Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = CL-PKC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1083 KiB  
Article
STALE: A Scalable and Secure Trans-Border Authentication Scheme Leveraging Email and ECDH Key Exchange
by Jiexin Zheng, Mudi Xu, Jianqing Li, Benfeng Chen, Zhizhong Tan, Anyu Wang, Shuo Zhang, Yan Liu, Kevin Qi Zhang, Lirong Zheng and Wenyong Wang
Electronics 2025, 14(12), 2399; https://doi.org/10.3390/electronics14122399 - 12 Jun 2025
Viewed by 414
Abstract
In trans-border data (data transferred or accessed across national jurisdictions) exchange scenarios, identity authentication mechanisms serve as critical components for ensuring data security and privacy protection, with their effectiveness directly impacting the compliance and reliability of transnational operations. However, existing identity authentication systems [...] Read more.
In trans-border data (data transferred or accessed across national jurisdictions) exchange scenarios, identity authentication mechanisms serve as critical components for ensuring data security and privacy protection, with their effectiveness directly impacting the compliance and reliability of transnational operations. However, existing identity authentication systems face multiple challenges in trans-border contexts. Firstly, the transnational transfer of identity data struggles to meet the varying data-compliance requirements across different jurisdictions. Secondly, centralized authentication architectures exhibit vulnerabilities in trust chains, where single points of failure may lead to systemic risks. Thirdly, the inefficiency of certificate verification in traditional Public Key Infrastructure (PKI) systems fails to meet the real-time response demands of globalized business operations. These limitations severely constrain real-time identity verification in international business scenarios. To address these issues, this study proposes a trans-border distributed certificate-free identity authentication framework (STALE). The methodology adopts three key innovations. Firstly, it utilizes email addresses as unique user identifiers combined with a Certificateless Public Key Cryptography (CL-PKC) system for key distribution, eliminating both single-point dependency on traditional Certificate Authorities (CAs) and the key escrow issues inherent in Identity-Based Cryptography (IBC). Secondly, an enhanced Elliptic Curve Diffie–Hellman (ECDH) key-exchange protocol is introduced, employing forward-secure session key negotiation to significantly improve communication security in trans-border network environments. Finally, a distributed identity ledger is implemented, using the FISCO BCOS blockchain, enabling decentralized storage and verification of identity information while ensuring data immutability, full traceability, and General Data Protection Regulation (GDPR) compliance. Our experimental results demonstrate that the proposed method exhibits significant advantages in authentication efficiency, communication overhead, and computational cost compared to existing solutions. Full article
Show Figures

Figure 1

14 pages, 2492 KiB  
Article
The Role of Ion Channels and Intracellular Signaling Cascades in the Inhibitory Action of WIN 55,212-2 upon Hyperexcitation
by Sergei A. Maiorov, Denis P. Laryushkin, Kristina A. Kritskaya, Valery P. Zinchenko, Sergei G. Gaidin and Artem M. Kosenkov
Brain Sci. 2024, 14(7), 668; https://doi.org/10.3390/brainsci14070668 - 29 Jun 2024
Cited by 2 | Viewed by 1374
Abstract
Gi-coupled receptors, particularly cannabinoid receptors (CBRs), are considered perspective targets for treating brain pathologies, including epilepsy. However, the precise mechanism of the anticonvulsant effect of the CBR agonists remains unknown. We have found that WIN 55,212-2 (a CBR agonist) suppresses the synchronous oscillations [...] Read more.
Gi-coupled receptors, particularly cannabinoid receptors (CBRs), are considered perspective targets for treating brain pathologies, including epilepsy. However, the precise mechanism of the anticonvulsant effect of the CBR agonists remains unknown. We have found that WIN 55,212-2 (a CBR agonist) suppresses the synchronous oscillations of the intracellular concentration of Ca2+ ions (epileptiform activity) induced in the neurons of rat hippocampal neuron-glial cultures by bicuculline or NH4Cl. As we have demonstrated, the WIN 55,212-2 effect is mediated by CB1R receptors. The agonist suppresses Ca2+ inflow mediated by the voltage-gated calcium channels but does not alter the inflow mediated by NMDA, AMPA, and kainate receptors. We have also found that phospholipase C (PLC), protein kinase C (PKC), and G-protein-coupled inwardly rectifying K+ channels (GIRK channels) are involved in the molecular mechanism underlying the inhibitory action of CB1R activation against epileptiform activity. Thus, our results demonstrate that the antiepileptic action of CB1R agonists is mediated by different intracellular signaling cascades, including non-canonical PLC/PKC-associated pathways. Full article
(This article belongs to the Special Issue New Insights into Neuropharmacology)
Show Figures

