Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (110)

Search Parameters:
Keywords = CO2 abatement cost

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2017 KB  
Article
Bio-Based Carbon Capture and Utilization Opportunities in Poland: A Preliminary Assessment
by Magdalena Strojny, Paweł Gładysz, Amy Brunsvold and Aneta Magdziarz
Energies 2026, 19(2), 355; https://doi.org/10.3390/en19020355 - 11 Jan 2026
Viewed by 131
Abstract
Carbon capture, utilization, and storage (CCUS) play an increasingly important role in climate mitigation strategies by addressing industrial emissions and enabling pathways toward net-negative emissions. A key challenge lies in determining the pathway of captured CO2, whether through permanent geological storage [...] Read more.
Carbon capture, utilization, and storage (CCUS) play an increasingly important role in climate mitigation strategies by addressing industrial emissions and enabling pathways toward net-negative emissions. A key challenge lies in determining the pathway of captured CO2, whether through permanent geological storage or conversion into value-added products to enhance system viability. As hard-to-abate sectors and the power industry remain major sources of emissions, a comprehensive assessment of the technical, environmental, and economic performance of CCUS pathways is essential. This study evaluates bioenergy with carbon capture and storage/utilization (BECCUS) in the context of the Polish energy sector. Techno-environmental performance was assessed across three pathways: CO2 storage in saline formations, CO2 mineralization, and methanol synthesis. The results show levelized costs of 59.9 EUR/tCO2,in for storage, 109.7 EUR/tCO2,in for mineralization, and 631.1 EUR/tCO2,in for methanol production. Corresponding carbon footprints (including full chain emissions) were −936.4 kgCO2-eq/tCO2,in for storage, −460.6 kgCO2-eq/tCO2,in in for mineralization, and 3963.4 kgCO2-eq/tCO2,in for methanol synthesis. These values highlight the trade-offs between economic viability and climate performance across utilization and storage options. The analysis underscores the potential of BECCS to deliver net-negative emissions and supports strategic planning for CCUS deployment in Poland. Full article
Show Figures

Figure 1

36 pages, 2864 KB  
Article
Energy Savings, Carbon-Equivalent Abatement Cost, and Payback of Residential Window Retrofits: Evidence from a Heating-Dominated Mid-Latitude City—Gyeonggi Province, South Korea
by YeEun Jang, Jeongeun Park, Yeweon Kim and Ki-Hyung Yu
Buildings 2026, 16(1), 71; https://doi.org/10.3390/buildings16010071 - 24 Dec 2025
Viewed by 562
Abstract
This study presents an integrated ex-post evaluation of a municipal window-retrofit program in Goyang, Republic of Korea (heating-dominated, Dwa). Using field surveys and pre- and post-utility bills for 36 dwellings, mainly pre-2000 low-rise reinforced-concrete buildings, we normalize climate with HDD and CDD and [...] Read more.
This study presents an integrated ex-post evaluation of a municipal window-retrofit program in Goyang, Republic of Korea (heating-dominated, Dwa). Using field surveys and pre- and post-utility bills for 36 dwellings, mainly pre-2000 low-rise reinforced-concrete buildings, we normalize climate with HDD and CDD and prices with CPI-deflated tariffs to isolate the intrinsic effect of window replacement. Area-normalized indicators (e, η, DPB, NPV, AC) were computed. Average annual savings were 30.2 kWh per m2 per year (η ≈ 16 percent), consisting of 10.6 kWh per m2 per year of gas and 19.6 kWh per m2 per year of electricity (n = 36). The median discounted payback was 7.0 years. Under a 50 percent subsidy, about 80 percent of projects recovered private investment within 15 years and showed positive NPV with a median of about USD 4944. The electricity-tariff multiplier had the largest influence on cash flows and payback. The median abatement cost was about USD 352 per tCO2-eq. A portfolio view indicates that prioritizing low-cost cases maximizes total abatement, and that higher-cost cases merit design or cost review. Using the first post-retrofit year 2023, portfolio abatement is about 623 tCO2-eq per year. The framework jointly normalizes climate and price effects and yields policy-relevant estimates for heating-dominated contexts. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

