Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = CNTs/epoxy nanocomposites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 18724 KB  
Article
Statistical Optimization of Graphene Nanoplatelet-Reinforced Epoxy Nanocomposites via Box–Behnken Design for Superior Flexural and Dynamic Mechanical Performance
by Júlia Mendes, Camila Prudente Magalhães, Letícia Vitorazi, Noemi Raquel Checca Huaman, Sergio Neves Monteiro, Teresa Gómez-del Río and Ulisses Oliveira Costa
Polymers 2025, 17(23), 3218; https://doi.org/10.3390/polym17233218 - 3 Dec 2025
Viewed by 506
Abstract
Graphene nanoplatelets (GNPs) are efficient nanofillers for improving the mechanical and thermal properties of epoxy resins due to their high stiffness, aspect ratio, and interfacial reinforcement ability. This study employs a three-factor, three-level Box–Behnken Design (BBD) to investigate the combined effect of GNP [...] Read more.
Graphene nanoplatelets (GNPs) are efficient nanofillers for improving the mechanical and thermal properties of epoxy resins due to their high stiffness, aspect ratio, and interfacial reinforcement ability. This study employs a three-factor, three-level Box–Behnken Design (BBD) to investigate the combined effect of GNP content (0.5–3.5 wt.%), hardener concentration (9–17 phr), and post-curing temperature (30–120 °C) on DGEBA/TETA epoxy nanocomposites. Mechanical, thermal, dynamic mechanical, and morphological characterizations (flexural testing, DMA, TGA, DSC, FTIR, SEM, TEM, and AFM) established structure–property correlations. The optimized formulation (2.0 wt.% GNP, 9 phr hardener, and 120 °C post-curing) exhibited superior reinforcement, with flexural strength of 322.0 ± 12.8 MPa, flexural modulus of 9.7 ± 0.5 GPa, and strain at break of 4.4 ± 0.2%, corresponding to increases of 197%, 155%, and 91% compared with neat epoxy. DMA confirmed a rise in storage modulus from 2.9 to 7.5 GPa and a Tg of 143 °C, while TGA showed a 15 °C improvement in thermal stability. Statistical analysis identified post-curing temperature as the dominant factor governing Tg, stiffness, and thermal stability, with synergistic contributions from GNP content and hardener concentration to the overall network performance. These results surpass those of GO- and CNT-based systems, demonstrating the superior efficiency of GNPs under optimized conditions. The proposed approach provides a robust pathway for developing epoxy nanocomposites with low filler content and enhanced multifunctional performance. Full article
(This article belongs to the Special Issue Polymer Composites: Structure, Properties and Processing, 2nd Edition)
Show Figures

Figure 1

19 pages, 4188 KB  
Article
Enhanced Mechanical and Electrical Performance of Epoxy Nanocomposites Through Hybrid Reinforcement of Carbon Nanotubes and Graphene Nanoplatelets: A Synergistic Route to Balanced Strength, Stiffness, and Dispersion
by Saba Yaqoob, Zulfiqar Ali, Alberto D’Amore, Alessandro Lo Schiavo, Antonio Petraglia and Mauro Rubino
J. Compos. Sci. 2025, 9(7), 374; https://doi.org/10.3390/jcs9070374 - 17 Jul 2025
Viewed by 1662
Abstract
Carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) have attracted significant interest as hybrid reinforcements in epoxy (Ep) composites for enhancing mechanical performance in structural applications, such as aerospace and automotive. These 1D and 2D nanofillers possess exceptionally high aspect ratios and intrinsic mechanical [...] Read more.
Carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) have attracted significant interest as hybrid reinforcements in epoxy (Ep) composites for enhancing mechanical performance in structural applications, such as aerospace and automotive. These 1D and 2D nanofillers possess exceptionally high aspect ratios and intrinsic mechanical properties, substantially improving composite stiffness and tensile strength. In this study, epoxy nanocomposites were fabricated with 0.1 wt.% and 0.3 wt.% of CNTs and GNPs individually, and with 1:1 CNT:GNP hybrid fillers at equivalent total loadings. Scanning electron microscopy of fracture surfaces confirmed that the CNTGNP hybrids dispersed uniformly, forming an interconnected nanostructured network. Notably, the 0.3 wt.% CNTGNP hybrid system exhibited minimal agglomeration and voids, preventing crack initiation and propagation. Mechanical testing revealed that the 0.3 wt.% CNTGNP/Ep composite achieved the highest tensile strength of approximately 84.5 MPa while maintaining a well-balanced stiffness profile (elastic modulus ≈ 4.62 GPa). The hybrid composite outperformed both due to its synergistic reinforcement mechanisms and superior dispersion despite containing only half the concentration of each nanofiller relative to the individual 0.3 wt.% CNT or GNP systems. In addition to mechanical performance, electrical conductivity analysis revealed that the 0.3 wt.% CNTGNP hybrid composite exhibited the highest conductivity of 0.025 S/m, surpassing the 0.3 wt.% CNT-only system (0.022 S/m), owing to forming a well-connected three-dimensional conductive network. The 0.1 wt.% CNT-only composite also showed enhanced conductivity (0.0004 S/m) due to better dispersion at lower filler loadings. These results highlight the dominant role of CNTs in charge transport and the effectiveness of hybrid networks in minimizing agglomeration. These findings demonstrate that CNTGNP hybrid fillers can deliver optimally balanced mechanical enhancement in epoxy matrices, offering a promising route for designing lightweight, high-performance structural composites. Further optimization of nanofiller dispersion and interfacial chemistry may yield even greater improvements. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

