvements in the spectral and spatial resolution of satellite imagery have opened up new prospects for large-scale environmental monitoring, this potential has remained largely unrealised in dune ecogeomorphology. This is especially true for Mediterranean coastal dunes, where the highly mixed and sparse [...] Read more.
While improvements in the spectral and spatial resolution of satellite imagery have opened up new prospects for large-scale environmental monitoring, this potential has remained largely unrealised in dune ecogeomorphology. This is especially true for Mediterranean coastal dunes, where the highly mixed and sparse vegetation requires high resolution satellites and spectral unmixing techniques. To achieve this aim, we employed random forest regressors to predict the fractional cover of dune plant species in two of the sandy barriers of Ria Formosa (S. Portugal) from WorldView-2 imagery (June 2024). The algorithm, tested with spatially upscaled multispectral drone data and satellite imagery, detected the fractional cover of major species (most abundant classes and bushy vegetation) with reasonable to very good accuracy (coefficient of determination, CoD: 0.4 to 0.8) for the former and reasonable to good accuracy (CoD: 0.4 to 0.6) for the latter. Additional tests showed that (a) including the distance to the shoreline can increase model accuracy (CoD by ~0.1); (b) the grouping of species resulted in an insignificant increase in model skill; and (c) testing over independent dune plots showed generalisation beyond the training set and low risk of overfitting or noise. Overall, the approach showed promising results for large-scale observations in highly mixed coastal dunes. Full article
(This article belongs to the Topic Recent Advances in Iberian Coastal Geomorphology)
Show Figures

Figure 1

17 pages, 991 KB  
Article
Potential of Acrocomia aculeata Pulp Waste for Fermentative Hydrogen Production and the Impact of Hydrothermal Pretreatment
by María Laura Correa-Quevedo, Danilo Cantero, Enkeledo Menalla, José de Jesús Montoya-Rosales, Osvaldo D. Frutos, Raúl Muñoz and Octavio García-Depraect
Appl. Sci. 2025, 15(23), 12523; https://doi.org/10.3390/app152312523 - 26 Nov 2025
Viewed by 431
Abstract
This study provides the first comprehensive evaluation of the biochemical hydrogen production (BHP) potential of Acrocomia aculeata pulp waste, a residue abundantly generated during fruit processing in Latin America. The valorization of this underused biomass is essential to promote circular bioeconomy strategies and [...] Read more.
This study provides the first comprehensive evaluation of the biochemical hydrogen production (BHP) potential of Acrocomia aculeata pulp waste, a residue abundantly generated during fruit processing in Latin America. The valorization of this underused biomass is essential to promote circular bioeconomy strategies and expand renewable energy sources in the region. The fermentative hydrogen potential of untreated pulp and of fractions obtained after subcritical water pretreatment was assessed under mesophilic conditions to quantify hydrogen yields and elucidate the energy distribution between solid and liquid phases. Pretreatments were performed at 150, 200, and 250 °C, and both fractions were individually tested. The untreated pulp achieved the highest BHP (125.1 NmL H2/g VS fed), while pretreated solids showed decreasing values of 118.1, 71.6, and 41.6 NmL H2/g VS fed at 150, 200, and 250 °C, respectively. The liquid fractions yielded 107.2, 79.4, and 76.0 NmL H2/g COD fed, showing a similar decline with increasing severity. A mass-energy balance revealed that 1 ton of residual pulp could produce up to 104 m3 H2, equivalent to 15 GJ/ha-year, while the combined solid plus liquid fractions from pretreatment at 150 °C recovered a comparable 14.5 GJ/ha-year, with 65% of hydrogen energy originating from the liquid phase. More severe conditions led to up to 40% lower total energy yields. These findings demonstrate that A. aculeata pulp waste inherently exhibits high fermentative hydrogen potential without requiring hydrothermal pretreatment, highlighting its direct applicability as a renewable substrate for sustainable biohydrogen production. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production Technologies for Green Energy)
Show Figures