36 pages, 1178 KB  
Article
Fuel Substitution in Cement Production: A Comparative Life Cycle Assessment of Refuse-Derived Fuel and Coal
by Oluwafemi Ezekiel Ige and Musasa Kabeya
Sci 2025, 7(4), 184; https://doi.org/10.3390/sci7040184 - 12 Dec 2025
Viewed by 908
Abstract
Cement production in Africa remains carbon-intensive, primarily due to the use of coal-based thermal energy. This study conducts a comparative cradle-to-gate life cycle assessment (LCA) of cement production using 100% coal (Scenario A) against partial substitution with refuse-derived fuel (RDF) at a 20% [...] Read more.
Cement production in Africa remains carbon-intensive, primarily due to the use of coal-based thermal energy. This study conducts a comparative cradle-to-gate life cycle assessment (LCA) of cement production using 100% coal (Scenario A) against partial substitution with refuse-derived fuel (RDF) at a 20% thermal input rate (Scenario B), with case studies in South Africa and Ethiopia. The LCA, modeled in SimaPro 9.2.0.1 with Ecoinvent v3.7.1 and regional data, evaluates midpoint environmental impacts across the following five stages: raw materials, clinker production, electricity, fuel use, and transportation. The results show that Scenario B reduces the global warming potential (GWP) by 3.3–4.2% per kg of cement, with minimal increases in other impact categories. When avoided landfill methane is accounted for, GWP reduction improves to 6.7%. Fossil resource depletion drops by 10%, and toxicity and particulate emissions show marginal improvements. Economic analysis under South Africa’s 2025 carbon policy reveals a modest net cost increase of $2–3 per ton of cement and an abatement cost of $64–87 per ton of CO2. The study provides new insights by harmonizing LCA models across national contexts, linking emissions reductions to economic instruments, and quantifying the co-benefits of RDF for waste management. The results support RDF co-processing as a scalable mitigation strategy for the African cement sector, recommending substitution rates of 15–30%, policy alignment, and enhancement of the RDF supply chain to maximize impact. Full article
Show Figures

Figure 1

18 pages, 1643 KB  
Article
Techno-Economic Study of Carbon Price Impact on Coal-to-Liquid Technology Coupling CCS in China
by Bing Han, Li Zhou and Maosheng Duan
Processes 2025, 13(12), 3960; https://doi.org/10.3390/pr13123960 - 8 Dec 2025
Viewed by 577
Abstract
To address petroleum security concerns and improve its energy structure, China continues to expand its utilization of coal-to-liquid (CTL) technology. While integrating carbon capture and storage (CCS) is essential to reduce the CO2 emissions from CTL, the high CO2 abatement cost [...] Read more.
To address petroleum security concerns and improve its energy structure, China continues to expand its utilization of coal-to-liquid (CTL) technology. While integrating carbon capture and storage (CCS) is essential to reduce the CO2 emissions from CTL, the high CO2 abatement cost remains one major barrier to its large-scale implementation. Carbon pricing could improve the cost-effectiveness and competitiveness of CTL-CCS. The impacts of the upstream carbon tax and the downstream carbon price are discussed, considering two indirect coal liquefaction routes: a once-through synthesis process with electricity generation from unreacted syngas and a process with recycling unreacted syngas. The financial performance, with or without CCS, was evaluated using process simulation in Aspen Plus 11.1 and a cost estimation model. First, the product cost of recycling synthesis is consistently lower than of once-through synthesis, indicating better economic efficiency. Second, adopting CCS without a carbon price significantly undermines economic performance. To keep the product cost increase below 10%, the upstream carbon tax and the downstream carbon price should be less than 100 and 120 RMB/tCO2, respectively. Third, the upstream carbon tax can quickly increase product costs and reduces NPV and IRR, but fails to incentivize actual emissions reduction. Fourth, the downstream carbon price can effectively drive actual emissions reduction, particularly at a higher carbon price. Finally, without a sufficiently high carbon price, enterprises lack necessary incentive to implement CCS. When the carbon price reaches 196 RMB/tCO2 (approximately 30 USD/tCO2), CCS becomes a cost-effective option for the CTL process. Full article
(This article belongs to the Topic Carbon Capture Science and Technology (CCST), 2nd Edition)
Show Figures