19 pages, 4201 KB  
Article
Effects of Key Parameters on Thermal Conductivity of Carbon Nanotube–Epoxy Composites by Molecular Dynamics Simulations
by Lida Najmi and Zhong Hu
J. Compos. Sci. 2025, 9(4), 159; https://doi.org/10.3390/jcs9040159 - 26 Mar 2025
Cited by 3 | Viewed by 1729
Abstract
The application of carbon nanotube (CNT)-reinforced epoxy matrix composites (CRECs) has attracted extensive attention in various industrial sectors due to the significant improvement of material properties imparted by CNTs. The thermal behavior of these nanocomposites is governed by complex heat transfer mechanisms operating [...] Read more.
The application of carbon nanotube (CNT)-reinforced epoxy matrix composites (CRECs) has attracted extensive attention in various industrial sectors due to the significant improvement of material properties imparted by CNTs. The thermal behavior of these nanocomposites is governed by complex heat transfer mechanisms operating at different scales, resulting in a complex relationship between the effective thermal response and the microstructural characteristics of the composite. In order to fundamentally understand the thermal behavior of the CRECs on the nanoscale, in this study, molecular dynamics (MD) simulation methods were used to investigate the thermal conductivity of CRECs, focusing on the effects of key parameters such as the length and volume fraction of CNTs, the degree of cross-linking within the epoxy matrix, and the temperature on the overall thermal properties. First, the thermal behavior of the epoxy matrix was simulated and analyzed. This approach allowed the isolation of the intrinsic thermal response of the epoxy resin as a benchmark for evaluating the enhancement introduced by CNT reinforcement. By systematically varying those key parameters, the study comprehensively evaluates how nanoscale interactions and structural modifications affect the overall thermal conductivity of CRECs, providing valuable insights for optimizing their design for advanced thermal management applications. The simulation results were validated by comparing them with experimental data from literature and analytical predictions. The results show that for the configurations examined, the thermal conductivity of CRECs increases with increasing CNT length and volume fraction, epoxy cross-linking degree, and the system temperature. From a broader perspective, the approach presented here has the potential to be applied to study a wide range of materials and their properties. Full article
(This article belongs to the Special Issue Theoretical and Computational Investigation on Composite Materials)
Show Figures