Figure 1

18 pages, 2290 KB  
Article
Effect of Microwave Treatment on Physicochemical Properties and Subsequent Anaerobic Digestion of Fecal Sludge
by Principal Mdolo, Jon Pocock and Konstantina Velkushanova
Water 2025, 17(22), 3230; https://doi.org/10.3390/w17223230 - 12 Nov 2025
Viewed by 594
Abstract
Fecal sludge (FS) requires effective management to mitigate environmental and public health risks and enable resource recovery. This study evaluated the effects of microwave (MW) treatment on FS characteristics and subsequent anaerobic digestion (AD) performance. MW treatment raised FS temperatures to ~96 °C, [...] Read more.
Fecal sludge (FS) requires effective management to mitigate environmental and public health risks and enable resource recovery. This study evaluated the effects of microwave (MW) treatment on FS characteristics and subsequent anaerobic digestion (AD) performance. MW treatment raised FS temperatures to ~96 °C, reducing FS volume by 50% and inducing three thermal phases. Soluble chemical oxygen demand (sCOD) showed a multi-phase pattern, with a maximum solubilization of 29.8% during initial heating due to the solubilization of proteins and carbohydrates. Scanning electron microscopy (SEM) revealed morphological changes, while Fourier transform infrared (FTIR) spectroscopy confirmed that core functional groups remained unchanged. MW-pretreated FS enhanced AD performance, achieving a 17% increase in cumulative methane yield, alongside 18% and 33% improvements in organic loading and methane production rates, respectively. MW treatment influenced the phase distribution of digestate components, showing a shift in nutrient portioning towards the liquid fraction. These results suggest that integrating MW pretreatment into FS management systems can improve energy recovery, reduce treatment costs, and support resource-efficient sanitation solutions. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

28 pages, 1384 KB  
Article
Effect of Solidified Carbon Dioxide Pretreatment on Chlorella vulgaris Biomass Prior to Anaerobic Digestion
by Joanna Kazimierowicz, Marcin Dębowski and Marcin Zieliński
Energies 2025, 18(21), 5774; https://doi.org/10.3390/en18215774 - 1 Nov 2025
Viewed by 456
Abstract
The aim of this study was to evaluate the effect of low-temperature disintegration of Chlorella vulgaris using solidified carbon dioxide (SCO2) on the efficiency of anaerobic digestion of microalgae biomass. The novelty of this study resides in the pioneering application of [...] Read more.
The aim of this study was to evaluate the effect of low-temperature disintegration of Chlorella vulgaris using solidified carbon dioxide (SCO2) on the efficiency of anaerobic digestion of microalgae biomass. The novelty of this study resides in the pioneering application of SCO2 for the pretreatment of C. vulgaris biomass to enhance methane fermentation. This approach integrates mechanical disruption of cell walls with improved solubilization of organic fractions at low temperatures, providing an innovative and energy-efficient strategy to boost biomethanogenesis performance. This study was carried out in four stages, including characterisation of substrate properties, evaluation of organic compound solubilization following SCO2 pretreatment, and fermentation under both batch and continuous conditions. Analysis of dissolved COD and TOC fractions revealed a significant increase in the bioavailability of organic matter as a result of SCO2 application, with the highest degree of solubilization observed at a SCO2/C. vulgaris biomass volume ratio of 1:3. In batch reactors, CH4 yield increased significantly to 369 ± 16 mL CH4/g VS, methane content in biogas reached 65.9 ± 1.0%, and kinetic process parameters were improved. Comparable enhancements were observed in continuous fermentation, with the best scenario yielding 243.4 ± 9.5 mL CH4/g VS. Digestate analysis confirmed more efficient degradation of organic fractions, and the stability of methanogenic consortia was maintained, with only moderate changes in the relative abundance of the main groups (Methanosarcinaceae, Methanosaeta). Energy balance calculations indicated a positive net effect of the process. This study represents a pioneering application of SCO2 pretreatment in the context of microalgal biomass and highlights its high potential for intensifying anaerobic digestion. Full article
Show Figures