Figure 1

24 pages, 5855 KB  
Article
Multi-Scenario Emission Reduction Potential Assessment and Cost–Benefit Analysis of Motor Vehicles at the Provincial Level in China Based on the LEAP Model: Implication for Sustainable Transportation Transitions
by Jiarong Li, Yijing Wang and Rong Wang
Sustainability 2025, 17(22), 10116; https://doi.org/10.3390/su172210116 - 12 Nov 2025
Viewed by 534
Abstract
With the continuous expansion in China’s vehicle fleet, emissions of CO2 and air pollutants from the on-road transportation sector are widely projected to be rising, posing a challenge to realizing China’s targets of carbon peaking in 2030 and carbon neutrality in 2060, [...] Read more.
With the continuous expansion in China’s vehicle fleet, emissions of CO2 and air pollutants from the on-road transportation sector are widely projected to be rising, posing a challenge to realizing China’s targets of carbon peaking in 2030 and carbon neutrality in 2060, as well as the national target for air quality improvement. Therefore, vehicle electrification in the on-road transportation sector is urgently needed to reduce emissions of CO2 and air pollutants, as it serves as a key pathway to align transportation development with sustainability goals. While vehicle electrification is supposed to be the primary solution, there is a research gap in quantifying the provincial, environmental, and economic impacts of implementing such a policy in China. To bridge this gap, we projected the provincial-level ownership of different types of vehicles based on historical trends, assessed the emission reduction potential for CO2 and air pollutants using the LEAP model from 2021 to 2060, and predicted the provincial marginal abatement costs at different mitigation stages under various scenarios with different strategies of vehicle electrification and development patterns of electricity structure. Our results show that the implementation of vehicle electrification lowers the national carbon peak by 0.2–0.6 Gt yr−1 and advances its achievement by 1–3 years ahead of 2030. The marginal abatement cost ranges from $532 to $3466 per ton CO2 (tCO2−1) in 2025 and from −$180 to −$113 tCO2−1 in 2060 across scenarios. The provincial marginal abatement cost curves further indicate that China’s vehicle electrification should be prioritized in cost-effective regions (e.g., Shanghai and Guangdong), while concurrently advancing nationwide grid decarbonization to guarantee the supply of low-carbon electricity across the country. This optimized pathway ensures that transportation decarbonization aligns with both environmental and economic requirements, providing actionable support for China’s sustainable development strategy. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

14 pages, 409 KB  
Article
Assessing the Economic and Environmental Viability of Undaria pinnatifida Sporophylls as Sustainable Cattle Feed in South Korea
by Hyeseong Kim, Pilgyu Jung, Yonghyun Do, Jungjun Park, Sam-Churl Kim and Bong-Tae Kim
Animals 2025, 15(22), 3260; https://doi.org/10.3390/ani15223260 - 10 Nov 2025
Viewed by 526
Abstract
This study analyzed the economic feasibility of utilizing Undaria pinnatifida sporophylls (UPSs), a major by-product of seaweed aquaculture, as feed for Hanwoo cattle. It employed a partial equilibrium framework to quantify processing costs, avoided disposal costs, substitution savings from reduced grain imports, and [...] Read more.
This study analyzed the economic feasibility of utilizing Undaria pinnatifida sporophylls (UPSs), a major by-product of seaweed aquaculture, as feed for Hanwoo cattle. It employed a partial equilibrium framework to quantify processing costs, avoided disposal costs, substitution savings from reduced grain imports, and monetized methane abatement benefits, calibrated with national statistics on Hanwoo production and feed use for 2022–2024. The analysis revealed that, in the absence of environmental valuation, additional collection, transport, and drying costs (KRW 25,714–102,857 per head at 0.25–1.0% inclusion) outweighed savings from disposal avoidance and import substitution. When methane abatement was priced under Korea’s Emissions Trading Scheme, however, net benefits emerged, ranging from KRW 22,757 to 40,859 per head, with welfare gains of KRW 19,108 million at 1.0%. Sensitivity analysis confirmed a strong dependence on carbon prices: benefits were substantial at KRW 40,000 per ton of CO2, remained positive yet relatively limited at KRW 20,000, and shifted into negative territory at KRW 10,000. These findings demonstrate that UPS feed utilization can advance climate mitigation and feed security, provided it is supported by effective carbon pricing and producer-oriented policies. Full article
Show Figures

