Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = CO2 and brine leakage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7904 KB  
Article
Preliminary Analysis of the Potential for Managing Waste CO2 in a Middle Cambrian Aquifer Within the Polish Exclusive Economic Zone of the Baltic Sea
by Karol Spunda, Tomasz Słoczyński, Arkadiusz Drozd, Teodoro Cassola and Krzysztof Sowiżdżał
Appl. Sci. 2025, 15(21), 11563; https://doi.org/10.3390/app152111563 - 29 Oct 2025
Viewed by 377
Abstract
This article addresses the storage of carbon dioxide [CO2] in underground geological formations. It presents the results of a preliminary assessment of the feasibility of sequestering CO2 in Cambrian aquifer units located within the Polish Exclusive Economic Zone of the [...] Read more.
This article addresses the storage of carbon dioxide [CO2] in underground geological formations. It presents the results of a preliminary assessment of the feasibility of sequestering CO2 in Cambrian aquifer units located within the Polish Exclusive Economic Zone of the Baltic Sea. The northern segment of a structure within the Rozewie tectonic block was selected as the research and test site. The aim was to determine the sequestration capacity and select optimal locations for injection wells, taking into account storage safety. The results and conclusions are based on numerical simulations of CO2 injection and plume migration within a brine-filled structure using Petromod software v. 2024. A geological model of the site was developed representing the spatial distribution of petrophysical parameters (porosity and permeability) of the reservoir and sealing horizons. Fault zones were also mapped and parameterised in order to evaluate the structural integrity and identify potential migration barriers for the injected gas. An initial assessment assumed the possibility of injecting 100 Mt of CO2 into the analyzed structure over a 30-year period using ten wells. However, simulation results based on the current state of geological characterization demonstrated that injection performance may vary considerably between individual wells. Wells situated within zones of highest reservoir capacity were estimated to sustain injection rates of 6–7 Mt of CO2 over 30 years, implying that a greater number of injection wells would be required to accommodate the target storage amount. Fault seal capacity was evaluated using an algorithm based on the Shale Gouge Ratio (SGR) criterion, which enabled the assessment of fault permeability and revealed potential risks of CO2 leakage. Numerical simulations further facilitated the estimation of the reservoir’s storage potential and the optimization of injection well placement, considering both injection efficiency and the risk associated with CO2 migration and leakage. Full article
Show Figures

Figure 1

15 pages, 4989 KB  
Article
Simulating Horizontal CO2 Plume Migration in a Saline Aquifer: The Effect of Injection Depth
by Aboubakar Kone, Fathi Boukadi, Racha Trabelsi and Haithem Trabelsi
Processes 2025, 13(3), 734; https://doi.org/10.3390/pr13030734 - 3 Mar 2025
Cited by 4 | Viewed by 1615
Abstract
This study investigates the impact of injection depth on CO2 plume migration dynamics in saline aquifers, a critical aspect of secure and efficient carbon capture, utilization, and storage (CCUS). While CCUS offers a vital pathway for mitigating greenhouse gas emissions, challenges such [...] Read more.
This study investigates the impact of injection depth on CO2 plume migration dynamics in saline aquifers, a critical aspect of secure and efficient carbon capture, utilization, and storage (CCUS). While CCUS offers a vital pathway for mitigating greenhouse gas emissions, challenges such as buoyancy-driven flow, salinity effects, and potential leakage threaten long-term CO2 containment. Using compositional reservoir simulation (CMG GEM 2021.10, Calgary, Canada) and Illinois Basin Decatur Project (IBDP) data, we modeled CO2 injection into a 10,000 ppm salinity aquifer, evaluating the effects of single- and multi-depth injection (5370 to 5385 ft). The results demonstrate that multi-depth injection significantly enhances CO2–brine contact area, promoting dissolution trapping and mitigating buoyancy-driven migration. This enhanced dissolution and residual trapping improves horizontal containment and overall storage security in the modeled salinity environment. The work provides valuable insights for optimizing injection strategies to maximize CO2 storage efficiency and minimize leakage risks. Full article
Show Figures

