Reinforcement of Aminopropyl-Terminated Siloxane-Treated Carbon Nanotubes in Epoxy Thermosets: Mechanical and Thermal Properties
Abstract
:1. Introduction
2. Experiment
2.1. Materials
2.2. Synthesis of CNT-COOH
2.3. Preparation of Amino-Functionalized CNT
2.4. Preparation of the AFCNT/Epoxy Nanocomposites
2.5. Characterization
3. Results and Discussion
3.1. Characterizations of CNTs
3.2. Curing Behavior of AFCNT/Epoxy Blends
3.3. Mechanical Properties
3.4. Thermal Properties
3.5. The Glass Transition Temperatures of Nanocomposites
3.6. Interfacial Interaction Analysis by SEM
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Baig, M.M.A.; Samad, M.A. Epoxy\Epoxy Composite\Epoxy Hybrid Composite Coatings for Tribological Applications-A Review. Polymers 2021, 13, 179. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Feng, X.; Zou, Y. Graphene Reinforced Epoxy Adhesive For Fracture Resistance. Compos. Part B Eng. 2018, 155, 457–462. [Google Scholar] [CrossRef]
- Zhou, H.; Fan, X.; Liu, C.; Qu, C.; Yuan, Z.; Jing, J.; Tang, Y.; Zhao, D.; Xiao, W.; Su, K. Properties of high-temperature epoxy/DDS resin systems for bonding application. High Perform. Polym. 2019, 32, 559–568. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, B.; Zhou, Y.; Essawy, H.; Chen, Q.; Zhou, X.; Du, G. Preparation of a starch-based adhesive cross-linked with furfural, furfuryl alcohol and epoxy resin. Int. J. Adhes. Adhes. 2021, 110, 102958. [Google Scholar] [CrossRef]
- Sreehari, H.; Sethulekshmi, A.S.; Saritha, A. Bio Epoxy Coatings: An Emergent Green Anticorrosive Coating for the Future. Macromol. Mater. Eng. 2022, 307, 2200004. [Google Scholar] [CrossRef]
- RamÍRez-Palma, M.T.; HernÁNdez-PadrÓN, G.; GÓMez, J.M.; Rojas-GonzÁLez, F.; CastaÑO, V.M. Nanostructured Epoxy-Based Anticorrosive Coatings. Surf. Rev. Lett. 2020, 27, 1950202. [Google Scholar] [CrossRef]
- Visakh, P.M.; Nazarenko, O.B.; Sarath Chandran, C.; Melnikova, T.V.; Nazarenko, S.Y.; Kim, J.C. Effect of electron beam irradiation on thermal and mechanical properties of aluminum based epoxy composites. Radiat. Phys. Chem. 2017, 136, 17–22. [Google Scholar] [CrossRef]
- Saif, M.J.; Naveed, M.; Zia, K.M.; Asif, M. Pristine and γ-irradiated halloysite reinforced epoxy nanocomposites—Insight study. Radiat. Phys. Chem. 2016, 127, 115–121. [Google Scholar] [CrossRef]
- Rahman, M.M.; Akhtarul Islam, M. Application of epoxy resins in building materials: Progress and prospects. Polym. Bull. 2021, 79, 1949–1975. [Google Scholar] [CrossRef]
- Shahapurkar, K.; Chavan, V.B.; Doddamani, M.; Kumar, G.C.M. Influence of surface modification on wear behavior of fly ash cenosphere/epoxy syntactic foam. Wear 2018, 414–415, 327–340. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, F.; Liang, W.; Wang, Z.; Duan, Z.; Yang, B. Thermal and Mechanical Properties of Bamboo Fiber Reinforced Epoxy Composites. Polymers 2018, 10, 608. [Google Scholar] [CrossRef] [Green Version]