Figure 1

16 pages, 2823 KB  
Article
Evaluation of End-of-Life Reverse Osmotic Membrane for High-Retention Anaerobic Membrane Bioreactor
by Oriol Morató Torras, Hiren D. Raval, Bianca Zappulla-Sabio, Ignasi Rodriguez-Roda, Hèctor Monclús and Gaetan Blandin
Membranes 2025, 15(11), 323; https://doi.org/10.3390/membranes15110323 - 22 Oct 2025
Viewed by 1324
Abstract
Following on from a circular economy in water, membrane technologies can play a role in resource recovery and high-quality water production but should also consider membrane industry circularity. Anaerobic membrane bioreactors (AnMBRs) are being used for advanced wastewater treatment, and their applications are [...] Read more.
Following on from a circular economy in water, membrane technologies can play a role in resource recovery and high-quality water production but should also consider membrane industry circularity. Anaerobic membrane bioreactors (AnMBRs) are being used for advanced wastewater treatment, and their applications are growing due to advantages like lower sludge volume, better permeate quality, and the generation of biogas. High-Rejection (HR) AnMBRs retain a higher fraction of dissolved and particulate components to further promote resource recovery and obtain improved effluent quality. With the development of membrane technologies, end-of-life (EOL) membrane recycling is emerging for various applications. The feasibility of transforming EOL Reverse Osmosis (RO) membranes into ultrafiltration (UF)- and nanofiltration (NF)-like membranes and applying these membranes to submerged HR-AnMBR applications was evaluated. A small pilot AnMBR with granular biomass was operated with EOL RO membranes converted to submerged UF- and NF-like membranes and compared to commercial microfiltration (MF) membranes. UF- and NF-like plates were constructed, characterized, and introduced step-by-step into the AnMBR by the substitution of MF plates. A chemical oxygen demand (COD) removal study showed that while 77% removal of COD was possible with MF membranes, improved COD removal (i.e., 81.40% and 88.39%) was achieved using UF-like and NF-like membranes, respectively. Because of the higher retention of salts of the NF-like membrane, the salinity in the membrane bioreactor increased from 1300 to 1680 µS·cm−1 but stabilized quickly and without a negative impact on system performance. Even without cleaning, minimal fouling and flux decline were observed for all tested configurations thanks to the use of granular biomass and low permeation flux. Permeate flux in the case of the NF-like membrane was slightly lower due to the required higher pressure. The present study demonstrated that the EOL-RO membranes may find applications in HR-AnMBRs to achieve superior permeate quality and move toward circular membrane processes. Full article
Show Figures

Figure 1

32 pages, 3918 KB  
Article
Evaluation of Graphene Nanoplatelets and Graphene Oxide Quantum Dots Added to a Polymeric Fiber Matrix Used as Biofilm Support in Anaerobic Systems
by Alexa Mariana Salgado-Arreguín, Juan Manuel Méndez-Contreras, Carlos Velasco-Santos, Norma Alejandra Vallejo-Cantú, Erik Samuel Rosas-Mendoza, Albino Martínez-Sibaja and Alejandro Alvarado-Lassman
Environments 2025, 12(10), 392; https://doi.org/10.3390/environments12100392 - 20 Oct 2025
Viewed by 1296
Abstract
This study aimed to evaluate the incorporation of graphene-based additives, graphene nanoplatelets (GNPs) and graphene oxide quantum dots (GOQDs), into polymeric fiber matrices used as biofilm supports in anaerobic digestion systems, determining additive specific effects by benchmarking the impregnated matrices against the same [...] Read more.
This study aimed to evaluate the incorporation of graphene-based additives, graphene nanoplatelets (GNPs) and graphene oxide quantum dots (GOQDs), into polymeric fiber matrices used as biofilm supports in anaerobic digestion systems, determining additive specific effects by benchmarking the impregnated matrices against the same nylon carrier without additives under identical operational conditions. Modified matrices were assessed through BMP assays using the liquid fraction of fruit and vegetable waste (LF-FVW) as substrate. Intermediate GNP and GOQD loadings (FM50 and FMDOT50) achieved the highest methane yields (317.9 ± 20.2 and 348.4 ± 20.0 mL CH4/g COD(rem)) compared with the control fiber matrix (301.0 ± 20.1 mL CH4/g COD(rem)). Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) analyses confirmed nanomaterial retention on the matrix surface and interaction with microbial aggregates. Embedding the nanostructures within the fiber enhanced biofilm formation and methane yield while minimizing nanomaterial washout. Future work will focus on advanced physicochemical characterization (XRD, XPS, BET, and EDX mapping), leaching tests to assess long term stability, and scale up evaluation for full scale anaerobic digestion applications. Full article
Show Figures