Figure 1

35 pages, 2134 KB  
Review
Geochemistry in Geological CO2 Sequestration: A Comprehensive Review
by Jemal Worku Fentaw, Hossein Emadi, Athar Hussain, Diana Maury Fernandez and Sugan Raj Thiyagarajan
Energies 2024, 17(19), 5000; https://doi.org/10.3390/en17195000 - 8 Oct 2024
Cited by 32 | Viewed by 7050
Abstract
The increasing level of anthropogenic CO2 in the atmosphere has made it imperative to investigate an efficient method for carbon sequestration. Geological carbon sequestration presents a viable path to mitigate greenhouse gas emissions by sequestering the captured CO2 deep underground in [...] Read more.
The increasing level of anthropogenic CO2 in the atmosphere has made it imperative to investigate an efficient method for carbon sequestration. Geological carbon sequestration presents a viable path to mitigate greenhouse gas emissions by sequestering the captured CO2 deep underground in rock formations to store it permanently. Geochemistry, as the cornerstone of geological CO2 sequestration (GCS), plays an indispensable role. Therefore, it is not just timely but also urgent to undertake a comprehensive review of studies conducted in this area, articulate gaps and findings, and give directions for future research areas. This paper reviews geochemistry in terms of the sequestration of CO2 in geological formations, addressing mechanisms of trapping, challenges, and ways of mitigating challenges in trapping mechanisms; mineralization and methods of accelerating mineralization; and the interaction between rock, brine, and CO2 for the long-term containment and storage of CO2. Mixing CO2 with brine before or during injection, using microbes, selecting sedimentary reservoirs with reactive minerals, co-injection of carbonate anhydrase, and enhancing the surface area of reactive minerals are some of the mechanisms used to enhance mineral trapping in GCS applications. This review also addresses the potential challenges and opportunities associated with geological CO2 storage. Challenges include caprock integrity, understanding the lasting effects of storing CO2 on geological formations, developing reliable models for monitoring CO2–brine–rock interactions, CO2 impurities, and addressing public concerns about safety and environmental impacts. Conversely, opportunities in the sequestration of CO2 lie in the vast potential for storing CO2 in geological formations like depleted oil and gas reservoirs, saline aquifers, coal seams, and enhanced oil recovery (EOR) sites. Opportunities include improved geochemical trapping of CO2, optimized storage capacity, improved sealing integrity, managed wellbore leakage risk, and use of sealant materials to reduce leakage risk. Furthermore, the potential impact of advancements in geochemical research, understanding geochemical reactions, addressing the challenges, and leveraging the opportunities in GCS are crucial for achieving sustainable carbon mitigation and combating global warming effectively. Full article
(This article belongs to the Collection Feature Papers in Carbon Capture, Utilization, and Storage)
Show Figures

Figure 1

35 pages, 27119 KB  
Review
Recent Advances in Geochemical and Mineralogical Studies on CO2–Brine–Rock Interaction for CO2 Sequestration: Laboratory and Simulation Studies
by Muhammad Noman Khan, Shameem Siddiqui and Ganesh C. Thakur
Energies 2024, 17(13), 3346; https://doi.org/10.3390/en17133346 - 8 Jul 2024
Cited by 23 | Viewed by 6103
Abstract
The urgent need to find mitigating pathways for limiting world CO2 emissions to net zero by 2050 has led to intense research on CO2 sequestration in deep saline reservoirs. This paper reviews key advancements in lab- and simulation-scale research on petrophysical, [...] Read more.
The urgent need to find mitigating pathways for limiting world CO2 emissions to net zero by 2050 has led to intense research on CO2 sequestration in deep saline reservoirs. This paper reviews key advancements in lab- and simulation-scale research on petrophysical, geochemical, and mineralogical changes during CO2–brine–rock interactions performed in the last 25 years. It delves into CO2 MPD (mineralization, precipitation, and dissolution) and explores alterations in petrophysical properties during core flooding and in static batch reactors. These properties include changes in wettability, CO2 and brine interfacial tension, diffusion, dispersion, CO2 storage capacity, and CO2 leakage in caprock and sedimentary rocks under reservoir conditions. The injection of supercritical CO2 into deep saline aquifers can lead to unforeseen geochemical and mineralogical changes, possibly jeopardizing the CCS (carbon capture and storage) process. There is a general lack of understanding of the reservoir’s interaction with the CO2 phase at the pore/grain scale. This research addresses the gap in predicting the long-term changes of the CO2–brine–rock interaction using various geochemical reactive transport simulators. Péclet and Damköhler numbers can contribute to a better understanding of geochemical interactions and reactive transport processes. Additionally, the dielectric constant requires further investigation, particularly for pre- and post-CO2–brine–rock interactions. For comprehensive modeling of CO2 storage over various timescales, the geochemical modeling software called the Geochemist’s Workbench was found to outperform others. Wettability alteration is another crucial aspect affecting CO2–brine–rock interactions under varying temperature, pressure, and salinity conditions, which is essential for ensuring long-term CO2 storage security and monitoring. Moreover, dual-energy CT scanning can provide deeper insights into geochemical interactions and their complexities. Full article
(This article belongs to the Special Issue Oil Recovery and Simulation in Reservoir Engineering)
Show Figures