Figure 1

21 pages, 3192 KB  
Article
Magnetic Ionic Liquid: A Multifunctional Platform for the Design of Hybrid Graphene/Carbon Nanotube Networks as Electromagnetic Wave-Absorbing Materials
by Jean C. Carelo, Bluma G. Soares, Debora P. Schmitz, Ruan R. Henriques, Adriana A. Silva, Guilherme M. O. Barra, Vitoria M. T. S. Barthem and Sebastien Livi
Molecules 2025, 30(5), 985; https://doi.org/10.3390/molecules30050985 - 20 Feb 2025
Cited by 1 | Viewed by 1380
Abstract
Magnetic ionic liquid (MIL) based on alkyl phosphonium cation was used as a curing agent for developing epoxy nanocomposites (ENCs) modified with a graphene nanoplatelet (GNP)/carbon nanotube (CNT) hybrid filler. The materials were prepared by a solvent-free procedure involving ball-milling technology. ENCs containing [...] Read more.
Magnetic ionic liquid (MIL) based on alkyl phosphonium cation was used as a curing agent for developing epoxy nanocomposites (ENCs) modified with a graphene nanoplatelet (GNP)/carbon nanotube (CNT) hybrid filler. The materials were prepared by a solvent-free procedure involving ball-milling technology. ENCs containing as low as 3 phr of filler (GNP/CNT = 2.5:0.5 phr) exhibited electrical conductivity with approximately six orders of magnitude greater than the system loaded with GNP = 2.5 phr. Moreover, the use of MIL (10 phr) resulted in ENCs with higher conductivity compared with the same system cured using conventional aliphatic amine. The filler dispersion within the epoxy matrix was confirmed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electromagnetic interference shielding effectiveness (EMI SE), evaluated in the X- and Ku-band frequency range, revealed a great contribution of the absorption mechanism for the ENC containing the hybrid filler and cured with MIL. Moreover, the best microwave-absorbing response was achieved with the ENC containing GNP/CNT = 2.5/0.5 phr, and cured with ML, which a minimum RL of −23.61 dB and an effective absorption bandwidth of 5.18 GHz were observed for thickness of 1.5 mm. In summary, this system is a promising material for both civilian and military applications due to its simple and scalable nanocomposite preparation method, the lightweight nature of the composites resulting from the low filler content, the commercial availability and cost-effectiveness of GNP, and its high electromagnetic wave attenuation across a broad frequency range. Full article
Show Figures

Figure 1

16 pages, 3743 KB  
Article
An Approach of Manufacturing High-Molecular-Weight CNT-Filled Epoxy Composite
by Florence Acha, Talya Scheff, Nathalia Diaz Armas, Joey Mead, Stephen Johnston and Jinde Zhang
Materials 2025, 18(2), 264; https://doi.org/10.3390/ma18020264 - 9 Jan 2025
Cited by 3 | Viewed by 1275
Abstract
Epoxy nanocomposites are widely used in various applications because of their excellent properties. Different types of manufacturing techniques are used to produce epoxy composites based on various fillers, molecular weight, and applications required. The physical properties and chemical structure of epoxy resin help [...] Read more.
Epoxy nanocomposites are widely used in various applications because of their excellent properties. Different types of manufacturing techniques are used to produce epoxy composites based on various fillers, molecular weight, and applications required. The physical properties and chemical structure of epoxy resin help in determining the method for its manufacturing. Coatings and adhesive formulations are prepared using high- molecular-weight epoxies, whereas epoxy nanocomposites require low-molecular-weight epoxies due to ease of manufacturing. A low-molecular-weight epoxy can provide high crosslink density to the epoxy but may also cause inherent brittleness in epoxy nanocomposites. Further, the addition of CNTs may also cause more brittleness in the final product. In this work, the authors have developed a method to process composites based on high-molecular-weight epoxy reinforced with high loading of CNTs (15 wt.%). The high molecular weight will bring lots of challenges during manufacturing. In this paper, a novel manufacturing technique based on separate molding and curing conditions to produce highly concentrated CNT-filled epoxy with high-molecular-weight epoxy resin is described, achieving excellent mechanical properties, good toughness, and high electrical conductivity in an efficient, low-cost, environmentally friendly, and high-volume way. The findings demonstrated improvements in these mechanical properties compared to conventional systems. They also highlight the potential of the novel method to develop advanced composite materials which can revolutionize industrial sectors such as aerospace, automotives, and electronics where structural integrity and thermal stability are important. Full article
(This article belongs to the Special Issue Advanced Polymer Matrix Nanocomposite Materials (2nd Edition))
Show Figures

