Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (78)

Search Parameters:
Keywords = CO2 refrigeration cycle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 993 KiB  
Review
Energy Footprint of Cheese: A Critical Review of the Environmental Impact and Opportunities for Sustainability
by Karina S. Silvério, Daniela Freitas and João M. Dias
Appl. Sci. 2025, 15(14), 8072; https://doi.org/10.3390/app15148072 - 20 Jul 2025
Viewed by 508
Abstract
Cheese production is an ancient practice that is associated with the food and cultural identity of different peoples. There are over 500 cheese types globally, including 207 with protected denomination of origin (PDO) and 70 with protected geographical indication (PGI) status in the [...] Read more.
Cheese production is an ancient practice that is associated with the food and cultural identity of different peoples. There are over 500 cheese types globally, including 207 with protected denomination of origin (PDO) and 70 with protected geographical indication (PGI) status in the European Union (EU). Each cheese has various biochemical compositions, production methods, and maturation environments. This study has provided a critical review of the environmental impacts of cheese production, focusing on energy consumption, greenhouse gas (GHG) emissions, and the integration of renewable energy sources as sustainable strategies for this sector. Based on case studies and life cycle assessment (LCA) methodologies, the analysis revealed significant variability in energy use (3.0 to 70.2 MJ/kg) and GHG emissions (up to 22.13 kg CO2 eq/kg), influenced by factors such as the cheese type, production complexity, system boundaries, and the technological or geographical context. Particular attention was given to heat treatment, refrigeration, and maturation processes, which contribute substantially to the overall energy footprint. The paper also discusses the methodological challenges in LCA studies, including the role of co-product allocation and database limitations. Finally, strategic renewable energy options, such as biogas recovery and solar thermal integration, are discussed as sustainable alternatives to reduce the environmental footprint of the dairy sector and support its sustainability. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

35 pages, 5144 KiB  
Systematic Review
A Systematic Review of Two-Phase Expansion Losses: Challenges, Optimization Opportunities, and Future Research Directions
by Muhammad Syaukani, Szymon Lech, Sindu Daniarta and Piotr Kolasiński
Energies 2025, 18(13), 3504; https://doi.org/10.3390/en18133504 - 2 Jul 2025
Cited by 1 | Viewed by 351
Abstract
Two-phase expansion processes have emerged as a promising technology for enhancing energy efficiency in power generation, refrigeration, waste heat recovery systems (for example, partially evaporated organic Rankine cycle, organic flash cycle, and trilateral flash cycle), oil and gas, and other applications. However, despite [...] Read more.
Two-phase expansion processes have emerged as a promising technology for enhancing energy efficiency in power generation, refrigeration, waste heat recovery systems (for example, partially evaporated organic Rankine cycle, organic flash cycle, and trilateral flash cycle), oil and gas, and other applications. However, despite their potential, widespread adoption is hindered by inherent challenges, particularly energy losses that reduce operational efficiency. This review systematically evaluates the current state of two-phase expansion technologies, focusing on the root causes, impacts, and mitigation strategies for expansion losses. This work used Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Using the PRISMA framework, 52 relevant publications were identified from Scopus and Web of Science to conduct the systematic review. A preliminary co-occurrence analysis of keywords was also conducted using VOSviewer version 1.6.20. Three clusters were observed in this co-occurrence analysis. However, the results may not be significant. Therefore, the extended work was done through a comprehensive analysis of experimental and simulation studies from the literature. This study identifies critical loss mechanisms in key components of two-phase expanders, such as the nozzle, diffuser, rotor, working chamber, and vaneless space. Also, losses arising from wetness, such as droplet formation, interfacial friction, and non-equilibrium phase transitions, are examined. These phenomena degrade performance by disrupting flow stability, increasing entropy generation, and causing mechanical erosion. Several losses in the turbine and volumetric expanders operating in two-phase conditions are reported. Ejectors, throttling valves, and flashing flow systems that exhibit similar challenges of losses are also discussed. This review discusses the mitigation and the strategy to minimize the two-phase expansion losses. The geometry of the inlet of the two-phase expanders plays an important role, which also needs improvement to minimize losses. The review highlights recent advancements in addressing these challenges and shows optimization opportunities for further research. Full article
(This article belongs to the Special Issue Design and Experimental Study of Organic Rankine Cycle System)
Show Figures