Figure 1

18 pages, 1015 KB  
Article
Evaluating the Cost-Effectiveness of Environmental Protection Plans in Quarrying Using the Social Return on Investment Framework
by Tochukwu A. Ngwu, Chinwe P. Oramah, Komsoon Somprasong and Chanapol Charoentanaworakun
Pollutants 2025, 5(4), 42; https://doi.org/10.3390/pollutants5040042 - 4 Nov 2025
Viewed by 1191
Abstract
Environmental Protection Plans (EPPs) are vital for mitigating the socio-ecological impacts of quarry operations, especially in emerging economies like Thailand, where rapid industrialization often intensifies air, water, noise, and land degradation. This study applies the social return on investment (SROI) framework to evaluate [...] Read more.
Environmental Protection Plans (EPPs) are vital for mitigating the socio-ecological impacts of quarry operations, especially in emerging economies like Thailand, where rapid industrialization often intensifies air, water, noise, and land degradation. This study applies the social return on investment (SROI) framework to evaluate the cost-effectiveness of multi-domain EPPs implemented in a quarry. By applying compliance-based assessment and monetization of environmental and health co-benefits, annual economic outcomes were quantified for particulate matter (PM10), total dissolved solids (TDS), noise reduction, and carbon sequestration. The analysis revealed a high SROI ratio of 59.55:1, primarily driven by substantial health benefits from PM10 and noise abatement. This ratio also reflects consideration of investment from an annual operational cost, with a sensitivity analysis of incorporating an estimated capital expenditure, reducing the ratio to moderate value ranges of 5–10:1. A number of limitations, such as exclusion of capital costs, reliance on fixed proxies, and single-year scope, may overstate short-term returns, suggesting the application of stochastic methods for enhanced robustness. Overall, the findings demonstrate that EPPs deliver substantial economic and public health benefits, supporting their role in fostering community resilience and advancing sustainable operations in quarry sectors. Full article
Show Figures

Figure 1

24 pages, 3544 KB  
Article
Preliminary Feasibility Study of Using Hydrogen as a Fuel for an Aquaculture Vessel in Tasmania, Australia
by Hongjun Fan, Peggy Shu-Ling Chen, Andrew Harris, Nagi Abdussamie, Evan Mac A. Gray, Irene Penesis and Javad A. Mehr
J. Mar. Sci. Eng. 2025, 13(11), 2037; https://doi.org/10.3390/jmse13112037 - 24 Oct 2025
Viewed by 1595
Abstract
Decarbonising aquaculture support vessels is pivotal to reducing greenhouse gas (GHG) emissions across both the aquaculture and maritime sectors. This study evaluates the technical and economic feasibility of deploying hydrogen as a marine fuel for a 14.95 m net cleaning vessel (NCV) operating [...] Read more.
Decarbonising aquaculture support vessels is pivotal to reducing greenhouse gas (GHG) emissions across both the aquaculture and maritime sectors. This study evaluates the technical and economic feasibility of deploying hydrogen as a marine fuel for a 14.95 m net cleaning vessel (NCV) operating in Tasmania, Australia. The analysis retains the vessel’s original layout and subdivision to enable a like-for-like comparison between conventional diesel and hydrogen-based systems. Two options are evaluated: (i) replacing both the main propulsion engines and auxiliary generator sets with hydrogen-based systems—either proton exchange membrane fuel cells (PEMFCs) or internal combustion engines (ICEs); and (ii) replacing only the diesel generator sets with hydrogen power systems. The assessment covers system sizing, onboard hydrogen storage integration, operational constraints, lifecycle cost, and GHG abatement. Option (i) is constrained by the sizes and weights of PEMFC systems and hydrogen-fuelled ICEs, rendering full conversion unfeasible within current spatial and technological limits. Option (ii) is technically feasible: sixteen 700 bar cylinders (131.2 kg H2 total) meet one day of onboard power demand for net-cleaning operations, with bunkering via swap-and-go skids at the berth. The annualised total cost of ownership for the PEMFC systems is 1.98 times that of diesel generator sets, while enabling annual CO2 reductions of 433 t. The findings provide a practical decarbonisation pathway for small- to medium-sized service vessels in niche maritime sectors such as aquaculture, while clarifying near-term trade-offs between cost and emissions. Full article
(This article belongs to the Special Issue Infrastructure for Offshore Aquaculture Farms)
Show Figures