- Ogbonna, V.E.; Popoola, A.P.I.; Popoola, O.M.; Adeosun, S.O. A review on corrosion, mechanical, and electrical properties of glass fiber-reinforced epoxy composites for high-voltage insulator core rod applications: Challenges and recommendations. Polym. Bull. 2021, 79, 6857–6884. [Google Scholar] [CrossRef]
- Kulik, A.J.; Kis, A.; Lukic, B.; Lee, K.; Forró, L. Mechanical Properties of Carbon Nanotubes. In Fundamentals of Friction and Wear; Gnecco, E., Meyer, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 583–600. [Google Scholar] [CrossRef]
- Gojny, F.H.; Nastalczyk, J.; Roslaniec, Z.; Schulte, K. Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites. Chem. Phys. Lett. 2003, 370, 820–824. [Google Scholar] [CrossRef]
- Bian, L.; Gao, M. Nanomechanics model for properties of carbon nanotubes under a thermal environment. Acta Mech. 2018, 229, 4521–4538. [Google Scholar] [CrossRef]
- Niu, M.; Cui, C.; Tian, R.; Zhao, Y.; Miao, L.; Hao, W.; Li, J.; Sui, C.; He, X.; Wang, C. Mechanical and thermal properties of carbon nanotubes in carbon nanotube fibers under tension-torsion loading. RSC Adv. 2022, 12, 30085–30093. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.N.; Luo, X.G.; Wu, T.; Chen, Y. High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity. Nat. Commun. 2014, 5, 3848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Ci, Y.; Zhang, D.; Zhang, C.; He, Y. Free arc liquid-phase dispersion method for the preparation of carbon nanotube dispersion. Carbon Lett. 2020, 31, 287–295. [Google Scholar] [CrossRef]
- Chen, M.; Fan, G.; Tan, Z.; Yuan, C.; Xiong, D.; Guo, Q.; Su, Y.; Naito, M.; Li, Z. Tailoring and characterization of carbon nanotube dispersity in CNT/6061Al composites. Mater. Sci. Eng. A 2019, 757, 172–181. [Google Scholar] [CrossRef]
- Mallakpour, S.; Soltanian, S. Surface functionalization of carbon nanotubes: Fabrication and applications. RSC Adv. 2016, 6, 109916–109935. [Google Scholar] [CrossRef]
- Gojny, F.H.; Schulte, K. Functionalisation effect on the thermo-mechanical behaviour of multi-wall carbon nanotube/epoxy-composites. Compos. Sci. Technol. 2004, 64, 2303–2308. [Google Scholar] [CrossRef]
- Setaro, A. Advanced carbon nanotubes functionalization. J. Phys. Condens. Matter 2017, 29, 423003. [Google Scholar] [CrossRef] [Green Version]
- Mallakpour, S.; Soltanian, S. A facile approach towards functionalization of MWCNTs with vitamin B2 for reinforcing of biodegradable and chiral poly(ester-imide) having L-phenylalanine linkages: Morphological and thermal investigations. J. Polym. Res. 2015, 22, 183. [Google Scholar] [CrossRef]
- Mallakpour, S.; Zadehnazari, A. The production of functionalized multiwall carbon nanotube/amino acid-based poly(amide–imide) composites containing a pendant dopamine moiety. Carbon 2013, 56, 27–37. [Google Scholar] [CrossRef]
- Ling, X.; Wei, Y.; Zou, L.; Xu, S. Functionalization and dispersion of multiwalled carbon nanotubes modified with poly-l-lysine. Colloids Surf. A Physicochem. Eng. Asp. 2014, 443, 19–26. [Google Scholar] [CrossRef]