Figure 1

20 pages, 4816 KiB  
Article
Research Progress and Prospects of Refrigerant Replacement Under the Background of Greenhouse Gas Emission Reduction: A Visualization Analysis of the CiteSpace Map
by Shengzhong Huang, Hui Zhang and Conghui Li
Sustainability 2025, 17(5), 2199; https://doi.org/10.3390/su17052199 - 3 Mar 2025
Viewed by 811
Abstract
As global environmental consciousness continues to expand, the issue of refrigerant alternatives has increasingly become a focal point for scholarly attention. Using CiteSpace visualization technology, a comprehensive and innovative research framework for refrigerant alternatives has been developed. This framework systematically organizes and analyzes [...] Read more.
As global environmental consciousness continues to expand, the issue of refrigerant alternatives has increasingly become a focal point for scholarly attention. Using CiteSpace visualization technology, a comprehensive and innovative research framework for refrigerant alternatives has been developed. This framework systematically organizes and analyzes not only the volume of publications related to refrigerant alternatives but also the collaborative relationships among authors and research institutions. By employing keyword co-occurrence maps, clustering diagrams, and timeline charts, an in-depth analysis of the academic literature on refrigerant alternatives has been performed, elucidating the core research themes, evolutionary trajectories, and emerging trends in this field. Research indicates an exponential increase in the number of studies on refrigerant alternatives; however, there is insufficient collaboration and communication among researchers and institutions. Key research hotspots in this field encompass the organic Rankine cycle, vapor-liquid equilibria, pressure drop characteristics, vapor compression refrigeration systems, exergy analysis, alternative refrigerants, and performance evaluation of carbon dioxide systems. In future research, the performance of various low GWP refrigerants in refrigeration cycle systems will continue to be a focal point. To address diverse application requirements, developing blended refrigerants represents a pragmatic technical approach. From a sustainability standpoint, natural refrigerants are anticipated to emerge as the ultimate alternative, with the technical challenges associated with their application constituting a critical area for future investigation. Full article
Show Figures

Figure 1

19 pages, 9636 KiB  
Article
Experimental Validation of a Novel CO2 Refrigeration System for Cold Storage: Achieving Energy Efficiency and Carbon Emission Reductions
by Yi-Zhou Wang, Yu-Wei Fan, Xiao-Long Li, Jian-Guo Yang and Xin-Rong Zhang
Energies 2025, 18(5), 1129; https://doi.org/10.3390/en18051129 - 25 Feb 2025
Cited by 4 | Viewed by 796
Abstract
To address the high energy consumption and carbon emissions associated with cold storage operations, a novel refrigeration system is proposed, which utilizes the natural refrigerant CO2 and integrates an innovative control strategy. Experimental validations were conducted in Changsha (a subtropical monsoon climate) [...] Read more.
To address the high energy consumption and carbon emissions associated with cold storage operations, a novel refrigeration system is proposed, which utilizes the natural refrigerant CO2 and integrates an innovative control strategy. Experimental validations were conducted in Changsha (a subtropical monsoon climate) and Changchun (a continental monsoon climate), which are two regions representing typical climatic zones in China, to assess the system’s energy-saving potential, temperature stability, and environmental impacts with the total equivalent warming impact and life cycle carbon performance methods. For Changchun, the total equivalent warming impact reached 78.3 kg CO2e/kg, reflecting reductions of 99.5% in direct emissions and 58.6% in indirect emissions compared with R410A systems, as mentioned in the reference. The life cycle carbon performance was reduced by 85.1% and 72.2% compared with the two experiment cases, with indirect emissions from energy consumption comprising the largest share. The system maintained exceptional temperature stability, with vertical-layer variations remaining under 1 °C. These findings demonstrate this system’s adaptability to achieve energy and emission reductions across diverse climates, providing a sustainable framework for future cold storage design aligned with global carbon neutrality goals. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