Figure 1

18 pages, 7994 KB  
Article
A Strategy for Enhanced Carbon Storage: A Hybrid CO2 and Aqueous Formate Solution Injection to Control Buoyancy and Reduce Risk
by Marcos Vitor Barbosa Machado, Mojdeh Delshad, Omar Ali Carrasco Jaim, Ryosuke Okuno and Kamy Sepehrnoori
Energies 2024, 17(11), 2680; https://doi.org/10.3390/en17112680 - 31 May 2024
Cited by 1 | Viewed by 2321
Abstract
Conventional Carbon Capture and Storage (CCS) operations use the direct injection of CO2 in a gaseous phase from the surface as a carbon carrier. Due to CO2 properties under reservoir conditions with lower density and viscosity than in situ brine, CO [...] Read more.
Conventional Carbon Capture and Storage (CCS) operations use the direct injection of CO2 in a gaseous phase from the surface as a carbon carrier. Due to CO2 properties under reservoir conditions with lower density and viscosity than in situ brine, CO2 flux is mainly gravity-dominated. CO2 moves toward the top and accumulates below the top seal, thus reinforcing the risk of possible leakage to the surface through unexpected hydraulic paths (e.g., reactivated faults, fractures, and abandoned wells) or in sites without an effective sealing caprock. Considering the risks, the potential benefits of the interplay between CO2 and an aqueous solution of formate ions (HCOO¯) were evaluated when combined to control CO2 gravity segregation in porous media. Three combined strategies were evaluated and compared with those where either pure CO2 or a formate solution was injected. The first strategy consisted of a pre-flush of formate solution followed by continuous CO2 injection, and it was not effective in controlling the vertical propagation of the CO2 plume. However, the injection of a formate solution slug in a continuous or alternated way, simultaneously with the CO2 continuous injection, was effective in slowing down the vertical migration of the CO2 plume and keeping it permanently stationary deeper than the surface depth. Full article
(This article belongs to the Special Issue Subsurface Energy and Environmental Protection)
Show Figures