Figure 1

20 pages, 3846 KiB  
Article
Effective Radiosensitization of HNSCC Cell Lines by DNA-PKcs Inhibitor AZD7648 and PARP Inhibitors Talazoparib and Niraparib
by Jacob Mentzel, Laura S. Hildebrand, Lukas Kuhlmann, Rainer Fietkau and Luitpold V. Distel
Int. J. Mol. Sci. 2024, 25(11), 5629; https://doi.org/10.3390/ijms25115629 - 22 May 2024
Cited by 3 | Viewed by 1880
Abstract
(1) Head and neck squamous cell carcinoma (HNSCC) is common, while treatment is difficult, and mortality is high. Kinase inhibitors are promising to enhance the effects of radiotherapy. We compared the effects of the PARP inhibitors talazoparib and niraparib and that of the [...] Read more.
(1) Head and neck squamous cell carcinoma (HNSCC) is common, while treatment is difficult, and mortality is high. Kinase inhibitors are promising to enhance the effects of radiotherapy. We compared the effects of the PARP inhibitors talazoparib and niraparib and that of the DNA-PKcs inhibitor AZD7648, combined with ionizing radiation. (2) Seven HNSCC cell lines, including Cal33, CLS-354, Detroit 562, HSC4, RPMI2650 (HPV-negative), UD-SCC-2 and UM-SCC-47 (HPV-positive), and two healthy fibroblast cell lines, SBLF8 and SBLF9, were studied. Flow cytometry was used to analyze apoptosis and necrosis induction (AnnexinV/7AAD) and cell cycle distribution (Hoechst). Cell inactivation was studied by the colony-forming assay. (3) AZD7648 had the strongest effects, radiosensitizing all HNSCC cell lines, almost always in a supra-additive manner. Talazoparib and niraparib were effective in both HPV-positive cell lines but only consistently in one and two HPV-negative cell lines, respectively. Healthy fibroblasts were not affected by any combined treatment in apoptosis and necrosis induction or G2/M-phase arrest. AZD7648 alone was not toxic to healthy fibroblasts, while the combination with ionizing radiation reduced clonogenicity. (4) In conclusion, talazoparib, niraparib and, most potently, AZD7648 could improve radiation therapy in HNSCC. Healthy fibroblasts tolerated AZD7648 alone extremely well, but irradiation-induced effects might occur. Our results justify in vivo studies. Full article
(This article belongs to the Special Issue Pathogenesis and Treatments of Head and Neck Cancer)
Show Figures

Figure 1

16 pages, 2983 KiB  
Article
Extracellular Release of Citrullinated Vimentin Directly Acts on Osteoclasts to Promote Bone Resorption in a Mouse Model of Periodontitis
by Satoru Shindo, Roodelyne Pierrelus, Atsushi Ikeda, Shin Nakamura, Alireza Heidari, Maria Rita Pastore, Elizabeth Leon, Sunniva Ruiz, Harsh Chheda, Rhea Khatiwala, Tomoki Kumagai, George Tolson, Islam Elderbashy, Kazuhisa Ouhara, Xiaozhe Han, Maria Hernandez, Saynur Vardar-Sengul, Hideki Shiba and Toshihisa Kawai
Cells 2023, 12(8), 1109; https://doi.org/10.3390/cells12081109 - 8 Apr 2023
Cited by 11 | Viewed by 3303
Abstract
Elevated osteoclast (OC)-mediated bone resorption, a common pathological feature between periodontitis and rheumatoid arthritis (RA), implicates a possible mutually shared pathogenesis. The autoantibody to citrullinated vimentin (CV), a representative biomarker of RA, is reported to promote osteoclastogenesis (OC-genesis). However, its effect on OC-genesis [...] Read more.
Elevated osteoclast (OC)-mediated bone resorption, a common pathological feature between periodontitis and rheumatoid arthritis (RA), implicates a possible mutually shared pathogenesis. The autoantibody to citrullinated vimentin (CV), a representative biomarker of RA, is reported to promote osteoclastogenesis (OC-genesis). However, its effect on OC-genesis in the context of periodontitis remains to be elucidated. In an in vitro experiment, the addition of exogenous CV upregulated the development of Tartrate-resistant acid phosphatase (TRAP)-positive multinuclear OCs from mouse bone marrow cells and increased the formation of resorption pits. However, Cl-amidine, an irreversible pan-peptidyl arginine deiminase (PAD) inhibitor, suppressed the production and secretion of CV from RANKL-stimulated OC precursors, suggesting that the citrullination of vimentin occurs in OC precursors. On the other hand, the anti-vimentin neutralizing antibody suppressed in vitro Receptor activator of nuclear factor kappa-Β ligand (RANKL)-induced OC-genesis. The CV-induced upregulation of OC-genesis was abrogated by the Protein kinase C (PKC)-δ inhibitor Rottlerin, accompanied by the downmodulation of OC-genesis-related genes, including Osteoclast stimulatory transmembrane protein (OC-STAMP), TRAP and Matrix Metallopeptidase 9 (MMP9) as well as extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP)-kinase phosphorylation. Elevated levels of soluble CV and vimentin-bearing mononuclear cells were found in the bone resorption lesions of periodontitis induced in mice in the absence of an anti-CV antibody. Finally, local injection of anti-vimentin neutralizing antibody suppressed the periodontal bone loss induced in mice. Collectively, these results indicated that the extracellular release of CV promoted OC-genesis and bone resorption in periodontitis. Full article
Show Figures