21 pages, 2100 KiB  
Article
The Sustainability of a Dairy Cattle System in the Internal Area of Marmo Platano, Basilicata Region, Italy
by Andrea Bragaglio, Gerardo Luigi Marolda, Daniel Mota-Rojas, Salvatore Claps, Gennaro Mecca, Elio Romano, Maurizio Cutini and Lucia Sepe
Ruminants 2025, 5(1), 9; https://doi.org/10.3390/ruminants5010009 - 14 Feb 2025
Viewed by 1276
Abstract
Some studies have shown that intensification improves the sustainability of bovine milk; however, this matter is controversial. The present study, performed in Southern Italy, in the Basilicata region, focuses on nine specialized dairy farms of the Marmo Platano internal area. These farms are [...] Read more.
Some studies have shown that intensification improves the sustainability of bovine milk; however, this matter is controversial. The present study, performed in Southern Italy, in the Basilicata region, focuses on nine specialized dairy farms of the Marmo Platano internal area. These farms are characterized by a “low intensification profile”, and we estimated the sustainability of the Marmo Platano dairy system via life-cycle assessment using specific software. We chose 1 kg of refrigerated raw milk as the functional unit and four impact categories: global warming potential, non-renewable energy use, fossil depletion, and agricultural land occupation. All impact category values fell within the ranges in the bibliography. Economic allocation, a criterion led by the market value of milk and culled cows (and their ratio), significantly (p < 0.05) affected the global warming potential and agricultural land occupation of two farms (1.38 kg CO2 eq and 2.48 m2y−1 as the system mean), while it did not affect the fossil depletion of the entire system, i.e., 138 g of oil as the mean. After allocation, the system showed three different profiles (p < 0.05) of non-renewable energy use (average value 6.31 MJ), despite its closeness with fossil depletion. Despite the aptness of Marmo Platano, the animals are not grazed, whereas full barn housing ensures satisfactory milk yields. Mainly driven by its low input characteristics, implying a low culling rate, the system proved to be sustainable. Full article
Show Figures

Figure 1

23 pages, 3177 KiB  
Article
Thermodynamic and Economic Analysis of Cargo Boil-Off Gas Re-Liquefaction Systems for Ammonia-Fueled LCO2 Carriers
by Jun-Seong Kim and Do-Yeop Kim
J. Mar. Sci. Eng. 2024, 12(9), 1642; https://doi.org/10.3390/jmse12091642 - 13 Sep 2024
Cited by 1 | Viewed by 1835
Abstract
In this study, cargo boil-off gas (BOG) re-liquefaction systems for ammonia-fueled liquefied carbon dioxide (LCO2) carriers were analyzed. These systems use cold energy from ammonia to reliquefy the CO2 BOG. In this study, a system that can completely reliquefy the [...] Read more.
In this study, cargo boil-off gas (BOG) re-liquefaction systems for ammonia-fueled liquefied carbon dioxide (LCO2) carriers were analyzed. These systems use cold energy from ammonia to reliquefy the CO2 BOG. In this study, a system that can completely reliquefy the CO2 BOG at all engine loads using only one heat exchanger is proposed, instead of the existing cascade system that requires multiple components. R744, which has a low global warming potential, was used as the working fluid for the refrigeration cycle in the CO2 BOG re-liquefaction system. The organic Rankine cycle (ORC) was used to reduce the net power consumption of the system. The existing and proposed systems were classified into Case 1 (existing system), Case 2 (our proposed system), and Case 3 (Case 2 combined with an ORC). Thermodynamic and economic analyses were conducted. Case 2 is a system with a simpler configuration than Case 1, but it has a similar thermodynamic performance. Case 3 has a higher exergy destruction rate than Cases 1 and 2, owing to the ORC, but it can significantly reduce the net power consumption. The economic analysis shows that Cases 2 and 3 reduce the total annual costs by 17.4% and 20.1%, respectively, compared to Case 1. The proposed systems are significantly more advantageous for long-term operation than existing systems. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