Figure 1

50 pages, 6025 KB  
Article
Carbon Dioxide Capture and Storage (CCS) in Saline Aquifers versus Depleted Gas Fields
by Richard H. Worden
Geosciences 2024, 14(6), 146; https://doi.org/10.3390/geosciences14060146 - 28 May 2024
Cited by 35 | Viewed by 16155
Abstract
Saline aquifers have been used for CO2 storage as a dedicated greenhouse gas mitigation strategy since 1996. Depleted gas fields are now being planned for large-scale CCS projects. Although basalt host reservoirs are also going to be used, saline aquifers and depleted [...] Read more.
Saline aquifers have been used for CO2 storage as a dedicated greenhouse gas mitigation strategy since 1996. Depleted gas fields are now being planned for large-scale CCS projects. Although basalt host reservoirs are also going to be used, saline aquifers and depleted gas fields will make up most of the global geological repositories for CO2. At present, depleted gas fields and saline aquifers seem to be treated as if they are a single entity, but they have distinct differences that are examined here. Depleted gas fields have far more pre-existing information about the reservoir, top-seal caprock, internal architecture of the site, and about fluid flow properties than saline aquifers due to the long history of hydrocarbon project development and fluid production. The fluid pressure evolution paths for saline aquifers and depleted gas fields are distinctly different because, unlike saline aquifers, depleted gas fields are likely to be below hydrostatic pressure before CO2 injection commences. Depressurised depleted gas fields may require an initial injection of gas-phase CO2 instead of dense-phase CO2 typical of saline aquifers, but the greater pressure difference may allow higher initial injection rates in depleted gas fields than saline aquifers. Depressurised depleted gas fields may lead to CO2-injection-related stress paths that are distinct from saline aquifers depending on the geomechanical properties of the reservoir. CO2 trapping in saline aquifers will be dominated by buoyancy processes with residual CO2 and dissolved CO2 developing over time whereas depleted gas fields will be dominated by a sinking body of CO2 that forms a cushion below the remaining methane. Saline aquifers tend to have a relatively limited ability to fill pores with CO2 (i.e., low storage efficiency factors between 2 and 20%) as the injected CO2 is controlled by buoyancy and viscosity differences with the saline brine. In contrast, depleted gas fields may have storage efficiency factors up to 80% as the reservoir will contain sub-hydrostatic pressure methane that is easy to displace. Saline aquifers have a greater risk of halite-scale and minor dissolution of reservoir minerals than depleted gas fields as the former contain vastly more of the aqueous medium needed for such processes compared to the latter. Depleted gas fields have some different leakage risks than saline aquifers mostly related to the different fluid pressure histories, depressurisation-related alteration of geomechanical properties, and the greater number of wells typical of depleted gas fields than saline aquifers. Depleted gas fields and saline aquifers also have some different monitoring opportunities. The high-density, electrically conductive brine replaced by CO2 in saline aquifers permits seismic and resistivity imaging, but these forms of imaging are less feasible in depleted gas fields. Monitoring boreholes are less likely to be used in saline aquifers than depleted gas fields as the latter typically have numerous pre-existing exploration and production well penetrations. The significance of this analysis is that saline aquifers and depleted gas fields must be treated differently although the ultimate objective is the same: to permanently store CO2 to mitigate greenhouse gas emissions and minimise global heating. Full article
Show Figures

Figure 1

26 pages, 5862 KB  
Article
Legacy Well Leakage Risk Analysis at the Farnsworth Unit Site
by Shaoping Chu, Hari Viswanathan and Nathan Moodie
Energies 2023, 16(18), 6437; https://doi.org/10.3390/en16186437 - 6 Sep 2023
Cited by 6 | Viewed by 1993
Abstract
This paper summarizes the results of the risk analysis and characterization of the CO2 and brine leakage potential of Farnsworth Unit (FWU) site wells. The study is part of the U.S. DOE’s National Risk Assessment Partnership (NRAP) program, which aims to quantitatively [...] Read more.
This paper summarizes the results of the risk analysis and characterization of the CO2 and brine leakage potential of Farnsworth Unit (FWU) site wells. The study is part of the U.S. DOE’s National Risk Assessment Partnership (NRAP) program, which aims to quantitatively evaluate long-term environmental risks under conditions of significant geologic uncertainty and variability. To achieve this, NRAP utilizes risk assessment and computational tools specifically designed to quantify uncertainties and calculate the risk associated with geologic carbon dioxide (CO2) sequestration. For this study, we have developed a workflow that utilizes physics-based reservoir simulation results as input to perform leakage calculations using NRAP Tools, specifically NRAP-IAM-CS and RROM-Gen. These tools enable us to conduct leakage risk analysis based on ECLIPSE reservoir simulation results and to characterize wellbore leakage at the Farnsworth Unit Site. We analyze the risk of leakage from both individual wells and the entire field under various wellbore integrity distribution scenarios. The results of the risk analysis for the leakage potential of FWU wells indicate that, when compared to the total amount of CO2 injected, the highest cemented well integrity distribution scenario (FutureGen high flow rate) exhibits approximately 0.01% cumulative CO2 leakage for a 25-year CO2 injection duration at the end of a 50-year post-injection monitoring period. In contrast, the highest possible leakage scenario (open well) shows approximately 0.1% cumulative CO2 leakage over the same time frame. Full article
(This article belongs to the Special Issue Forecasting CO2 Sequestration with Enhanced Oil Recovery II)
Show Figures