Graphical abstract

15 pages, 5595 KB  
Article
Enhanced Methane Production in the Anaerobic Digestion of Swine Manure: Effects of Substrate-to-Inoculum Ratio and Magnetite-Mediated Direct Interspecies Electron Transfer
by Jung-Sup Lee, Tae-Hoon Kim, Byung-Kyu Ahn, Yun-Ju Jeon, Ji-Hye Ahn, Waris Khan, Seoktae Kang, Junho Kim and Yeo-Myeong Yun
Energies 2025, 18(17), 4692; https://doi.org/10.3390/en18174692 - 4 Sep 2025
Viewed by 1350
Abstract
Improving the anaerobic digestion (AD) of swine manure is crucial for sustainable waste-to-energy systems, given its high organic load and process instability risks. This study examined the combined effects of substrate-to-inoculum ratio (SIR, 0.1–3.2) and magnetite-mediated direct interspecies electron transfer on biogas production, [...] Read more.
Improving the anaerobic digestion (AD) of swine manure is crucial for sustainable waste-to-energy systems, given its high organic load and process instability risks. This study examined the combined effects of substrate-to-inoculum ratio (SIR, 0.1–3.2) and magnetite-mediated direct interspecies electron transfer on biogas production, effluent quality, and microbial community dynamics. The highest methane yield (262 ± 10 mL CH4/g COD) was obtained at SIR 0.1, while efficiency declined at higher SIRs due to acid and ammonia accumulation. Magnetite supplementation significantly improved methane yield (up to a 54.1% increase at SIR 0.2) and reduced the lag phase, particularly under moderate SIRs. Effluent characterization revealed that low SIRs induced elevated soluble COD (SCOD) levels, attributed to microbial autolysis and extracellular polymeric substance release. Furthermore, magnetite addition mitigated SCOD accumulation and shifted molecular weight distributions toward higher fractions (>15 kDa), indicating enhanced microbial activity and structural polymer formation. Microbial analysis revealed that magnetite-enriched Syntrophobacterium and Methanothrix promoted syntrophic cooperation and acetoclastic methanogenesis. Diversity indices and PCoA further showed that both SIR and magnetite significantly shaped microbial structure and function. Overall, an optimal SIR range of 0.2–0.4 under magnetite addition provided a balanced strategy for enhancing methane recovery, effluent quality, and microbial stability in swine manure AD. Full article
Show Figures

Graphical abstract

15 pages, 1908 KB  
Article
Evaluating the Performance of a Wastewater Treatment Plant of a Dairy Facility in Southern Minas Gerais, Brazil
by Juan Pablo Pereira Lima and André Aguiar
Sustainability 2025, 17(17), 7597; https://doi.org/10.3390/su17177597 - 22 Aug 2025
Viewed by 1685
Abstract
Dairy wastewater is highly polluting and requires treatment before being discharged into receiving surface waters or destined for reuse. This study aimed to evaluate the performance of a wastewater treatment plant (WWTP) at a dairy facility, which includes the following treatment stages: screening, [...] Read more.
Dairy wastewater is highly polluting and requires treatment before being discharged into receiving surface waters or destined for reuse. This study aimed to evaluate the performance of a wastewater treatment plant (WWTP) at a dairy facility, which includes the following treatment stages: screening, grease trap, and an upflow anaerobic filter (UAF). Monitoring data from a WWTP at a dairy situated in the southern region of Minas Gerais, Brazil, were assessed based on pollutant removal efficiency in accordance with Brazilian environmental regulations. The results showed that the WWTP achieved average removal efficiencies of 96.2% for COD and 97.1% for BOD5. The BOD5/COD ratio of raw and treated wastewater averaged 0.46 and 0.30, respectively, indicating preferential removal of the biodegradable organic fraction. The treated wastewater complied with legal standards for pH, settleable solids, and total suspended solids. However, at least one sample did not meet regulatory limits for discharge into water bodies regarding surfactants and oils & greases. Strong linear correlations (R2~0.8) between COD and BOD5 data were observed for both raw and treated wastewater. While the treated wastewater was not suitable for use in the facility’s wood-fired boiler, it may be reused for agricultural irrigation. Full article
Show Figures