26 pages, 2685 KiB  
Article
Energy and Exergy Analysis of Transcritical CO2 Cycles for Heat Pump Applications
by Marco Gambini, Michele Manno and Michela Vellini
Sustainability 2024, 16(17), 7511; https://doi.org/10.3390/su16177511 - 30 Aug 2024
Viewed by 1692
Abstract
Heat pumps are recognized as a key tool in the energy transition toward a carbon-neutral society, enabling the electrification of the heating sector at least for low- and medium-temperature heat demands. In recent years, natural refrigerants have been reconsidered due to their low [...] Read more.
Heat pumps are recognized as a key tool in the energy transition toward a carbon-neutral society, enabling the electrification of the heating sector at least for low- and medium-temperature heat demands. In recent years, natural refrigerants have been reconsidered due to their low environmental impact: among them, CO2 is a safe option without an impact on the ozone layer and low global warming potential compared to synthetic fluids. However, as a consequence of its thermophysical properties, its thermodynamic cycle is transcritical and is particularly suitable for specific end-user temperature profiles. This paper analyzes in a systematic and thorough way the most significant modifications to the reference cycle that have been proposed in the literature to improve the performance, finding how the optimal configurations change with a change in the rated operating conditions (inlet temperature and temperature glide of the heat demand, and ambient temperature). Exergy analysis explains why there is an optimal gas cooler pressure and why its trend with the average temperature is split into two distinct regions, clearly recognizable in all cycle layouts. The maximum coefficient of performance (COP) of the reference cycle varies in the 1.52–3.74 range, with a second-law efficiency of 6.4–36.1%, for an optimal gas cooler pressure of up to 15.45 MPa, depending on the ambient temperature and end-user temperature profile. The most effective modification is the cycle with an ejector and internal heat exchanger, which raises the COP to 1.84–4.40 (second-law efficiency 8.7–45.56%). The presented results provide an extensive guide to understanding the behavior of a transcritical CO2 cycle and predict its performance in heat pump applications. Full article
(This article belongs to the Special Issue Energy Storage, Conversion and Sustainable Management)
Show Figures

Figure 1

26 pages, 5563 KiB  
Article
Solar-Powered Combined Cooling, Heating, and Power Energy System with Phase-Change Material and Water Electrolysis: Thermo-Economic Assessment and Optimization
by Koorosh Aieneh, Sadegh Mehranfar, Mohammad Yazdi Sotoude, Shayan Sadeghi and Amin Mahmoudzadeh Andwari
Energies 2024, 17(13), 3309; https://doi.org/10.3390/en17133309 - 5 Jul 2024
Cited by 5 | Viewed by 1857
Abstract
A solar-powered combined cooling, heating, and power (CCHP) plant integrated with a water electrolysis unit is investigated in terms of energy, exergy, and exergo-economic (3E) assessments. A comprehensive parametric study and optimization is conducted following the thermodynamic and exergo-economic assessment of the proposed [...] Read more.
A solar-powered combined cooling, heating, and power (CCHP) plant integrated with a water electrolysis unit is investigated in terms of energy, exergy, and exergo-economic (3E) assessments. A comprehensive parametric study and optimization is conducted following the thermodynamic and exergo-economic assessment of the proposed system to evaluate the key performance parameters of the system for efficiency and economic factors. This system employs a heliostat field and a receiver tower by taking advantage of thermal energy from the sun and produces a continuous energy supply with an integrated phase-change material (PCM) tank to store the heat. In addition, a supercritical CO2 Rankine cycle (RC), an ejector refrigeration cooling (ERC) system, and a PEM water electrolyzer are coupled to produce cooling, heating, power, and hydrogen. Thermodynamic analysis indicates that the system exergy efficiency and energy efficiency are improved to 33.50% and 40.61%, respectively, while the total cost rate is 2875.74 USD/h and the total product cost per exergy unit is 25.65 USD/GJ. Additionally, the system produces a net generated power, heating load, and cooling load of 11.70, 13.92, and 2.60 MW, respectively, and a hydrogen production rate of 12.95 g/s. A two-objective optimization approach utilizing a non-dominated sorting genetic algorithm (NSGA) was performed, demonstrating that the system’s ideal design point offers a cost rate of 1263.35 USD/h and an exergetic efficiency of 34.17%. Full article
(This article belongs to the Special Issue Advances in Waste Heat Recovery and Integrated Energy Systems)
Show Figures