Figure 1

23 pages, 9842 KB  
Article
Preparation and Characterization of Graphene Oxide/Carbon Nanotube/Polyaniline Composite and Conductive and Anticorrosive Properties of Its Waterborne Epoxy Composite Coatings
by Yufeng Li, Shibo Liu, Feng Feng, Yiming Li, Yahui Han, Xinyang Tong and Xiaohui Gao
Polymers 2024, 16(18), 2641; https://doi.org/10.3390/polym16182641 - 19 Sep 2024
Cited by 12 | Viewed by 2656
Abstract
The organic coating on the surface is common and the most effective method to prevent metal materials from corrosion. However, the corrosive medium can penetrate the metal surface via micropores, and electrons cannot transfer in the pure resin coatings. In this paper, a [...] Read more.
The organic coating on the surface is common and the most effective method to prevent metal materials from corrosion. However, the corrosive medium can penetrate the metal surface via micropores, and electrons cannot transfer in the pure resin coatings. In this paper, a new type of anticorrosive and electrically conductive composite coating filled with graphene oxide/carbon nanotube/polyaniline (GO/CNT/PANI) nanocomposites was successfully prepared by in situ polymerization of aniline (AN) on the surface of GO and CNT and using waterborne epoxy resin (WEP) as film-forming material. The structure and morphology of the composite were characterized using a series of characterization methods. The composite coatings were comparatively examined through resistivity, potentiodynamic polarization curves, electrochemical impedance spectroscopy (EIS), and salt spray tests. The results show that the GO/CNT/PANI/WEP composite coating exhibits excellent corrosion resistance for metal substrates and good conductivity when the mass fraction of GO/CNT/PANI is 3.5%. It exhibits a lower corrosion current density of 4.53 × 10−8 A·cm−2 and a higher electrochemical impedance of 3.84 × 106 Ω·cm2, while only slight corrosion occurred after 480 h in the salt spray test. The resistivity of composite coating is as low as 2.3 × 104 Ω·cm. The composite coating possesses anticorrosive and electrically conductive properties based on the synergistic effect of nanofillers and expands the application scope in grounding grids and oil storage tank protection fields. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

16 pages, 6328 KB  
Article
Metal–Organic Frameworks-Derived FeCo/C–CNT Nanocomposites Modified Epoxy Resin for Electromagnetic Protection Coatings for Buildings
by Dongyi Lei, Jiaxin Liu, Chengkan Liu, Chunlei Dong, Donglei Yang, Ying Li, Jiqing Zhang, Feizi Han and Zihan Guo
Buildings 2024, 14(4), 1096; https://doi.org/10.3390/buildings14041096 - 15 Apr 2024
Cited by 2 | Viewed by 1810
Abstract
Exploring an efficient electromagnetic protection strategy for buildings is of great significance to solve the problems caused by increasing electromagnetic pollution, as the rapid progress of technology continues. In this work, FeCo alloy/carbon–carbon nanotube (FeCo/C–CNT) nanocomposites, with significant microwave absorption performance, were successfully [...] Read more.
Exploring an efficient electromagnetic protection strategy for buildings is of great significance to solve the problems caused by increasing electromagnetic pollution, as the rapid progress of technology continues. In this work, FeCo alloy/carbon–carbon nanotube (FeCo/C–CNT) nanocomposites, with significant microwave absorption performance, were successfully synthesized using a simple pyrolysis method involving FeCo–ZIF MOFs precursors and added to epoxy resin to prepare a novel electromagnetic wave absorption (EWA) coating. The minimum reflection loss (RLmin) of the coating applied on the surface of the ceramic tiles was −23.89 dB at 11.37 GHz and the effective absorption bandwidth (EAB) reached 8.85 GHz. Through microscopic characterization and analysis of the electromagnetic parameters of the FeCo/C–CNT nanocomposites, it was found that the EWA coating has an ultrabroad band wave absorption effect, mainly due to the comprehensive advantages of the polarization loss from CNTs, impedance matching, the dual loss synergy effect, and multiple reflection between the FeCo alloys, the carbon layer, and the CNTs. This study has successfully developed high-performance EWA materials and demonstrated the feasibility of an EWA coating applied to building surfaces, contributing to the improvement of electromagnetic protection functions of buildings. Full article
(This article belongs to the Special Issue Characterization and Design of Cement and Concrete Materials)
Show Figures