Figure 1

18 pages, 3900 KiB  
Article
Na+/K+-ATPase Alpha 2 Isoform Elicits Rac1-Dependent Oxidative Stress and TLR4-Induced Inflammation in the Hypothalamic Paraventricular Nucleus in High Salt-Induced Hypertension
by Qing Su, Xiao-Jing Yu, Xiao-Min Wang, Bo Peng, Juan Bai, Hong-Bao Li, Ying Li, Wen-Jie Xia, Li-Yan Fu, Kai-Li Liu, Jin-Jun Liu and Yu-Ming Kang
Antioxidants 2022, 11(2), 288; https://doi.org/10.3390/antiox11020288 - 31 Jan 2022
Cited by 19 | Viewed by 3535
Abstract
Background: Numerous studies have indicated that a high salt diet inhibits brain Na+/K+-ATPase (NKA) activity, and affects oxidative stress and inflammation in the paraventricular nucleus (PVN). Furthermore, Na+/K+-ATPase alpha 2-isoform (NKA α2) may be a [...] Read more.
Background: Numerous studies have indicated that a high salt diet inhibits brain Na+/K+-ATPase (NKA) activity, and affects oxidative stress and inflammation in the paraventricular nucleus (PVN). Furthermore, Na+/K+-ATPase alpha 2-isoform (NKA α2) may be a target in the brain, taking part in the development of salt-dependent hypertension. Therefore, we hypothesized that NKA α2 regulates oxidative stress and inflammation in the PVN in the context of salt-induced hypertension. Methods: Part I: We assessed NKA subunits (NKA α1, NKA α2, and NKA α3), Na+/K+-ATPase activity, oxidative stress, and inflammation in a high salt group (8% NaCl) and normal salt group (0.3% NaCl). Part II: NKA α2 short hairpin RNA (shRNA) was bilaterally microinjected into the PVN of salt-induced hypertensive rats to knockdown NKA α2, and we explored whether NKA α2 regulates downstream signaling pathways related to protein kinase C γ (PKC γ)-dependent oxidative stress and toll-like receptor 4 (TLR4)-induced inflammation in the PVN to promote the development of hypertension. Results: High salt diet increased NKA α1 and NKA α2 protein expression in the PVN but had no effect on NKA α3 compared to the normal salt diet. Na+/K+-ATPase activity and ADP/ATP ratio was lower, but NAD(P)H activity and NF-κB activity in the PVN were higher after a high salt diet. Bilateral PVN microinjection of NKA α2 shRNA not only improved Na+/K+-ATPase activity and ADP/ATP ratio but also suppressed PKC γ-dependent oxidative stress and TLR4-dependent inflammation in the PVN, thus decreasing sympathetic activity in rats with salt-induced hypertension. Conclusions: NKA α2 in the PVN elicits PKC γ/Rac1/NAD (P)H-dependent oxidative stress and TLR4/MyD88/NF-κB-induced inflammation in the PVN, thus increasing MAP and sympathetic activity during the development of salt-induced hypertension. Full article
Show Figures