Graphical abstract

31 pages, 4259 KB  
Article
Neuronal Count, Brain Injury, and Sustained Cognitive Function in 5×FAD Alzheimer’s Disease Mice Fed DHA-Enriched Diets
by Cristina de Mello-Sampayo, Mafalda Soares Pádua, Maria Rosário Silva, Maria Lourenço, Rui M. A. Pinto, Sandra Carvalho, Jorge Correia, Cátia F. Martins, Romina Gomes, Ana Gomes-Bispo, Cláudia Afonso, Carlos Cardoso, Narcisa Bandarra and Paula A. Lopes
Biomolecules 2025, 15(8), 1164; https://doi.org/10.3390/biom15081164 - 14 Aug 2025
Cited by 1 | Viewed by 2211
Abstract
Alzheimer’s disease (AD) is the most common form of dementia, affecting over 50 million people globally. Since 1906, efforts to understand this neurodegenerative disease and to develop effective treatments have continued to this day. Recognizing docosahexaenoic acid (DHA, 22:6n-3) as a safe, inexpensive [...] Read more.
Alzheimer’s disease (AD) is the most common form of dementia, affecting over 50 million people globally. Since 1906, efforts to understand this neurodegenerative disease and to develop effective treatments have continued to this day. Recognizing docosahexaenoic acid (DHA, 22:6n-3) as a safe, inexpensive and vital nutrient for brain health and cognitive protection due to its key role in brain development and function, this study explores novel, sustainable non-fish sources as potential dietary supplements to prevent or mitigate AD, within a blue biotechnology framework. Forty 5×FAD male mice, five weeks old, were allocated to five body weight-matched dietary groups (n = 8) and fed isocaloric diets based on AIN-93M standard chow for 6 months. Each diet, except the control feed (non-supplemented group), enclosed a modified lipid fraction supplemented with 2% of the following: (1) linseed oil (LSO, rich in alpha-linolenic acid (ALA,18:3n-3)); (2) cod liver oil (fish oil, FO, rich in both DHA and eicosapentaenoic acid (EPA, 20:5n-3)); (3) Schizochytrium sp. microalga oil (Schizo) with 40% of DHA; and (4) commercial DHASCO oil (DHASCO) with 70% of DHA. The different diets did not affect (p > 0.05) growth performance criteria (e.g., final body weight, daily feed intake, and body weight gain) suggesting no effect on the overall caloric balance or mice growth, but n-3 long-chain polyunsaturated-fatty acid (n-3 LCPUFA) supplementation significantly reduced total cholesterol (p < 0.001) and total lipids (p < 0.001). No systemic inflammation was detected in 5×FAD mice. In parallel, a beneficial modulation of lipid metabolism by DHA-enriched diets was observed, with polyunsaturated fatty acid incorporation, particularly DHA, across key metabolic tissues, such as the liver (p < 0.001) and the brain (p < 0.001). No behavioural variations were detected using an open-field test after 6 months of diet (p > 0.05). While mice fed a standard diet or LSO diet showed cognitive deficit, the incorporation of FO, Schizo or DHASCO oils into dietary routine showed promising protective effects on the working memory (p < 0.05) and the last two diets also on the recognition memory (p < 0.05) Increased neuronal count (p < 0.05), reflecting neuronal survival, was clearly observed with the fish oil diet. In turn, the number of TAU-positive cells (p < 0.05) was reduced in the Schizo diet, while β-amyloid deposition (p < 0.01) and the neuroinflammatory marker, IBA1 (p < 0.05), were decreased across all DHA-enriched diets. These promising findings open new avenues for further studies focused on the protective effects of DHA derived from sustainable and underexploited Schizochytrium sp. microalga in the prevention of AD. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

16 pages, 1640 KB  
Article
Polydroxyalkanoates Production from Simulated Food Waste Condensate Using Mixed Microbial Cultures
by Konstantina Filippou, Evaggelia Bouzani, Elianta Kora, Ioanna Ntaikou, Konstantina Papadopoulou and Gerasimos Lyberatos
Polymers 2025, 17(15), 2042; https://doi.org/10.3390/polym17152042 - 26 Jul 2025
Cited by 1 | Viewed by 1922
Abstract
The growing environmental concerns associated with petroleum-based plastics require the development of sustainable, biodegradable alternatives. Polyhydroxyalkanoates (PHAs), a family of biodegradable bioplastics, offer a promising potential as eco-friendly substitutes due to their renewable origin and favorable degradation properties. This research investigates the use [...] Read more.
The growing environmental concerns associated with petroleum-based plastics require the development of sustainable, biodegradable alternatives. Polyhydroxyalkanoates (PHAs), a family of biodegradable bioplastics, offer a promising potential as eco-friendly substitutes due to their renewable origin and favorable degradation properties. This research investigates the use of synthetic condensate, mimicking the liquid fraction from drying and shredding of household food waste, as a viable substrate for PHA production using mixed microbial cultures. Two draw-fill reactors (DFRs) were operated under different feed organic concentrations (2.0 ± 0.5 and 3.8 ± 0.6 g COD/L), maintaining a consistent carbon-to-nitrogen ratio to selectively enrich microorganisms capable of accumulating PHAs through alternating nutrient availability and deficiency. Both reactors achieved efficient organic pollutant removal (>95% soluble COD removal), stable biomass growth, and optimal pH levels. Notably, the reactor with the higher organic load (DFR-2) demonstrated a modest increase in PHA accumulation (19.05 ± 7.18%) compared to the lower-loaded reactor (DFR-1; 15.19 ± 6.00%), alongside significantly enhanced biomass productivity. Polymer characterization revealed the formation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), influenced by the substrate composition. Microbial community analysis showed an adaptive shift towards Proteobacteria dominance, signifying successful enrichment of effective PHA producers. Full article
(This article belongs to the Special Issue Bioplastics)
Show Figures