Figure 1

22 pages, 11965 KB  
Article
CO2 Leakage Scenarios in Shale Overburden
by Gilda Currenti, Barbara Cantucci, Giordano Montegrossi, Rosalba Napoli, M. Shahir Misnan, M. Rashad Amir Rashidi, Zainol Affendi Abu Bakar, Zuhar Zahir Tuan Harith, Nabila Hannah Samsol Bahri and Noorbaizura Hashim
Minerals 2023, 13(8), 1016; https://doi.org/10.3390/min13081016 - 29 Jul 2023
Cited by 3 | Viewed by 2125
Abstract
Potential CO2 leakage from deep geologic reservoirs requires evaluation on a site-specific basis to assess risk and arrange mitigation strategies. In this study, a heterogeneous and realistic numerical model was developed to investigate CO2 migration pathways and uprising time in a [...] Read more.
Potential CO2 leakage from deep geologic reservoirs requires evaluation on a site-specific basis to assess risk and arrange mitigation strategies. In this study, a heterogeneous and realistic numerical model was developed to investigate CO2 migration pathways and uprising time in a shaly overburden, located in the Malaysian off-shore. Fluid flow and reactive transport simulations were performed by TOUGHREACT to evaluate the: (1) seepage through the caprock; (2) CO2-rich brine leakage through a fault connecting the reservoir with seabed. The effect of several factors, which may contribute to CO2 migration, including different rock types and permeability, Fickian and Knudsen diffusion and CO2 adsorption in the shales were investigated. Obtained results show that permeability mainly ruled CO2 uprising velocity and pathways. CO2 migrates upward by buoyancy without any important lateral leakages due to poor-connection of permeable layers and comparable values of vertical and horizontal permeability. Diffusive flux and the Knudsen flow are negligible with respect to the Darcy regime, despite the presence of shales. Main geochemical reactions deal with carbonate and pyrite weathering which easily reach saturation due to low permeability and allowing for re-precipitation as secondary phases. CO2 adsorption on shales together with dissolved CO2 constituted the main trapping mechanisms, although the former represents likely an overestimation due to estimated thermodynamic parameters. Developed models for both scenarios are validated by the good agreement with the pressure profiles recorded in the exploration wells and the seismic data along a fault (the F05 fault), suggesting that they can accurately reproduce the main processes occurring in the system. Full article
Show Figures

Figure 1

17 pages, 3887 KB  
Review
A Review of Mineral and Rock Wettability Changes Induced by Reaction: Implications for CO2 Storage in Saline Reservoirs
by Ting Chen, Laiming Song, Xueying Zhang, Yawen Yang, Huifang Fan and Bin Pan
Energies 2023, 16(8), 3484; https://doi.org/10.3390/en16083484 - 17 Apr 2023
Cited by 8 | Viewed by 2981
Abstract
Wettability in CO2-brine-mineral/rock systems is an important parameter influencing CO2 storage capacities and leakage risks in saline reservoirs. However, CO2 tends to react with various minerals and rocks at subsurface conditions, thus causing temporal and spatial wettability changes. Although [...] Read more.
Wettability in CO2-brine-mineral/rock systems is an important parameter influencing CO2 storage capacities and leakage risks in saline reservoirs. However, CO2 tends to react with various minerals and rocks at subsurface conditions, thus causing temporal and spatial wettability changes. Although many relevant research works have been published during past years, a thorough overview of this area is still lacking. Therefore herein, reaction-induced wettability changes are reviewed, and the underlying mechanisms are discussed. Current research gaps are identified, future outlooks are suggested, and some conclusions are drawn. The fundamental understanding of reaction-induced mineral and rock wettability changes during CO2 storage in saline reservoirs is analyzed and the guidance for long-term CO2 containment security evaluations is provided. Full article
Show Figures