Figure 1

13 pages, 1043 KiB  
Article
A Certificateless Authenticated Key Agreement Scheme for the Power IoT
by Wenchao Cui, Rui Cheng, Kehe Wu, Yuling Su and Yuqing Lei
Energies 2021, 14(19), 6317; https://doi.org/10.3390/en14196317 - 3 Oct 2021
Cited by 14 | Viewed by 2315
Abstract
Power Internet of Things (IoT) is the application of IoT technology in the field of power grid, which can better control all kinds of power equipment, power personnel and operating environment. However, access to mass terminals brings higher requirements for terminal authentication and [...] Read more.
Power Internet of Things (IoT) is the application of IoT technology in the field of power grid, which can better control all kinds of power equipment, power personnel and operating environment. However, access to mass terminals brings higher requirements for terminal authentication and key management for the power IoT. And the traditional public key infrastructure (PKI) and identity-based public key cryptography (IB-PKC) exist the problems of certificate management and key escrow. Therefore, the paper proposes a novel authenticated key agreement scheme based on the certificateless public key cryptography (CL-PKC) mechanism. In addition, the proposed scheme is proven with the improved extended Canetti-Krawczyk (eCK) security model. Finally, the implementation of the authenticated key agreement protocol is given based on the actual application requirement of the power IoT, and the analysis and comparison of the simulation demonstrates that the proposed scheme has higher efficiency and would be suitable for the power IoT. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

23 pages, 1365 KiB  
Article
Secure Encapsulation Schemes Using Key Recovery System in IoMT Environments
by Taehoon Kim, Wonbin Kim, Daehee Seo and Imyeong Lee
Sensors 2021, 21(10), 3474; https://doi.org/10.3390/s21103474 - 17 May 2021
Cited by 5 | Viewed by 2996
Abstract
Recently, as Internet of Things systems have been introduced to facilitate diagnosis and treatment in healthcare and medical environments, there are many issues concerning threats to these systems’ security. For instance, if a key used for encryption is lost or corrupted, then ciphertexts [...] Read more.
Recently, as Internet of Things systems have been introduced to facilitate diagnosis and treatment in healthcare and medical environments, there are many issues concerning threats to these systems’ security. For instance, if a key used for encryption is lost or corrupted, then ciphertexts produced with this key cannot be decrypted any more. Hence, this paper presents two schemes for key recovery systems that can recover the lost or the corrupted keys of an Internet of Medical Things. In our proposal, when the key used for the ciphertext is needed, this key is obtained from a Key Recovery Field present in the cyphertext. Thus, the recovered key will allow decrypting the ciphertext. However, there are threats to this proposal, including the case of the Key Recovery Field being forged or altered by a malicious user and the possibility of collusion among participating entities (Medical Institution, Key Recovery Auditor, and Key Recovery Center) which can interpret the Key Recovery Field and abuse their authority to gain access to the data. To prevent these threats, two schemes are proposed. The first one enhances the security of a multi-agent key recovery system by providing the Key Recovery Field with efficient integrity and non-repudiation functions, and the second one provides a proxy re-encryption function resistant to collusion attacks against the key recovery system. Full article
Show Figures

Figure 1

19 pages, 3598 KiB  
Article
A Lightweight Authentication and Key Agreement Schemes for IoT Environments
by Dae-Hwi Lee and Im-Yeong Lee
Sensors 2020, 20(18), 5350; https://doi.org/10.3390/s20185350 - 18 Sep 2020
Cited by 17 | Viewed by 5400
Abstract
In the Internet of Things (IoT) environment, more types of devices than ever before are connected to the internet to provide IoT services. Smart devices are becoming more intelligent and improving performance, but there are devices with little computing power and low storage [...] Read more.
In the Internet of Things (IoT) environment, more types of devices than ever before are connected to the internet to provide IoT services. Smart devices are becoming more intelligent and improving performance, but there are devices with little computing power and low storage capacity. Devices with limited resources will have difficulty applying existing public key cryptography systems to provide security. Therefore, communication protocols for various kinds of participating devices should be applicable in the IoT environment, and these protocols should be lightened for resources-restricted devices. Security is an essential element in the IoT environment, so for secure communication, it is necessary to perform authentication between the communication objects and to generate the session key. In this paper, we propose two kinds of lightweight authentication and key agreement schemes to enable fast and secure authentication among the objects participating in the IoT environment. The first scheme is an authentication and key agreement scheme with limited resource devices that can use the elliptic curve Qu–Vanstone (ECQV) implicit certificate to quickly agree on the session key. The second scheme is also an authentication and key agreement scheme that can be used more securely, but slower than first scheme using certificateless public key cryptography (CL-PKC). In addition, we compare and analyze existing schemes and propose new schemes to improve security requirements that were not satisfactory. Full article
(This article belongs to the Special Issue Intelligent and Adaptive Security in Internet of Things)
Show Figures