Figure 1

25 pages, 1296 KB  
Article
Carbon Capture in Indonesia’s Energy Sector: A Least-Cost Optimization Approach
by Anindhita, Joko Santosa and Koji Tokimatsu
Sustainability 2025, 17(17), 7916; https://doi.org/10.3390/su17177916 - 3 Sep 2025
Viewed by 1973
Abstract
Indonesia’s power sector is heavily reliant on coal, making it a major contributor to greenhouse gas (GHG) emissions. This study evaluates the role of carbon capture (CC) as a transitional mitigation strategy using the Low Emissions Analysis Platform (LEAP) for least-cost optimization. Five [...] Read more.
Indonesia’s power sector is heavily reliant on coal, making it a major contributor to greenhouse gas (GHG) emissions. This study evaluates the role of carbon capture (CC) as a transitional mitigation strategy using the Low Emissions Analysis Platform (LEAP) for least-cost optimization. Five scenarios up to 2060 are assessed: Business as Usual (BAU), a renewables-only pathway (NRE), two carbon-capture strategies (CALL and CNEW), and a hybrid scenario (COMB). Results show that NRE eliminates fossil power plants but increases system costs by 3.2% and raises reliability challenges due to the variability of solar generation. CALL achieves the lowest abatement cost (USD 0.93/tCO2e) but leaves 105 Mt CO2e residual emissions by 2060. COMB provides the most balanced outcome, cutting emissions by 96% (40 Mt CO2e), increasing costs by only 1.9%, and ensuring energy security by combining CC with renewable expansion. These findings highlight that a hybrid strategy offers a pragmatic, least-cost pathway for Indonesia to align its power sector with net-zero targets while maintaining grid adequacy. Full article
Show Figures

Figure 1

20 pages, 328 KB  
Article
Spatial Analysis of CO2 Shadow Prices and Influencing Factors in China’s Industrial Sector
by Fangfei Zhang and Xiaobo Shen
Sustainability 2025, 17(17), 7749; https://doi.org/10.3390/su17177749 - 28 Aug 2025
Viewed by 813
Abstract
Reducing emissions through the invisible hand of the market has become an important way to promote sustainable environmental development. The shadow price of carbon dioxide (CO2) is the core element of the carbon market, and its accuracy depends on [...] Read more.
Reducing emissions through the invisible hand of the market has become an important way to promote sustainable environmental development. The shadow price of carbon dioxide (CO2) is the core element of the carbon market, and its accuracy depends on the micro level of the measurement data. In view of this, this paper innovatively uses enterprise level input-output data and combines the stochastic frontier method to obtain CO2 shadow prices in China’s industrial sector. On this basis, the impacts of research and development (R&D) intensity, opening up level, traffic development level, population density, industrial structure, urbanization level, human resources level, degree of education, and environmental governance intensity on shadow price are discussed. In further analysis, this study introduces a Spatial Durbin Model (SDM) to evaluate the spatial spillover effects of CO2 shadow price itself and its influencing factors. The research results indicate that market-oriented emission abatement measures across industries and regions can reduce total costs, and it is necessary to consider incorporating carbon tax into low-carbon policies to compensate for the shortcomings of the carbon Emission Trading Scheme (ETS). In addition, neighboring regions should coordinate emission abatement tasks in a unified manner to realize a sustainable reduction in CO2 emissions. Full article
Show Figures

Figure 1

13 pages, 4107 KB  
Article
Game Analysis Between Manufacturer and Retailer Under Carbon Tax Policy
by Jun Yu, Shihui Yang and Zongxian Feng
Sustainability 2025, 17(13), 6183; https://doi.org/10.3390/su17136183 - 5 Jul 2025
Cited by 1 | Viewed by 633
Abstract
Considering consumers’ low-carbon preferences, this article analyzes a manufacturer’s price and carbon abatement strategies, as well as a retailer’s price and promotion strategies, in a centralized game, where the manufacturer and the retailer jointly make decisions, and a decentralized game, where the two [...] Read more.
Considering consumers’ low-carbon preferences, this article analyzes a manufacturer’s price and carbon abatement strategies, as well as a retailer’s price and promotion strategies, in a centralized game, where the manufacturer and the retailer jointly make decisions, and a decentralized game, where the two parties each make decisions simultaneously. This study discusses the impact of the carbon abatement cost coefficient, promotion cost coefficient, sensitivity coefficient of consumer demand to carbon abatement rate or promotion rate, or carbon tax rate on the manufacturer’s carbon abatement rate, commodity’s retail price, and retailer’s promotion rate. This article also discusses the impact of any one of the main parameters on supply chain profit. Through comparisons of the above two games, this article concludes that the former is better than the latter for firms, consumers, and the environment. This article also concludes that a reduction in the carbon abatement cost coefficient, a rise in the sensitivity coefficient of consumer demand to the carbon abatement rate, or a rise in the carbon tax rate increases the manufacturer’s optimal carbon abatement rate. A relatively high carbon abatement rate means relatively low CO2 emissions, which are environmentally friendly and conducive to sustainable development at the ecological level. The foregoing conclusions provide governments with references for making carbon tax policies and also offer firms references for making decisions. Full article
(This article belongs to the Special Issue Sustainable Operations, Logistics and Supply Chain Management)
Show Figures