- Donchak, V.; Stetsyshyn, Y.; Bratychak, M.; Broza, G.; Harhay, K.; Stepina, N.; Kostenko, M.; Voronov, S. Nanoarchitectonics at surfaces using multifunctional initiators of surface-initiated radical polymerization for fabrication of the nanocomposites. Appl. Surf. Sci. Adv. 2021, 5, 100104. [Google Scholar] [CrossRef]
- Chen, Q.; Du, S.; Jiang, Z.; Liu, Y.; Du, R.; Zhao, G. Mechanical properties of foam sandwich with chopped-glass-fiber/carbon nanotube reinforced hierarchical structure interlayer. Polym. Compos. 2020, 41, 3411–3420. [Google Scholar] [CrossRef]
- Farghali, A.A.; Abdel Tawab, H.A.; Abdel Moaty, S.A.; Khaled, R. Functionalization of acidified multi-walled carbon nanotubes for removal of heavy metals in aqueous solutions. J. Nanostruct. Chem. 2017, 7, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Fedorovskaya, E.O.; Bulusheva, L.G.; Kurenya, A.G.; Asanov, I.P.; Okotrub, A.V. Effect of oxidative treatment on the electrochemical properties of aligned multi-walled carbon nanotubes. Russ. J. Electrochem. 2016, 52, 441–448. [Google Scholar] [CrossRef]
- Diekmann, A.; Omelan, M.C.V.; Giese, U. Influence of Carbon Nanotube-Pretreatment on the Properties of Polydimethylsiloxane/Carbon Nanotube-Nanocomposites. Polymers 2021, 13, 1355. [Google Scholar] [CrossRef]
- Cheng, J.X.; Cai, W.A.; Wang, Z.C.; Dayo, A.Q.; Yuan, Z.G.; Liu, W.B.; Wang, J.; Pan, Z.C. Synthesis of a novel boron-containing hyperbranched benzoxazine and its flame-retardant properties in copolymer with epoxy resin. Polym. Adv. Technol. 2023, 34, 2694–2706. [Google Scholar] [CrossRef]
- Xu, Y.-L.; Dayo, A.Q.; Wang, J.; Wang, A.-R.; Lv, D.; Zegaoui, A.; Derradji, M.; Liu, W.-B. Mechanical and thermal properties of a room temperature curing epoxy resin and related hemp fibers reinforced composites using a novel in-situ generated curing agent. Mater. Chem. Phys. 2018, 203, 293–301. [Google Scholar] [CrossRef]
- Rahmanian, S.; Suraya, A.R.; Roshanravan, B.; Othman, R.N.; Nasser, A.H.; Zahari, R.; Zainudin, E.S. The influence of multiscale fillers on the rheological and mechanical properties of carbon-nanotube–silica-reinforced epoxy composite. Mater. Des. 2015, 88, 227–235. [Google Scholar] [CrossRef]
- Feng, A.; Jia, Z.; Yu, Q.; Zhang, H.; Wu, G. Preparation and characterization of carbon nanotubes/carbon fiber/phenolic composites on mechanical and thermal conductivity properties. Nano 2018, 13, 1850037. [Google Scholar] [CrossRef]
- Ilyin, S.O.; Kotomin, S.V. Effect of Nanoparticles and Their Anisometry on Adhesion and Strength in Hybrid Carbon-Fiber-Reinforced Epoxy Nanocomposites. J. Compos. Sci. 2023, 7, 147. [Google Scholar] [CrossRef]
- Derradji, M.; Song, X.; Dayo, A.Q.; Wang, J.; Liu, W.-B. Highly filled boron nitride-phthalonitrile nanocomposites for exigent thermally conductive applications. Appl. Therm. Eng. 2017, 115, 630–636. [Google Scholar] [CrossRef]