Figure 1

5 pages, 665 KB  
Proceeding Paper
Opportunities of Coupling Hydrothermal Liquefaction with Wet Oxidation: Significance of Appropriate Thermodynamic Model Selection in Process Modeling
by Arif Hussain, Bertram Thoning Hvass Søgaard and Konstantinos Anastasakis
Proceedings 2025, 121(1), 7; https://doi.org/10.3390/proceedings2025121007 - 17 Jul 2025
Cited by 1 | Viewed by 631
Abstract
This study examines the significance of thermodynamic model selection to improve predictions when modeling a wet oxidation (WO) process. WO is a promising technology for treating the highly concentrated process water stream from hydrothermal liquefaction (HTL) while generating heat, due to the exothermic [...] Read more.
This study examines the significance of thermodynamic model selection to improve predictions when modeling a wet oxidation (WO) process. WO is a promising technology for treating the highly concentrated process water stream from hydrothermal liquefaction (HTL) while generating heat, due to the exothermic oxidation reactions, leading to a potential integrated HTL-WO autothermal process. However, the harsh process conditions employed fail to describe oxygen solubility accurately, leading to major deviations in predicted COD reduction, heat generation, vapor fraction, and final design. To accurately capture oxygen solubility at elevated temperatures and pressures, experimental oxygen solubility data were regressed using activity coefficient models. This yielded improved oxygen solubility predictions at 280–350 °C, more realistic vapor fractions and heat outputs, and COD reduction close to experimental values. Full article
(This article belongs to the Proceedings of The 1st SUSTENS Meeting)
Show Figures

Figure 1

14 pages, 1109 KB  
Article
Optimization of the Green Conventional Extraction Method of Sericin from Silkworm
by Daniel Stiven Burgos Gomez, Maite Rada-Mendoza and Diana M. Chito-Trujillo
Polymers 2025, 17(13), 1823; https://doi.org/10.3390/polym17131823 - 30 Jun 2025
Cited by 1 | Viewed by 1174
Abstract
In the silk production process, cocoons from Bombyx mori worm are degummed and separated from their components. This step generates large residual quantities of an aqueous solution containing various chemical substances, including sericin—a protein that, when discarded improperly, negatively impacts the environment. Sodium [...] Read more.
In the silk production process, cocoons from Bombyx mori worm are degummed and separated from their components. This step generates large residual quantities of an aqueous solution containing various chemical substances, including sericin—a protein that, when discarded improperly, negatively impacts the environment. Sodium bicarbonate and coconut soap are commonly used in the degumming process. The phosphates in the soap and the sodium bicarbonate increase the biological oxygen demand (BOD) and chemical oxygen demand (COD), leading to water contamination. In this study, a Box–Behnken experimental design was used to maximize the extraction of sericin through a conventional extraction under chemical-free conditions. From a total of 45 experiments, the optimal extraction conditions were identified as a solid-to-liquid ratio of 1:20 w/v, a temperature of 120 °C, and 90 min of extraction time. Sericin yields ranged from 9% to 18%. Infrared spectroscopic characterization of the extracted sericin confirmed the presence of protein-specific functional groups and common interactions associated with β-sheet structures. Fractions of high molecular weight (50 kDa to 200 kDa), identified by means of Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) analysis, demonstrate the potential functionality of extracted sericin for the development of biopolymer films useful in biomedical and food industry applications. The optimized methodology is a good alternative to recycle the waste of sericulture chain for obtaining extracts enriched in sericin, as well as to promote the mechanization of artisanal production processes. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

Back to TopTop