Figure 1

14 pages, 8580 KB  
Article
The Effect of Carbon-Based Nanofillers on Cryogenic Temperature Mechanical Properties of CFRPs
by Aldobenedetto Zotti, Simona Zuppolini, Anna Borriello, Valeria Vinti, Luigi Trinchillo and Mauro Zarrelli
Polymers 2024, 16(5), 638; https://doi.org/10.3390/polym16050638 - 27 Feb 2024
Cited by 5 | Viewed by 2608
Abstract
In the present work, the effects of carbon-based nanofillers (0.5 wt%), i.e., graphene nanoplatelets (GNPs), carbon nanofibers (CNFs), and carbon nanotubes (CNTs), on the cryogenic temperature (77 K) mechanical properties of carbon fiber reinforced polymers (CFRPs) were investigated. The study utilized an ex [...] Read more.
In the present work, the effects of carbon-based nanofillers (0.5 wt%), i.e., graphene nanoplatelets (GNPs), carbon nanofibers (CNFs), and carbon nanotubes (CNTs), on the cryogenic temperature (77 K) mechanical properties of carbon fiber reinforced polymers (CFRPs) were investigated. The study utilized an ex situ conditioning method for cryogenic tests. The nanofillers were mixed with the epoxy matrix by a solvent-free fluidized bed mixing technique (FBM), while unidirectional carbon fibers were impregnated with the resulting nanocomposites to manufacture CFRP samples. Optical microscopy was employed to analyze the dispersion of the carbon-based fillers within the matrix, revealing a homogeneous distribution in nanocomposites containing GNPs and CNFs. Fracture toughness tests confirmed the homogeneity of the GNP-loaded systems, showing an improvement in the stress intensity factor (KC) by 13.2% and 14.7% compared to the unmodified matrix at RT (25 °C) and 77 K, respectively; moreover, flexural tests demonstrated a general increase in flexural strength with the presence of carbon-based nanofillers at both temperature levels (RT and 77 K). Additionally, interlaminar shear strength (ILSS) tests were performed and analyzed using the same ex situ conditioning method. Full article
(This article belongs to the Special Issue Functional Graphene–Polymer Composites)
Show Figures

Figure 1

22 pages, 8253 KB  
Article
Development of an Electroactive and Thermo-Reversible Diels–Alder Epoxy Nanocomposite Doped with Carbon Nanotubes
by Isaac Lorero, Álvaro Rodríguez, Mónica Campo and Silvia G. Prolongo
Polymers 2023, 15(24), 4715; https://doi.org/10.3390/polym15244715 - 15 Dec 2023
Cited by 5 | Viewed by 2319
Abstract
The manufacturing of Diels–Alder (D-A) crosslinked epoxy nanocomposites is an emerging field with several challenges to overcome: the synthesis is complex due to side reactions, the mechanical properties are hindered by the brittleness of these bonds, and the content of carbon nanotubes (CNT) [...] Read more.
The manufacturing of Diels–Alder (D-A) crosslinked epoxy nanocomposites is an emerging field with several challenges to overcome: the synthesis is complex due to side reactions, the mechanical properties are hindered by the brittleness of these bonds, and the content of carbon nanotubes (CNT) added to achieve electroactivity is much higher than the percolation thresholds of other conventional resins. In this work, we develop nanocomposites with different D-A crosslinking ratios (0, 0.6, and 1.0) and CNT contents (0.1, 0.3, 0.5, 0.7, and 0.9 wt.%), achieving a simplified route and avoiding the use of solvents and side reactions by selecting a two-step curing method (100 °C-6 h + 60 °C-12 h) that generates the thermo-reversible resins. These reversible nanocomposites show ohmic behavior and effective Joule heating, reaching the dissociation temperatures of the D-A bonds. The fully reversible nanocomposites (ratio 1.0) present more homogeneous CNT dispersion compared to the partially reversible nanocomposites (ratio 0.6), showing higher electrical conductivity, as well as higher brittleness. For this study, the nanocomposite with a partially reversible matrix (ratio 0.6) doped with 0.7 CNT wt.% was selected to allow us to study its new smart functionalities and performance due to its reversible network by analyzing self-healing and thermoforming. Full article
(This article belongs to the Special Issue Epoxy Thermoset Polymer Composites)
Show Figures