Figure 1

15 pages, 2520 KiB  
Article
Enhancement of β-Mannanase Production by Bacillus subtilis ATCC11774 through Optimization of Medium Composition
by Nor Amalina Binti Mahamad Norizan, Murni Halim, Joo Shun Tan, Sahar Abbasiliasi, Miskandar Mat Sahri, Firdaus Othman and Arbakariya Bin Ariff
Molecules 2020, 25(15), 3516; https://doi.org/10.3390/molecules25153516 - 31 Jul 2020
Cited by 20 | Viewed by 4649
Abstract
Palm kernel cake (PKC) has been largely produced in Malaysia as one of the cheap and abundant agro-waste by-products from the palm oil industry and it contains high fiber (mannan) content. The present study aimed to produce β-mannanase by Bacillus subtilis ATCC11774 [...] Read more.
Palm kernel cake (PKC) has been largely produced in Malaysia as one of the cheap and abundant agro-waste by-products from the palm oil industry and it contains high fiber (mannan) content. The present study aimed to produce β-mannanase by Bacillus subtilis ATCC11774 via optimization of the medium composition using palm kernel cake as substrate in semi-solid fermentation. The fermentation nutrients such as PKC, peptone, yeast extract, sodium chloride, magnesium sulphate (MgSO2), initial culture pH and temperature were screened using a Plackett-Burman design. The three most significant factors identified, PKC, peptone and NaCl, were further optimized using central composite design (CCD), a response surface methodology (RSM) approach, where yeast extract and MgSO2 were fixed as a constant factor. The maximum β-mannanase activity predicted by CCD under the optimum medium composition of 16.50 g/L PKC, 19.59 g/L peptone, 3.00 g/L yeast extract, 2.72 g/L NaCl and 0.2 g/L MgSO2 was 799 U/mL. The validated β-mannanase activity was 805.12 U/mL, which was close to the predicted β-mannanas activity. As a comparison, commercial media such as nutrient broth, M9 and Luria bertani were used for the production of β-mannanase with activities achieved at 204.16 ± 9.21 U/mL, 50.32 U/mL and 88.90 U/mL, respectively. The optimized PKC fermentation medium was four times higher than nutrient broth. Hence, it could be a potential fermentation substrate for the production of β-mannanase activity by Bacillus subtilis ATCC11774. Full article
(This article belongs to the Special Issue Natural Secondary Metabolites)
Show Figures

Figure 1

19 pages, 3253 KiB  
Article
A Certificateless Aggregate Arbitrated Signature Scheme for IoT Environments
by Dae-Hwi Lee, Kangbin Yim and Im-Yeong Lee
Sensors 2020, 20(14), 3983; https://doi.org/10.3390/s20143983 - 17 Jul 2020
Cited by 13 | Viewed by 3356
Abstract
The Internet of Things (IoT) environment consists of numerous devices. In general, IoT devices communicate with each other to exchange data, or connect to the Internet through a gateway to provide IoT services. Most IoT devices participating in the IoT service are lightweight [...] Read more.
The Internet of Things (IoT) environment consists of numerous devices. In general, IoT devices communicate with each other to exchange data, or connect to the Internet through a gateway to provide IoT services. Most IoT devices participating in the IoT service are lightweight devices, in which the existing cryptographic algorithm cannot be applied to provide security, so a more lightweight security algorithm must be applied. Cryptographic technologies to lighten and provide efficiency for IoT environments are currently being studied a lot. In particular, it is necessary to provide efficiency for computation at a gateway, a point where many devices are connected. Additionally, as many devices are connected, data authentication and integrity should be fully considered at the same time, and thus digital signature schemes have been proposed. Among the recently studied signature algorithms, the certificateless signature (CLS) based on certificateless public key cryptography (CL-PKC) provides efficiency compared to existing public key-based signatures. However, in CLS, security threats, such as public key replacement attacks and signature forgery by the malicious key generation center (KGC), may occur. In this paper, we propose a new signature scheme using CL-PKC in generating and verifying the signature of a message in an IoT environment. The proposed scheme is a certificateless aggregate arbitrated signature, and the gateway aggregates the signatures of messages generated by the device group to reduce the size of the entire signature. In addition, it is designed to be safe from security threats by solving the problems caused by public key replacement attacks and malicious KGC, and adding arbitrated signatures of the gateway to strengthen non-repudiation. Full article
Show Figures