Figure 1

15 pages, 2000 KB  
Article
A Bench-Scale Demonstration of Direct Air Capture Using an Enhanced Electrochemical System
by Jinwen Wang, Xin Gao, Adam Berger, Ayokunle Omosebi, Tingfei Chen, Aron Patrick and Kunlei Liu
Clean Technol. 2025, 7(2), 50; https://doi.org/10.3390/cleantechnol7020050 - 16 Jun 2025
Cited by 1 | Viewed by 1669
Abstract
The bench-scale demonstration of the UKy-IDEA process for direct air capture (DAC) technology combines solvent-aided CO2 capture with electrochemical regeneration (ER) through a pH swing process, enabling efficient CO2 capture and simultaneous solvent regeneration, producing high-purity hydrogen as a valuable co-product. [...] Read more.
The bench-scale demonstration of the UKy-IDEA process for direct air capture (DAC) technology combines solvent-aided CO2 capture with electrochemical regeneration (ER) through a pH swing process, enabling efficient CO2 capture and simultaneous solvent regeneration, producing high-purity hydrogen as a valuable co-product. The system shows stable performance with over 90% CO2 capture efficiency and approximately 80% CO2 recovery, handling ambient air at 280 L/min. During testing, the unit captured 1 kg of CO2 over 100 h, with a concentrated CO2 output purity of around 70%. Operating efficiently at low voltage (<3 V), the system supports flexible and remote operation without AC/DC converters when using intermittent renewable energy. Techno-economic analysis (TEA) and Life Cycle Assessment (LCA) highlight its minimized required footprint and cost-effectiveness. Marketable hydrogen offsets capture costs, and compatibility with renewable DC power enhances appeal. Hydrogen production displacing CO2 produced via electrolysis achieves 0.94 kg CO2 abated per kg CO2 captured. The project would be economic, with USD 26 per ton of CO2 from the federal 45Q tax credit for carbon utilization, and USD 5 to USD 12 per kg for H2. Full article
Show Figures

Figure 1

22 pages, 960 KB  
Article
The Italian Glass Sectors’ Decarbonization Pathway
by Dario Atzori, Luca Debidda, Claudia Bassano, Simone Tiozzo, Sandra Corasaniti and Angelo Spena
Gases 2025, 5(2), 11; https://doi.org/10.3390/gases5020011 - 14 Jun 2025
Viewed by 1645
Abstract
Decarbonization has become a central policy and industrial priority across the European Union, driven by increasingly ambitious climate targets. The EU’s regulatory framework now mandates a 55% reduction in CO2 emissions by 2030 (compared to 1990 levels), with the overarching goal of [...] Read more.
Decarbonization has become a central policy and industrial priority across the European Union, driven by increasingly ambitious climate targets. The EU’s regulatory framework now mandates a 55% reduction in CO2 emissions by 2030 (compared to 1990 levels), with the overarching goal of achieving climate neutrality by 2050. This challenge is particularly critical for energy-intensive and hard-to-abate sectors, such as the glass industry. This paper begins with a brief overview of the relevant EU regulations and the structure of the Italian glass sector. It then identifies seven key decarbonization levers applicable to the industry. Drawing on literature data and expert consultations, these levers are integrated into two main decarbonization strategies tailored to the Italian context, both aligned with the 2050 net-zero target. This study further analyzes the estimated implementation costs, the barriers associated with each lever, and potential solutions to overcome them. Finally, Italian strategies are compared with decarbonization approaches adopted in other major European countries. The findings indicate that the transition to climate neutrality in the glass sector, while technically and economically plausible, remains highly contingent on the timely deployment of enabling technologies, the alignment of regulatory and financial frameworks, and the establishment of sustained, structured cooperation between industrial stakeholders and public authorities. Full article
Show Figures