Figure 1

15 pages, 6483 KB  
Article
Effects of Carbon Nanotubes on Thermal Behavior of Epoxy Resin Composites
by Lida Najmi and Zhong Hu
J. Compos. Sci. 2023, 7(8), 313; https://doi.org/10.3390/jcs7080313 - 31 Jul 2023
Cited by 33 | Viewed by 4984
Abstract
Human society’s need to build low-weight, high-strength and durable structures has increased the demand for composite materials. In this case, composites are used where high mechanical strength, low weight, sound and thermal insulation properties are required. One of the most important issues now [...] Read more.
Human society’s need to build low-weight, high-strength and durable structures has increased the demand for composite materials. In this case, composites are used where high mechanical strength, low weight, sound and thermal insulation properties are required. One of the most important issues now is designing materials and coatings aimed at reducing heat loss and resisting high temperatures. One way to address this problem is to develop a technique for preparing and applying composite materials that slow down their heating applied to a surface. In this study, carbon nanotubes (CNTs) reinforced composites were fabricated using silicone molding to be applied to honeycomb sandwich structures. To determine the effect of CNTs on the thermal behavior of the sandwich panels, different weight percentages of this material (0.025, 0.05. 0.075 wt.%) were added to the epoxy resin. The results showed that the thermal stability of the epoxy composites was directly related to the increase in the percentage of CNTs as the CNT content increased to 0.075 wt.%, and the thermal degradation temperature of the epoxy composites increased by 14 °C. In addition, the energy absorption increased by 4.6% with an increase in CNTs up to 0.075 wt.%. Density measurements showed that the density of the nanocomposite samples increased by adding CNTs to pure epoxy resin. The actual densities of the samples reinforced with 0.025, 0.05, and 0.075 wt.% CNTs are 0.925, 0.926, and 0.927 of the theoretical density, respectively. Since the CNT dispersion uniformity in the epoxy matrix can significantly affect the properties of the composites, in this study, a new method of dispersing CNTs in the epoxy resin matrix resulted in higher thermal conductivity while using lower amounts of CNTs compared to other studies. The storage modulus of the epoxy matrix composites reinforced with 0.05 wt.% in this study was 25.9% and 6.9% higher than that from the previous study reinforced with 0.1 wt.% and 0.25 wt.% CNTs, respectively. Furthermore, the tanδ and loss modulus of the composite reinforced with 0.05 wt.% CNTs in this study were 52% and 54.5% higher than that from the previous study with 0.1 wt.% CNTs, respectively. This study provided an optimal approach for designers and engineers who want to effectively design their composite honeycomb sandwich structure with better thermal properties. Full article
(This article belongs to the Section Carbon Composites)
Show Figures

Graphical abstract

13 pages, 6486 KB  
Article
Reinforcement of Aminopropyl-Terminated Siloxane-Treated Carbon Nanotubes in Epoxy Thermosets: Mechanical and Thermal Properties
by Yuxin Sun, Xiwen Zhang and Dongyu Zhao
Polymers 2023, 15(15), 3184; https://doi.org/10.3390/polym15153184 - 27 Jul 2023
Cited by 5 | Viewed by 2249
Abstract
The synthesis and characterization of aminopropyl-terminated polydimethylsiloxane- treated carbon nanotube (AFCNT)-reinforced epoxy nanocomposites are reported in the current study. The amine functionalization of the CNTs was performed with a reaction to PDMS-NH2. The AFCNTs were homogeneously dispersed in epoxy resin by [...] Read more.
The synthesis and characterization of aminopropyl-terminated polydimethylsiloxane- treated carbon nanotube (AFCNT)-reinforced epoxy nanocomposites are reported in the current study. The amine functionalization of the CNTs was performed with a reaction to PDMS-NH2. The AFCNTs were homogeneously dispersed in epoxy resin by using an emulsifier and a three-roller mill. The AFCNTs were characterized using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The curing behavior of the epoxy/AFCNT was studied using a differential scanning calorimeter (DSC). The tensile and impact strengths of the 2.0 wt.% AFCNT-reinforced epoxy nanocomposite were enhanced by 43.2% and 370%, respectively. Moreover, the glass transition temperature (Tg) was also enhanced by 21 °C. Furthermore, significant enhancements were observed in the initial degradation and char yield values. SEM results confirmed that the AFCNTs were highly dispersed in the polymeric matrix. Full article
(This article belongs to the Special Issue Advanced Polymer Nanocomposites III)
Show Figures