Figure 1

17 pages, 2353 KiB  
Article
Activity to Breast Cancer Cell Lines of Different Malignancy and Predicted Interaction with Protein Kinase C Isoforms of Royleanones
by Vera M. S. Isca, Milan Sencanski, Nenad Filipovic, Daniel J. V. A. Dos Santos, Ana Čipak Gašparović, Lucília Saraíva, Carlos A. M. Afonso, Patrícia Rijo and Alfonso T. García-Sosa
Int. J. Mol. Sci. 2020, 21(10), 3671; https://doi.org/10.3390/ijms21103671 - 23 May 2020
Cited by 10 | Viewed by 4792
Abstract
Plants have been used for centuries to treat several illnesses. The Plectranthus genus has a vast variety of species that has allowed the isolation of cytotoxic compounds with notable activities. The abietane diterpenes 6,7-dehydroroyleanone (DeRoy, 1), 7α-acetoxy-6β-hydroxyroyleanone (Roy, 2), and Parvifloron [...] Read more.
Plants have been used for centuries to treat several illnesses. The Plectranthus genus has a vast variety of species that has allowed the isolation of cytotoxic compounds with notable activities. The abietane diterpenes 6,7-dehydroroyleanone (DeRoy, 1), 7α-acetoxy-6β-hydroxyroyleanone (Roy, 2), and Parvifloron D (ParvD, 3) were obtained from Plectranthus spp. and showed promising biological activities, such as cytotoxicity. The inhibitory effects of the different natural abietanes (1-3) were compared in MFC7, SkBr3, and SUM159 cell lines, as well as SUM159 grown in cancer stem cell-inducing conditions. Based on the royleanones’ bioactivity, the derivatives RoyBz (4), RoyBzCl (5), RoyPr2 (6), and DihydroxyRoy (7), previously obtained from 2, were selected for further studies. Protein kinases C (PKCs) are involved in several carcinogenic processes. Thus, PKCs are potential targets for cancer therapy. To date, the portfolio of available PKC modulators remains very limited due to the difficulty of designing isozyme-selective PKC modulators. As such, molecular docking was used to evaluate royleanones 1-6 as predicted isozyme-selective PKC binders. Subtle changes in the binding site of each PKC isoform change the predicted interaction profiles of the ligands. Subtle changes in royleanone substitution patterns, such as a double substitution only with non-substituted phenyls, or hydroxybenzoate at position four that flips the binding mode of ParvD (3), can increase the predicted interactions in certain PKC subtypes. Full article
(This article belongs to the Collection Computational Studies of Biomolecules)
Show Figures

Graphical abstract

18 pages, 2718 KiB  
Article
Fractalkine Regulates HEC-1A/JEG-3 Interaction by Influencing the Expression of Implantation-Related Genes in an In Vitro Co-Culture Model
by Ramóna Pap, Gergely Montskó, Gergely Jánosa, Katalin Sipos, Gábor L. Kovács and Edina Pandur
Int. J. Mol. Sci. 2020, 21(9), 3175; https://doi.org/10.3390/ijms21093175 - 30 Apr 2020
Cited by 13 | Viewed by 3615
Abstract
Embryo implantation is a complex process regulated by a network of biological molecules. Recently, it has been described that fractalkine (CX3CL1, FKN) might have an important role in the feto–maternal interaction during gestation since the trophoblast cells express fractalkine receptor (CX3CR1) and the [...] Read more.
Embryo implantation is a complex process regulated by a network of biological molecules. Recently, it has been described that fractalkine (CX3CL1, FKN) might have an important role in the feto–maternal interaction during gestation since the trophoblast cells express fractalkine receptor (CX3CR1) and the endometrium cells secrete fractalkine. CX3CR1 controls three major signalling pathways, PLC-PKC pathway, PI3K/AKT/NFκB pathway and Ras-mitogen-activated protein kinases (MAPK) pathways regulating proliferation, growth, migration and apoptosis. In this study, we focused on the molecular mechanisms of FKN treatment influencing the expression of implantation-related genes in trophoblast cells (JEG-3) both in mono-and in co-culture models. Our results reveal that FKN acted in a concentration and time dependent manner on JEG-3 cells. FKN seemed to operate as a positive regulator of implantation via changing the action of progesterone receptor (PR), activin receptor and bone morphogenetic protein receptor (BMPR). FKN modified also the expression of matrix metalloproteinase 2 and 9 controlling invasion. The presence of HEC-1A endometrial cells in the co-culture contributed to the effect of fractalkine on JEG-3 cells regulating implantation. The results suggest that FKN may contribute to the successful attachment and implantation of embryo. Full article
(This article belongs to the Special Issue Embryo Implantation and Placental Development)
Show Figures