Figure 1

20 pages, 5245 KB  
Article
Study of the Long Term Acid Gas Sequestration Process in the Borzęcin Structure: Measurements Insight
by Marcin Warnecki, Mirosław Wojnicki, Jerzy Kuśnierczyk and Sławomir Szuflita
Energies 2021, 14(17), 5301; https://doi.org/10.3390/en14175301 - 27 Aug 2021
Cited by 7 | Viewed by 2666
Abstract
Geological sequestration of acid gases, including CO2, is now a growing solution to prevent progressive Earth climate change. Disposal of environmentally harmful greenhouse gases must be performed safely and securely to minimise leakage risk and possible uncontrolled emissions of injected gases [...] Read more.
Geological sequestration of acid gases, including CO2, is now a growing solution to prevent progressive Earth climate change. Disposal of environmentally harmful greenhouse gases must be performed safely and securely to minimise leakage risk and possible uncontrolled emissions of injected gases outside the sequestration structure. The paper describes a series of research activities at the Borzęcin sequestration site located in western Poland, which were designed to study the migration paths of injected acid gases (mainly mixture of CO2 and H2S) into the water-bearing layers underlying natural gas reservoir. Along with understanding the nature and dynamics of acid gases migration within the sequestration structure, the research was also addressed to assess its leak-tightness and the long-term safety of the entire reinjection facility. As a part of the research works, two downhole sampling campaigns were completed in 2018–2019, where samples of water underlying the Borzęcin reservoir were taken and subsequently studied to determine their physicochemical parameters that were never before examined. Compositions of gas dissolved in downhole brine samples were compared with produced and injected gas. Relevant studies of reservoir water from selected wells were performed, including isotopic analyses. Finally, four series of soil gas analyses were performed on the area surrounding the selected well, which are important for the hazardous gas sequestration safety analysis in the Borzęcin facility. All the above mentioned research activities aimed to acquire additional knowledge, which is valuable for risk assessment of the acid gas sequestration process taking place on the specific example of the Borzęcin site operating continuously since 1996. Full article
(This article belongs to the Special Issue Fundamentals of Enhanced Oil Recovery)
Show Figures

Figure 1

21 pages, 86937 KB  
Article
An Investigation into CO2–Brine–Cement–Reservoir Rock Interactions for Wellbore Integrity in CO2 Geological Storage
by Amir Jahanbakhsh, Qi Liu, Mojgan Hadi Mosleh, Harshit Agrawal, Nazia Mubeen Farooqui, Jim Buckman, Montserrat Recasens, Mercedes Maroto-Valer, Anna Korre and Sevket Durucan
Energies 2021, 14(16), 5033; https://doi.org/10.3390/en14165033 - 16 Aug 2021
Cited by 24 | Viewed by 5701
Abstract
Geological storage of CO2 in saline aquifers and depleted oil and gas reservoirs can help mitigate CO2 emissions. However, CO2 leakage over a long storage period represents a potential concern. Therefore, it is critical to establish a good understanding of [...] Read more.
Geological storage of CO2 in saline aquifers and depleted oil and gas reservoirs can help mitigate CO2 emissions. However, CO2 leakage over a long storage period represents a potential concern. Therefore, it is critical to establish a good understanding of the interactions between CO2–brine and cement–caprock/reservoir rock to ascertain the potential for CO2 leakage. Accordingly, in this work, we prepared a unique set of composite samples to resemble the cement–reservoir rock interface. A series of experiments simulating deep wellbore environments were performed to investigate changes in chemical, physical, mechanical, and petrophysical properties of the composite samples. Here, we present the characterisation of composite core samples, including porosity, permeability, and mechanical properties, determined before and after long-term exposure to CO2-rich brine. Some of the composite samples were further analysed by X-ray microcomputed tomography (X-ray µ-CT), X-ray diffraction (XRD), and scanning electron microscopy–energy-dispersive X-ray (SEM–EDX). Moreover, the variation of ions concentration in brine at different timescales was studied by performing inductively coupled plasma (ICP) analysis. Although no significant changes were observed in the porosity, permeability of the treated composite samples increased by an order of magnitude, due mainly to an increase in the permeability of the sandstone component of the composite samples, rather than the cement or the cement/sandstone interface. Mechanical properties, including Young’s modulus and Poisson’s ratio, were also reduced. Full article
Show Figures