Figure 1

27 pages, 7480 KiB  
Article
Carbon Footprint Reduction by Reclaiming Condensed Water
by Yiu-Kuen Leung and Ka Wai Eric Cheng
Sustainability 2024, 16(9), 3867; https://doi.org/10.3390/su16093867 - 5 May 2024
Cited by 3 | Viewed by 2348
Abstract
Everyday activity incurs carbon footprints, which are classified as personal, production, organizational and national, and may be assessed by input–output analysis (IOA), life-cycle assessment (LCA), or the combination of LCA and IOA methods. Notwithstanding international standards, like ISO 14064 and Publicly Available Specification [...] Read more.
Everyday activity incurs carbon footprints, which are classified as personal, production, organizational and national, and may be assessed by input–output analysis (IOA), life-cycle assessment (LCA), or the combination of LCA and IOA methods. Notwithstanding international standards, like ISO 14064 and Publicly Available Specification (PAS) released for standardization, carbon footprint results can vary and sometimes lack consistency that due to variations in data sources, crossover boundary definitions, and operational boundaries for indirect emissions. The novelty of this study is the direct utilization of condensed water in an existing cooling water system, without the need for prior wastewater treatment, as typically required for greywater. The lack of practical case studies exploring the water–energy nexus in the context of reclaiming condensed water for evaporative cooling tower systems makes this research particularly significant. This highlights that condensed water can be a straightforward and cost-effective solution for both water conservation and energy savings. This case study highlights the benefits of reclaiming condensed water as supplementary cooling water, which proved effective in water quality treatment and dilution augmentation, considering that a higher cycle of concentration (CoC) was achieved, leading to reduced bleed-off that resulted in a water saving of 44% for make-up and 80% for bleed-off water, and energy savings from 6.9% to 13.1% per degree Celsius of condensing refrigerant temperature (CRT). The analytical assessment revealed that reclaiming condensed water is a promising answer for green building and is a by-product of condensation without extra power demands, avoiding the generation of an increased carbon footprint and exacerbation of greenhouse gas (GHG) emissions from freshwater resource extraction, and for the production of energy-efficient devices or substitutions. By eliminating the need for wastewater treatment, this research enhances the practicality and feasibility of direct use of condensed water in various applications. This approach not only promotes sustainability by conserving water and energy but also renews interest among proponents of green building practices. It has the potential to accelerate the adoption of this method and integrate it into green building designs. Full article
Show Figures

Figure 1

22 pages, 6587 KiB  
Article
Design, Economic, and Environmental Accounting Assessment of a Solar-Powered Cold Room for Fish Storage in Traditional Markets
by Yassine Rami and Amine Allouhi
Sustainability 2024, 16(7), 3080; https://doi.org/10.3390/su16073080 - 8 Apr 2024
Cited by 6 | Viewed by 2681
Abstract
The food industry, crucial for emerging economies, faces challenges in refrigeration, particularly in fish storage. High energy consumption, environmental impact, and improper cooling methods leading to food waste are significant issues. Addressing these challenges is vital for economic and environmental sustainability in the [...] Read more.
The food industry, crucial for emerging economies, faces challenges in refrigeration, particularly in fish storage. High energy consumption, environmental impact, and improper cooling methods leading to food waste are significant issues. Addressing these challenges is vital for economic and environmental sustainability in the food sector, especially concerning fish storage where spoilage rates are high. In this context, this research proposes a sizing methodology, evaluation, and parametric simulations based on multi-criteria attributes for a solar PV-powered cold room for storing fish in traditional markets in Morocco. To identify the cooling load of the system, TRNSYS 16 was utilized to simulate the transient behavior, while the PV array specifications were determined using SAM 2017.9.5 software. The design process introduced a cold room coupled to a refrigeration unit powered by a 15.3 m2 PV array with a 1.8 kWp nameplate capacity. Finally, yearly and life cycle metrics including self-sufficiency, self-consumption, Levelized Cost of Cooling (LCOC), discounted payback period (DPP), CO2 emissions avoided and total environmental penalty cost savings (TEPCS) are evaluated to assess the performance of the system and a sensitivity analysis was conducted on these metrics. The proposed system has an attractive LCOC of 0.131 $/kWhCold and a DPP of 3.511 years. Using the PV array proved to avoid 437.56 tons of CO2 emissions and generated TEPCS from $100.59 to $866.66. The results of this study highlight the potential for utilizing renewable energy sources in the refrigeration sector to improve both economic and environmental sustainability. Full article
Show Figures