Figure 1

30 pages, 8908 KiB  
Article
Rosmarinic Acid Attenuates Cadmium-Induced Nephrotoxicity via Inhibition of Oxidative Stress, Apoptosis, Inflammation and Fibrosis
by Swarnalata Joardar, Saikat Dewanjee, Shovonlal Bhowmick, Tarun K. Dua, Sonjit Das, Achintya Saha and Vincenzo De Feo
Int. J. Mol. Sci. 2019, 20(8), 2027; https://doi.org/10.3390/ijms20082027 - 24 Apr 2019
Cited by 104 | Viewed by 5951
Abstract
The present investigation was executed to reveal the protective mechanism of rosmarinic acid (RA) against cadmium (Cd)-induced nephrotoxicity. RA exhibited a concentration-dependent anti-apoptotic effect against CdCl2 in isolated mouse proximal tubular epithelial cells. Cd treatment significantly (p < 0.01) imparted oxidative [...] Read more.
The present investigation was executed to reveal the protective mechanism of rosmarinic acid (RA) against cadmium (Cd)-induced nephrotoxicity. RA exhibited a concentration-dependent anti-apoptotic effect against CdCl2 in isolated mouse proximal tubular epithelial cells. Cd treatment significantly (p < 0.01) imparted oxidative stress to the renal cells via excessive ROS production, triggering NO level, NADPH oxidase activation, and impairment of cellular redox defense system. Cd-mediated oxidative stress significantly (p < 0.01) endorsed apoptosis to the murine kidney cells by triggering NF-κB/PKC-δ/TNFR2 activation. In addition, CdCl2 induced renal fibrosis by triggering TGF-β1/SMAD3/α-SMA/collagen signaling within renal cells. On the other hand, RA significantly (p < 0.05–0.01) attenuated Cd-provoked oxidative stress and associated pathological signal transduction in murine renal cells. RA treatment also could significantly (p < 0.05–0.01) reciprocate Cd-mediated pathological changes in blood and urine parameters in mice. In addition, histological data supported the pharmacological findings. In silico chemometric analyses predicted the possible interactions between RA and different signal proteins and anticipated drug-likeness characteristics of RA. Hence, RA can potentially be applied as a therapeutic agent to treat Cd-mediated nephrotoxicity in future. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Graphical abstract