Figure 1

18 pages, 7071 KB  
Article
Managing Uncertainty in Geological CO2 Storage Using Bayesian Evidential Learning
by Amine Tadjer and Reidar B. Bratvold
Energies 2021, 14(6), 1557; https://doi.org/10.3390/en14061557 - 11 Mar 2021
Cited by 20 | Viewed by 3561
Abstract
Carbon capture and storage (CCS) has been increasingly looking like a promising strategy to reduce CO2 emissions and meet the Paris agreement’s climate target. To ensure that CCS is safe and successful, an efficient monitoring program that will prevent storage reservoir leakage [...] Read more.
Carbon capture and storage (CCS) has been increasingly looking like a promising strategy to reduce CO2 emissions and meet the Paris agreement’s climate target. To ensure that CCS is safe and successful, an efficient monitoring program that will prevent storage reservoir leakage and drinking water contamination in groundwater aquifers must be implemented. However, geologic CO2 sequestration (GCS) sites are not completely certain about the geological properties, which makes it difficult to predict the behavior of the injected gases, CO2 brine leakage rates through wellbores, and CO2 plume migration. Significant effort is required to observe how CO2 behaves in reservoirs. A key question is: Will the CO2 injection and storage behave as expected, and can we anticipate leakages? History matching of reservoir models can mitigate uncertainty towards a predictive strategy. It could prove challenging to develop a set of history matching models that preserve geological realism. A new Bayesian evidential learning (BEL) protocol for uncertainty quantification was released through literature, as an alternative to the model-space inversion in the history-matching approach. Consequently, an ensemble of previous geological models was developed using a prior distribution’s Monte Carlo simulation, followed by direct forecasting (DF) for joint uncertainty quantification. The goal of this work is to use prior models to identify a statistical relationship between data prediction, ensemble models, and data variables, without any explicit model inversion. The paper also introduces a new DF implementation using an ensemble smoother and shows that the new implementation can make the computation more robust than the standard method. The Utsira saline aquifer west of Norway is used to exemplify BEL’s ability to predict the CO2 mass and leakages and improve decision support regarding CO2 storage projects. Full article
Show Figures

Figure 1

14 pages, 6390 KB  
Article
Chemical Impacts of Potential CO2 and Brine Leakage on Groundwater Quality with Quantitative Risk Assessment: A Case Study of the Farnsworth Unit
by Ting Xiao, Brian McPherson, Richard Esser, Wei Jia, Zhenxue Dai, Shaoping Chu, Feng Pan and Hari Viswanathan
Energies 2020, 13(24), 6574; https://doi.org/10.3390/en13246574 - 14 Dec 2020
Cited by 26 | Viewed by 3584
Abstract
Potential leakage of reservoir fluids is considered a key risk factor for geologic CO2 sequestration (GCS), with concerns of their chemical impacts on the quality of overlying underground sources of drinking water (USDWs). Effective risk assessment provides useful information to guide GCS [...] Read more.
Potential leakage of reservoir fluids is considered a key risk factor for geologic CO2 sequestration (GCS), with concerns of their chemical impacts on the quality of overlying underground sources of drinking water (USDWs). Effective risk assessment provides useful information to guide GCS activities for protecting USDWs. In this study, we present a quantified risk assessment case study of an active commercial-scale CO2-enhanced oil recovery (CO2-EOR) and sequestration field, the Farnsworth Unit (FWU). Specific objectives of this study include: (1) to quantify potential risks of CO2 and brine leakage to the overlying USDW quality with response surface methodology (RSM); and (2) to identify water chemistry indicators for early detection criteria. Results suggest that trace metals (e.g., arsenic and selenium) are less likely to become a risk due to their adsorption onto clay minerals; no-impact thresholds based on site monitoring data could be a preferable reference for early groundwater quality evaluation; and pH is suggested as an indicator for early detection of a leakage. This study may provide quantitative insight for monitoring strategies on GCS sites to enhance the safety of long-term CO2 sequestration. Full article
(This article belongs to the Special Issue Forecasting CO2 Sequestration with Enhanced Oil Recovery)
Show Figures