Figure 1

20 pages, 7165 KiB  
Article
Thermodynamic Analysis of a Cogeneration System Combined with Heat, Cold, and Electricity Based on the Supercritical CO2 Power Cycle
by Rujun Zhang, Xiaohe Wang, Shuang Yang and Xin Shen
Energies 2024, 17(7), 1767; https://doi.org/10.3390/en17071767 - 8 Apr 2024
Cited by 2 | Viewed by 1768
Abstract
The supercritical CO2 power cycle driven by solar as a new generation of solar thermal power generation technology has drawn significant attention worldwide. In this paper, a cogeneration system derived from a supercritical CO2 recompression Brayton cycle is proposed, by considering [...] Read more.
The supercritical CO2 power cycle driven by solar as a new generation of solar thermal power generation technology has drawn significant attention worldwide. In this paper, a cogeneration system derived from a supercritical CO2 recompression Brayton cycle is proposed, by considering the recovery of waste heat from the turbine outlet. The absorption refrigeration cycle is powered by the medium-temperature waste heat from the turbine outlet, while the low-temperature waste heat is employed for heating, achieving the cascaded utilization of the heat from the turbine outlet. As for the proposed combined cooling, heating, and power (CCHP) system, a dynamic model was built and verified in MATLAB R2021b/Simulink. Under design conditions, values for the energy utilization factor (EUF) and exergy efficiency of the cogeneration system were obtained. Moreover, the thermodynamic performances of the system were investigated in variable cooling/heating load and irradiation conditions. Compared with the reference system, it is indicated that the energy utilization factor (EUF) and exergy efficiency are 84.7% and 64.8%, which are improved by 11.5% and 10.3%. The proposed supercritical CO2 CCHP system offers an effective solution for the efficient utilization of solar energy. Full article
(This article belongs to the Special Issue Advances in Solar Systems and Energy Efficiency)
Show Figures

Figure 1

14 pages, 5614 KiB  
Article
Preparation and Performance of Micro-Arc Oxidation Coatings for Corrosion Protection of LaFe11.6Si1.4 Alloy
by Ruzhao Chen, Bin Fu, Jie Han, Hu Zhang, Ping Wang and Hongxia Yin
Materials 2024, 17(6), 1316; https://doi.org/10.3390/ma17061316 - 13 Mar 2024
Viewed by 1362
Abstract
The microstructure, corrosion resistance, and phase-transition process of micro-arc oxidation (MAO) coatings prepared on LaFe11.6Si1.4 alloy surfaces in different electrolyte systems were systematically investigated. Research has demonstrated that various electrolyte systems do not alter the main components of the coatings. [...] Read more.
The microstructure, corrosion resistance, and phase-transition process of micro-arc oxidation (MAO) coatings prepared on LaFe11.6Si1.4 alloy surfaces in different electrolyte systems were systematically investigated. Research has demonstrated that various electrolyte systems do not alter the main components of the coatings. However, the synergistic action of Na2CO3 and Na2B4O7 more effectively modulated the ionization and chemical reactions of the MAO process and accelerated the formation of α-Al2O3. Moreover, the addition of Na2CO3 and Na2B4O7 improved the micromorphology of the coating, resulting in a uniform coating thickness and good bonding with the LaFe11.6Si1.4 substrate. The dynamic potential polarization analysis was performed in a three-electrode system consisting of a LaFe11.6Si1.4 working electrode, a saturated calomel reference electrode, and a platinum auxiliary electrode. The results showed that the self-corrosion potential of the LaFe11.6Si1.4 alloy without surface treatment was −0.68 V, with a current density of 8.96 × 10−6 A/cm2. In contrast, the presence of a micro-arc electrolytic oxidation coating significantly improved the corrosion resistance of the LaFe11.6Si1.4 substrate, where the minimum corrosion current density was 1.32 × 10−7 A/cm2 and the corrosion potential was −0.50 V. Similarly, after optimizing the MAO electrolyte with Na2CO3 and Na2B4O7, the corrosion resistance of the material further improved. Simultaneously, the effect of the coatings on the order of the phase transition, latent heat, and temperature is negligible. Therefore, micro-arc oxidation technology based on the in situ growth coating of the material surface effectively improves the working life and stability of La(Fe, Si)13 materials in the refrigeration cycle, which is an excellent alternative as a protection technology to promote the practical process of magnetic refrigeration technology. Full article
(This article belongs to the Special Issue Microstructure Engineering of Metals and Alloys, Volume II)
Show Figures