Figure 1

37 pages, 998 KB  
Systematic Review
Evaluating the Cost-Effectiveness of Air Pollution Mitigation Strategies: A Systematic Review
by Bo Vandenbulcke, Nick Verhaeghe, Lisa Cruycke, Max Lelie, Steven Simoens and Koen Putman
Int. J. Environ. Res. Public Health 2025, 22(6), 926; https://doi.org/10.3390/ijerph22060926 - 11 Jun 2025
Cited by 2 | Viewed by 3908
Abstract
Air pollution is the world’s greatest environmental health risk. Pollutants that pose large health concerns are particulate matter (PM2.5 and PM10), ozone (O3), carbon monoxide (CO), nitrogen dioxide (NO2), and sulphur dioxide (SO2). These [...] Read more.
Air pollution is the world’s greatest environmental health risk. Pollutants that pose large health concerns are particulate matter (PM2.5 and PM10), ozone (O3), carbon monoxide (CO), nitrogen dioxide (NO2), and sulphur dioxide (SO2). These compounds (especially PM2.5 and PM10) contribute to the onset of diseases, such as respiratory diseases (e.g., asthma, chronic obstructive pulmonary disease (COPD), or lung cancer) and cardiovascular diseases. Abatement interventions are implemented to reduce air pollution and thereby the risk of these diseases. This systematic review examined the published scientific evidence on the cost-effectiveness of strategies aimed at reducing or controlling air pollution and assessed the reporting quality of included studies. It employed rigorous data extraction and quality scoring procedures to ensure the reliability and validity of our findings. Overall, there is substantial evidence supporting the cost-effectiveness of interventions aimed at reducing air pollution. Seventy-four studies and four policy reports were included in this review. Predominantly, cost–benefit analyses have been reported (n = 40), reflecting the multisectoral impacts and associated costs of air pollution. Only four cost–utility analyses were found, indicating the need for more research within this domain. Additionally, eight articles reported one or more non-economic results. Thirty-nine studies focused on particulate matter (PM), and eleven focused on nitrogen oxides (NOx). The quality assessment yielded moderate results. The heterogeneity of studies and moderate quality of reporting make it difficult to compare results and draw definitive conclusions. Full article
Show Figures

Figure 1

16 pages, 2908 KB  
Article
Substituting Natural Gas with Hydrogen for Thermal Application in a Hard-to-Abate Industry: A Real Case Study
by Seyed Ariana Mirshokraee, Stefano Bedogni, Massimiliano Bindi and Carlo Santoro
Hydrogen 2025, 6(2), 37; https://doi.org/10.3390/hydrogen6020037 - 1 Jun 2025
Cited by 1 | Viewed by 1521
Abstract
To pursue the total decarbonization goal set at 2050, the introduction of hydrogen to replace the usage of fossil fuel in hard-to-abate industrial sectors is crucial. Hydrogen will replace natural gas in hard-to-abate sectors where natural gas is required to make heat necessary [...] Read more.
To pursue the total decarbonization goal set at 2050, the introduction of hydrogen to replace the usage of fossil fuel in hard-to-abate industrial sectors is crucial. Hydrogen will replace natural gas in hard-to-abate sectors where natural gas is required to make heat necessary for the industrial process. Naturally, all this is worthwhile if hydrogen is produced following a green pathway, meaning that it is connected with renewable sources. In this manuscript, a techno-economic analysis related to a real case scenario is carried out. The real system addressed involves continuous high-temperature industrial furnace operation with a seasonally variable but stable thermal energy demand, representing typical conditions of hard-to-abate industrial processes. Solar photovoltaic panels combined with batteries are used to generate and store electricity that in turn is used to generate green hydrogen. Different scenarios are considered, including mixed natural gas/hydrogen, the seasonal variability of industrial needs, and the variability of solar production. The economic aspects considered include the usage of anion exchange membrane water electrolyzers (AEMWEs) to produce green hydrogen, the improvement in efficiency during operations (operational costs, OPEX), and the decrease in the AEMWE cost (Capital expenditures, CAPEX) that occur over time. The study shows that the hydrogen production cost could decrease from 12.6 EUR kg−1 in 2024 to 9.7 EUR kg−1 in 2030, with further reduction to 8.7 EUR kg−1 achievable through seasonal blending strategies. CO2 emissions are significantly reduced through partial displacement of natural gas with green hydrogen, highlighting the environmental potential of the system. Full article
Show Figures

Figure 1

Back to TopTop