Figure 1

15 pages, 4047 KB  
Article
Injection of a CO2-Reactive Solution for Wellbore Annulus Leakage Remediation
by Laura Wasch and Mariëlle Koenen
Minerals 2019, 9(10), 645; https://doi.org/10.3390/min9100645 - 22 Oct 2019
Cited by 10 | Viewed by 4093
Abstract
Driven by concerns for safe storage of CO2, substantial effort has been directed on wellbore integrity simulations over the last decade. Since large scale demonstrations of CO2 storage are planned for the near-future, numerical tools predicting wellbore integrity at field [...] Read more.
Driven by concerns for safe storage of CO2, substantial effort has been directed on wellbore integrity simulations over the last decade. Since large scale demonstrations of CO2 storage are planned for the near-future, numerical tools predicting wellbore integrity at field scale are essential to capture the processes of potential leakage and assist in designing leakage mitigation measures. Following this need, we developed a field-scale wellbore model incorporating (1) a de-bonded interface between cement and rock, (2) buoyancy/pressure driven (microannulus) flow of brine and CO2, (3) CO2 diffusion and reactivity with cement and (4) chemical cement-rock interaction. The model is aimed at predicting leakage through the microannulus and specifically at assessing methods for CO2 leakage remediation. The simulations show that for a low enough initial leakage rate, CO2 leakage is self-limiting due to natural sealing of the microannulus by mineral precipitation. With a high leakage rate, CO2 leakage results in progressive cement leaching. In case of sustained leakage, a CO2 reactive solution can be injected in the microannulus to induce calcite precipitation and block the leak path. The simulations showed full clogging of the leak path and increased sealing with time after remediation, indicating the robustness of the leakage remediation by mineral precipitation. Full article
(This article belongs to the Special Issue Geological and Mineralogical Sequestration of CO2)
Show Figures

Graphical abstract

16 pages, 4261 KB  
Article
Time-Space Characterization of Wellbore-Cement Alteration by CO2-Rich Brine
by Maria Garcia-Rios and Philippe Gouze
Geosciences 2018, 8(12), 490; https://doi.org/10.3390/geosciences8120490 - 15 Dec 2018
Cited by 1 | Viewed by 3809
Abstract
The risk of CO2 leakage from damaged wellbore is identified as a critical issue for the feasibility and environmental acceptance of CO2 underground storage. For instance, Portland cement can be altered if flow of CO2-rich water occurs in hydraulic [...] Read more.
The risk of CO2 leakage from damaged wellbore is identified as a critical issue for the feasibility and environmental acceptance of CO2 underground storage. For instance, Portland cement can be altered if flow of CO2-rich water occurs in hydraulic discontinuities such as cement-tubing or cement-caprock interfaces. In this case, the raw cement matrix is altered by diffusion of the solutes. This fact leads to the formation of distinctive alteration fronts indicating the dissolution of portlandite, the formation of a carbonate-rich layer and the decalcification of the calcium silicate hydrate, controlled by the interplay between the reaction kinetics, the diffusion-controlled renewing of the reactants and products, and the changes in the diffusion properties caused by the changes in porosity induced by the dissolution and precipitation mechanisms. In principle, these mass transfers can be easily simulated using diffusion-reaction numerical models. However, the large uncertainties of the parameters characterizing the reaction rates (mainly the kinetic and thermodynamic coefficients and the evolving reactive surface area) and of the porosity-dependent diffusion properties prevent making reliable predictions required for risk assessment. In this paper, we present the results of a set of experiments consisting in the alteration of a holed disk of class-G cement in contact with a CO2-rich brine at reservoir conditions (P = 12 MPa and T = 60 °C) for various durations. This new experimental protocol allows producing time-resolved data for both the spatially distributed mass transfers inside the cement body and the total mass transfers inferred from the boundary conditions mass balance. The experimental results are used to study the effect of the fluid salinity and the pCO2 on the overall reaction efficiency. Experiments at high salinity triggers more portlandite dissolution, thinner carbonate layers, and larger alteration areas than those at low salinity. These features are accompanied with different spatial distribution of the alteration layers resulting from a complex interplay between salinity-controlled dissolution and precipitation mechanisms. Conversely, the effect of the pCO2 is more intuitive: Increasing pCO2 results in increasing the overall alteration rate without modifying the relative distribution of the reaction fronts. Full article
(This article belongs to the Special Issue Geological Storage of Gases as a Tool for Energy Transition)
Show Figures

Figure 1

Back to TopTop