Figure 1

19 pages, 4024 KiB  
Article
Study of a Novel Hybrid Refrigeration System, with Natural Refrigerants and Ultra-Low Carbon Emissions, for Air Conditioning
by Yijian He, Yufu Zheng, Jianguang Zhao, Qifei Chen and Lunyuan Zhang
Energies 2024, 17(4), 880; https://doi.org/10.3390/en17040880 - 14 Feb 2024
Cited by 2 | Viewed by 1843
Abstract
Due to its environmental benefits, CO2 shows great potential in refrigeration systems. However, a basic CO2 transcritical (BCT) refrigeration system used for airconditioning in buildings might generate massive indirect carbon emissions for its low COP. In this study, a novel CO [...] Read more.
Due to its environmental benefits, CO2 shows great potential in refrigeration systems. However, a basic CO2 transcritical (BCT) refrigeration system used for airconditioning in buildings might generate massive indirect carbon emissions for its low COP. In this study, a novel CO2 transcritical/two-stage absorption (CTTA) hybrid refrigeration system is broadly investigated, and both energy efficiency and life cycle climate performance (LCCP) are specifically engaged. The theoretical model shows that optimal parameters for the generator inlet temperature (TG2), intermediate temperature (Tm), and discharge pressure (Pc), exist to achieve maximum COPtol. Using the LCCP method, the carbon emissions of the CTTA system are compared to six typical refrigeration systems by using refrigerants, including R134a, R1234yf and R1234ze(E) etc. The LCCP value of the CTTA system is 3768 kg CO2e/kW, which is 53.6% less than the BCT system and equivalent to the R134a system. Moreover, its LCCP value could be 3.4% less than the R1234ze(E) system if the COP of the CO2 subsystem is further improved. In summary, the CTTA system achieves ultra-low carbon emissions, which provides a potential alternative to air conditioning systems in buildings that can be considered alongside R1234yf and R1234ze(E) systems. Full article
Show Figures