- Lin, S.C.; Pearce, E.M. Epoxy resins II. The preparation, characterization, and curing of epoxy resins and their copolymers. J. Polym. Sci. Polym. Chem. Ed. 1979, 17, 3095–3119. [Google Scholar] [CrossRef]
- Shah, A.H.; Li, X.; Xu, X.; Dayo, A.Q.; Liu, W.-B.; Bai, J.; Wang, J. Evaluation of mechanical and thermal properties of modified epoxy resin by using acacia catechu particles. Mater. Chem. Phys. 2019, 225, 239–246. [Google Scholar] [CrossRef]
- Yuan, Z.G.; Al Hassan, M.; Wang, Z.C.; Wang, J.Y.; Wang, J.; Derradji, M.; Liu, W.B. Curing behavior, mechanical and thermal properties of epoxy-CeO2 nanocomposites. J. Appl. Polym. Sci. 2021, 139, 51529. [Google Scholar] [CrossRef]
- Ali, A.; Sohaimi, R.M.; Ismail, A.H.M. Mechanical and Fracture Surface Analysis of Higher Viscous Epoxy/Multiwalled Carbon Nanotube Nanocomposites Subjected to Flexural Loading. In Natural and Artificial Fiber-Reinforced Composites as Renewable Sources; Günay, E., Ed.; Intech Open: London, UK, 2018; pp. 77–86. [Google Scholar] [CrossRef] [Green Version]
AFCNT (wt.%) | Ti (°C) | Tp (°C) | ∆H (J/g) |
---|---|---|---|
0 | 125 | 165 | 216.4 |
0.5 | 117 | 160 | 200.8 |
1 | 112 | 157 | 187.5 |
1.5 | 108 | 155 | 184.7 |
2 | 103 | 153 | 181.7 |
2.5 | 98 | 150 | 180.6 |
AFCNT Content (wt.%) | Tensile Strength (MPa) | Tensile Modulus (GPa) | Elongation at Break (%) | Impact Strength (kJ·m−2) |
---|---|---|---|---|
0 | 50.98 ± 3.18 | 3.29 ± 0.16 | 2.27 ± 0.21 | 2.86 ± 0.37 |
0.5 | 58.05 ± 2.24 | 3.48 ± 0.11 | 2.85 ± 0.18 | 5.67 ± 0.48 |
1 | 64.35 ± 3.87 | 3.66 ± 0.19 | 3.24 ± 0.17 | 7.66 ± 0.73 |
1.5 | 67.64 ± 2.69 | 4.00 ± 0.13 | 3.53 ± 0.20 | 11.69 ± 0.38 |
2 | 73.00 ± 1.72 | 4.10 ± 0.17 | 4.28 ± 0.14 | 12.75 ± 0.44 |
2.5 | 70.75 ± 2.24 | 4.02 ± 0.11 | 4.10 ± 0.21 | 13.43 ± 0.57 |
AFCNT (wt.%) | T5 (°C) | T10 (°C) | Yc (%) at 700 °C |
---|---|---|---|
0 | 352 | 363 | 0.71 |
0.5 | 357 | 367 | 2.31 |
1 | 359 | 369 | 3.11 |
1.5 | 366 | 376 | 3.54 |
2 | 371 | 383 | 3.94 |
2.5 | 374 | 387 | 4.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Zhang, X.; Zhao, D. Reinforcement of Aminopropyl-Terminated Siloxane-Treated Carbon Nanotubes in Epoxy Thermosets: Mechanical and Thermal Properties. Polymers 2023, 15, 3184. https://doi.org/10.3390/polym15153184
Sun Y, Zhang X, Zhao D. Reinforcement of Aminopropyl-Terminated Siloxane-Treated Carbon Nanotubes in Epoxy Thermosets: Mechanical and Thermal Properties. Polymers. 2023; 15(15):3184. https://doi.org/10.3390/polym15153184
Chicago/Turabian StyleSun, Yuxin, Xiwen Zhang, and Dongyu Zhao. 2023. "Reinforcement of Aminopropyl-Terminated Siloxane-Treated Carbon Nanotubes in Epoxy Thermosets: Mechanical and Thermal Properties" Polymers 15, no. 15: 3184. https://doi.org/10.3390/polym15153184
APA StyleSun, Y., Zhang, X., & Zhao, D. (2023). Reinforcement of Aminopropyl-Terminated Siloxane-Treated Carbon Nanotubes in Epoxy Thermosets: Mechanical and Thermal Properties. Polymers, 15(15), 3184. https://doi.org/10.3390/polym15153184