Figure 1

18 pages, 11401 KB  
Article
Multifunctional Properties of Polyhedral Oligomeric Silsesquioxanes (POSS)-Based Epoxy Nanocomposites
by Liberata Guadagno, Andrea Sorrentino, Raffaele Longo and Marialuigia Raimondo
Polymers 2023, 15(10), 2297; https://doi.org/10.3390/polym15102297 - 13 May 2023
Cited by 22 | Viewed by 6394
Abstract
In this study, a tetrafunctional epoxy resin was loaded with 5 wt% of three different types of polyhedral oligomeric silsesquioxane (POSS) compounds, namely, DodecaPhenyl POSS (DPHPOSS), Epoxycyclohexyl POSS (ECPOSS), Glycidyl POSS (GPOSS), and 0.5 wt% of multi-walled carbon nanotubes (CNTs) in order to [...] Read more.
In this study, a tetrafunctional epoxy resin was loaded with 5 wt% of three different types of polyhedral oligomeric silsesquioxane (POSS) compounds, namely, DodecaPhenyl POSS (DPHPOSS), Epoxycyclohexyl POSS (ECPOSS), Glycidyl POSS (GPOSS), and 0.5 wt% of multi-walled carbon nanotubes (CNTs) in order to formulate multifunctional structural nanocomposites tailored for aeronautic and aerospace applications. This work aims to demonstrate how the skillful combination of desired properties, such as good electrical, flame-retardant, mechanical, and thermal properties, is obtainable thanks to the advantages connected with nanoscale incorporations of nanosized CNTs with POSS. The special hydrogen bonding-based intermolecular interactions between the nanofillers have proved to be strategic in imparting multifunctionality to the nanohybrids. All multifunctional formulations are characterized by a Tg centered at values close to 260 °C, fully satisfying structural requirements. Infrared spectroscopy and thermal analysis confirm the presence of a cross-linked structure characterized by a high curing degree of up to 94% and high thermal stability. Tunneling atomic force microscopy (TUNA) allows to detect the map of the electrical pathways at the nanoscale of the multifunctional samples, highlighting a good dispersion of the carbon nanotubes within the epoxy resin. The combined action of POSS with CNTs has allowed to obtain the highest values of self-healing efficiency if compared to those measured for samples containing only POSS in the absence of CNTs. Full article
(This article belongs to the Special Issue Polymeric Self-Healing Materials II)
Show Figures

Figure 1

15 pages, 4789 KB  
Article
Effect of the Simultaneous Addition of Polycaprolactone and Carbon Nanotubes on the Mechanical, Electrical, and Adhesive Properties of Epoxy Resins Cured with Ionic Liquids
by Lidia Orduna, Itziar Otaegi, Nora Aranburu and Gonzalo Guerrica-Echevarría
Polymers 2023, 15(7), 1607; https://doi.org/10.3390/polym15071607 - 23 Mar 2023
Cited by 3 | Viewed by 2264
Abstract
Electrically-conductive epoxy nanocomposites (NCs) with improved mechanical and adhesive properties were achieved through the combined addition of poly(ε-caprolactone) (PCL) and carbon nanotubes (CNTs). Three different ionic liquids (ILs) were used as dual role agents, i.e., as both curing and dispersing agents. Regardless of [...] Read more.
Electrically-conductive epoxy nanocomposites (NCs) with improved mechanical and adhesive properties were achieved through the combined addition of poly(ε-caprolactone) (PCL) and carbon nanotubes (CNTs). Three different ionic liquids (ILs) were used as dual role agents, i.e., as both curing and dispersing agents. Regardless of the IL used, the epoxy/PCL matrix of the NCs showed a single-phase behaviour and similar glass transition (Tg) and crosslinking density (νe) values to the unfilled epoxy/PCL/IL systems. Although the CNTs were more poorly dispersed in the epoxy/PCL/CNT/IL NCs than in the reference epoxy/CNT/IL NCs, which led to slightly lower electrical conductivity values, the epoxy/PCL/CNT/IL NCs were still semiconductive. Their low-strain mechanical properties (i.e., flexural modulus and flexural strength) were similar or better than those of the reference epoxy/IL systems and their high-strain mechanical properties (i.e., deformation at break and impact strength) were significantly better. In addition, the positive effects of the PCL and the CNTs on the adhesive properties of the epoxy/IL system were combined. The substitution of ILs for traditional amine-based curing agents and biodegradable PCL for part of the epoxy resin represents an important advance on the road towards greater sustainability. Full article
(This article belongs to the Special Issue Advanced Epoxy-Based Materials IV)
Show Figures