Figure 1

21 pages, 9331 KiB  
Article
Recovery of Materials from Refrigerator: A Study Focused on Product Distribution, Recyclability and LCA Evaluation
by Felipe Alejandro Garcia Paz, Magdalena Heibeck, Ashak Mahmud Parvez, Jorge Torrubia, Karl Gerald van den Boogaart and Simone Raatz
Sustainability 2024, 16(3), 1082; https://doi.org/10.3390/su16031082 - 26 Jan 2024
Cited by 8 | Viewed by 3518
Abstract
This study outlines a recycling initiative conducted at Rekular GmbH, focusing on the recycling of 100 refrigerators. The recycling process employed a combination of manual dismantling, depollution, and mechanical processing techniques. Manual dismantling followed a predefined protocol to extract various materials, while the [...] Read more.
This study outlines a recycling initiative conducted at Rekular GmbH, focusing on the recycling of 100 refrigerators. The recycling process employed a combination of manual dismantling, depollution, and mechanical processing techniques. Manual dismantling followed a predefined protocol to extract various materials, while the mechanical and physical processes involved shredding, zigzag, magnetic, and eddy current separation (ECS) to liberate and separate different materials. The resulting ferrous, non-ferrous and polymer product fractions were analyzed and categorized, providing valuable insights into the quality of interim products in the refrigerator recycling process. Simulations were then performed using FactSageTM version 8.2 and HSC Chemistry 10 version 10.3.7.1 software to simulate the recovery of metals from the ferrous and non-ferrous fractions using pyro metallurgical and hydrometallurgical methods. An electric arc furnace (EAF) was utilized for iron (Fe), while a re-smelter process for aluminium (Al), and the black copper route was simulated for copper (Cu) recovery. The recovery rates including metallurgical, mechanical, and physical processes are as follows: Fe (78%), Al (68.4%), and Cu (52.4%). In contrast, the recovery rates through metallurgical processes are as follows: Al (99%), Fe (79%), and Cu (88%). This discrepancy is attributed to losses of these elements resulting from incomplete liberation in mechanical processing. Additionally, a product/centric approach was applied and the recycling index reached 76% for recovery the Al, Cu, and Fe metals in a refrigerator recycling process. Turning to the environmental impact evaluation within the life cycle assessment (LCA), the process unit with the highest emissions per refrigerator in the recycling process was the use of nitrogen during the shredding process, accounting for 3.7 kg CO2 eq/refrigerator. Subsequently, the consumption of medium voltage electricity from the German grid during mechanical and physical separations contributed to 0.6 kg CO2 eq/refrigerator. The EAF, and electrolytic refining stages in the metallurgical recovery process also had a notable impact, generating 10.7 kg CO2 eq/refrigerator. Full article
(This article belongs to the Special Issue Sustainability: Resources and Waste Management)
Show Figures

Figure 1

16 pages, 5134 KiB  
Article
An Increase in the Energy Efficiency of R744 Heat-Using Thermotransformers
by Vyacheslav Arsenyev, Ján Piteľ, Oleksandr Korol, Serhii Sharapov, Jana Mižáková, Ivan Pavlenko and Vitalii Ivanov
Energies 2023, 16(21), 7372; https://doi.org/10.3390/en16217372 - 31 Oct 2023
Cited by 1 | Viewed by 1112
Abstract
This article deals with improving waste heat transformation in heat-using thermotransformers. Based on the directives of the European Commission on refrigeration equipment requirements, the possibility of using carbon dioxide (R744) in heat-using thermotransformers was evaluated. The possibility of the effective use of heat-using [...] Read more.
This article deals with improving waste heat transformation in heat-using thermotransformers. Based on the directives of the European Commission on refrigeration equipment requirements, the possibility of using carbon dioxide (R744) in heat-using thermotransformers was evaluated. The possibility of the effective use of heat-using thermotransformers operating within the Chistyakov–Plotnikov cycle in the heat pump mode was assessed. As a result, a comparative analysis was performed with existing modern plants for combined cycles with an expander, for the expansion of CO2 in saturated steam, a suction gas heat exchanger (SGHE), and a compressor–expander unit. The design schemes with a throttling device and an SGHE were selected for a comparative analysis. As a result, calculation models for evaluating the operating parameters for the initial and proposed design schemes were developed. These models allow for evaluating thermodynamic and mode parameters for heat-reducing thermotransformers. They also allow for ensuring energy efficiency indicators and conversion factors for each cycle. Overall, the dependencies for the cycle conversion ratio for the pressure increase stage in the compressor were obtained for various under-recovery rates. Moreover, the cycle conversion ratios for the proposed design schemes were obtained depending on the discharge pressure of the first compressor. The proposed design schemes allow for increasing the energy efficiency of heat-using thermotransformers by an average of 23%, depending on the suction pressure in the compressor. Full article
(This article belongs to the Special Issue Cooling and Heat Exchange Systems)
Show Figures

Figure 1

Back to TopTop