16 pages, 3924 KiB  
Article
New Therapeutic Agent against Arterial Thrombosis: An Iridium(III)-Derived Organometallic Compound
by Chih-Wei Hsia, Marappan Velusamy, Jeng-Ting Tsao, Chih-Hsuan Hsia, Duen-Suey Chou, Thanasekaran Jayakumar, Lin-Wen Lee, Jiun-Yi Li and Joen-Rong Sheu
Int. J. Mol. Sci. 2017, 18(12), 2616; https://doi.org/10.3390/ijms18122616 - 5 Dec 2017
Cited by 6 | Viewed by 4215
Abstract
Platelet activation plays a major role in cardio and cerebrovascular diseases, and cancer progression. Disruption of platelet activation represents an attractive therapeutic target for reducing the bidirectional cross talk between platelets and tumor cells. Platinum (Pt) compounds have been used for treating cancer. [...] Read more.
Platelet activation plays a major role in cardio and cerebrovascular diseases, and cancer progression. Disruption of platelet activation represents an attractive therapeutic target for reducing the bidirectional cross talk between platelets and tumor cells. Platinum (Pt) compounds have been used for treating cancer. Hence, replacing Pt with iridium (Ir) is considered a potential alternative. We recently developed an Ir(III)-derived complex, [Ir(Cp*)1-(2-pyridyl)-3-(2-hydroxyphenyl)imidazo[1,5-a]pyridine Cl]BF4 (Ir-11), which exhibited strong antiplatelet activity; hence, we assessed the therapeutic potential of Ir-11 against arterial thrombosis. In collagen-activated platelets, Ir-11 inhibited platelet aggregation, adenosine triphosphate (ATP) release, intracellular Ca2+ mobilization, P-selectin expression, and OH· formation, as well as the phosphorylation of phospholipase Cγ2 (PLCγ2), protein kinase C (PKC), mitogen-activated protein kinases (MAPKs), and Akt. Neither the adenylate cyclase inhibitor nor the guanylate cyclase inhibitor reversed the Ir-11-mediated antiplatelet effects. In experimental mice, Ir-11 prolonged the bleeding time and reduced mortality associated with acute pulmonary thromboembolism. Ir-11 plays a crucial role by inhibiting platelet activation through the inhibition of the PLCγ2–PKC cascade, and the subsequent suppression of Akt and MAPK activation, ultimately inhibiting platelet aggregation. Therefore, Ir-11 can be considered a new therapeutic agent against either arterial thrombosis or the bidirectional cross talk between platelets and tumor cells. Full article
(This article belongs to the Special Issue Molecular Pharmacology and Pathology of Strokes)
Show Figures

Graphical abstract

15 pages, 1189 KiB  
Article
Two Sulfur Glycoside Compounds Isolated from Lepidium apetalum Willd Protect NRK52e Cells against Hypertonic-Induced Adhesion and Inflammation by Suppressing the MAPK Signaling Pathway and RAAS
by Peipei Yuan, Xiaoke Zheng, Meng Li, Yingying Ke, Yang Fu, Qi Zhang, Xiaolan Wang and Weisheng Feng
Molecules 2017, 22(11), 1956; https://doi.org/10.3390/molecules22111956 - 12 Nov 2017
Cited by 16 | Viewed by 7081
Abstract
Lepidium apetalum Willd has been used to reduce edema and promote urination. Cis-desulfoglucotropaeolin (cis-DG) and trans-desulfoglucotropaeolin (trans-DG) were isolated from Lepidium apetalum Willd, and caused a significant increase in cell viability in a hypertonic model in NRK52e [...] Read more.
Lepidium apetalum Willd has been used to reduce edema and promote urination. Cis-desulfoglucotropaeolin (cis-DG) and trans-desulfoglucotropaeolin (trans-DG) were isolated from Lepidium apetalum Willd, and caused a significant increase in cell viability in a hypertonic model in NRK52e cells. In the hypertonic model, cis-DG and trans-DG significantly promoted the cell viability of NRK52e cells and inhibited the elevation of Na+ in the supernatant, inhibited the renin-angiotensin-aldosterone (RAAS) system, significantly reduced the levels of angiotensin II (Ang II) and aldosterone (ALD), and lowered aquaporin-2 (AQP2) and Na+–K+ ATP content in renal medulla. After treatment with cis-DG and trans-DG, expression of calcineurin (CAN) and Ca/calmodulin-dependent protein kinase II (CaMK II) was decreased in renal tissue and Ca2+ influx was inhibited, thereby reducing the secretion of transforming growth factor-β (TGFβ), reversing the increase in adhesion and inflammatory factor E-selectin and monocyte chemotactic protein 1 (MCP-1) induced by high NaCl, while reducing oxidative stress status and decreasing the expression of cyclooxygenase-2 (COX2). Furthermore, inhibition of protein kinase C (PKC) expression also contributed to these improvements. The cis-DG and trans-DG reduced the expression of p-p44/42 MAPK, p-JNK and p-p38, inhibited the phosphorylation of the MAPK signaling pathway in NRN52e cells induced by high salt, decreased the overexpression of p-p38 and p-HSP27, and inhibited the overactivation of the p38-MAPK signaling pathway, suggesting that the p38-MAPK pathway may play a vital role in the hypertonic-induced adhesion and inflammatory response. From the results of this study, it can be concluded that the mechanism of cis-DG and trans-DG may mainly be through inhibiting the p38-MAPK signaling pathway, inhibiting the excessive activation of the RAAS system, and thereby reducing adhesion and inflammatory factors. Full article
(This article belongs to the Collection Bioactive Compounds)
Show Figures

Figure 1

Back to TopTop