Figure 1

12 pages, 3330 KB  
Article
Dispersion of Carbon Nanotubes Improved by Ball Milling to Prepare Functional Epoxy Nanocomposites
by Ziqi Gao, Quanjiabao Han, Jianbang Liu, Kangbo Zhao, Yin Yu, Yuanyuan Feng and Sensen Han
Coatings 2023, 13(3), 649; https://doi.org/10.3390/coatings13030649 - 20 Mar 2023
Cited by 17 | Viewed by 4987
Abstract
There has been an increase in interest in developing functional polymer composites based on green chemistry principles. The purpose of this study was to investigate the preparation of functional epoxy/carbon nanotube nanocomposites using ball milling methods. In contrast to mechanical mixing, ball milling [...] Read more.
There has been an increase in interest in developing functional polymer composites based on green chemistry principles. The purpose of this study was to investigate the preparation of functional epoxy/carbon nanotube nanocomposites using ball milling methods. In contrast to mechanical mixing, ball milling promoted good dispersion of CNTs within the epoxy matrix, thereby improving their mechanical properties and electrical conductivity. In epoxy nanocomposites with ball milling, Young’s modulus and tensile strength were increased by 653% and 150%, respectively, when CNT loading was 1.0 vol%. Additionally, the ball milling of CNTs improves their dispersion, resulting in a low percolation threshold at 0.67 vol%. The epoxy/CNT film sensor that was produced using the ball milling approach not only exhibited high reliability and sensitivity to mechanical strains and impact loads, but also possessed the ability to self-detect damage, such as cracks, and accurately locate them. This study marks a notable milestone in the advancement of functional epoxy/CNT composites through the ball milling approach. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

15 pages, 17993 KB  
Article
Ionic Liquids as Alternative Curing Agents for Conductive Epoxy/CNT Nanocomposites with Improved Adhesive Properties
by Lidia Orduna, Itziar Otaegi, Nora Aranburu and Gonzalo Guerrica-Echevarría
Nanomaterials 2023, 13(4), 725; https://doi.org/10.3390/nano13040725 - 14 Feb 2023
Cited by 5 | Viewed by 2792
Abstract
Good dispersion of carbon nanotubes (CNTs) together with effective curing were obtained in epoxy/CNT nanocomposites (NCs) using three different ionic liquids (ILs). Compared to conventional amine-cured epoxy systems, lower electrical percolation thresholds were obtained in some of the IL-based epoxy systems. For example, [...] Read more.
Good dispersion of carbon nanotubes (CNTs) together with effective curing were obtained in epoxy/CNT nanocomposites (NCs) using three different ionic liquids (ILs). Compared to conventional amine-cured epoxy systems, lower electrical percolation thresholds were obtained in some of the IL-based epoxy systems. For example, the percolation threshold of the trihexyltetradecylphosphonium dicyanamide (IL-P-DCA)-based system was 0.001 wt.%. The addition of CNTs was not found to have any significant effect on the thermal or low-strain mechanical properties of the nanocomposites, but it did improve their adhesive properties considerably compared to the unfilled systems. This study demonstrates that ILs can be used to successfully replace traditional amine-based curing agents for the production of electrically conductive epoxy/CNT NCs and adhesives, as a similar or better balance of properties was achieved. This represents a step towards greater sustainability given that the vapor pressure of ILs is low, and the amount needed to effectively cure epoxy resins is significantly lower than any of their counterparts. Full article
Show Figures

Figure 1

Back to TopTop