Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = CK2α isoforms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5084 KB  
Article
Crystallographic Fragment Screening with CK2α’, an Isoform of Human Protein Kinase CK2 Catalytic Subunit, and Its Use to Obtain a CK2α’/Heparin Complex Structure
by Christian Werner, Tatjana Barthel, Hugo Harasimowicz, Christelle Marminon, Manfred S. Weiss, Marc Le Borgne and Karsten Niefind
Kinases Phosphatases 2026, 4(1), 1; https://doi.org/10.3390/kinasesphosphatases4010001 - 4 Jan 2026
Viewed by 208
Abstract
CK2α and CK2α’, two paralogous members of the human kinome, are catalytic subunits of protein kinase CK2. Together with the regulatory subunit CK2β, they form heterotetrameric holoenzymes. CK2 is the subject of efforts to develop effective and selective inhibitors. For this, secondary binding [...] Read more.
CK2α and CK2α’, two paralogous members of the human kinome, are catalytic subunits of protein kinase CK2. Together with the regulatory subunit CK2β, they form heterotetrameric holoenzymes. CK2 is the subject of efforts to develop effective and selective inhibitors. For this, secondary binding sites remote from the canonical ATP/GTP cavity are critical. A crystallographic fragment screening with CK2α’ crystals and an established molecular fragment collection was performed to identify new ligands at known or novel sites. It resulted in fourteen CK2α’/fragment structures. Five fragments were found at the CK2β interface of CK2α’ and three fragments at the established αD pocket, which exhibits subtle differences between CK2α and CK2α’; comparative co-crystallisations with CK2α showed that one of them binds to the αD pocket of CK2α’ exclusively. No fragments bound at the substrate-binding region of CK2α’, but a CK2α’ structure with dp10, a decameric section of the substrate-competitive inhibitor heparin, and the indenoindole-type ATP-competitive inhibitor 4w was determined. A comparison with a published CK2α/dp10 structure revealed features consistent with reports about substrate specificity differences between the isoenzymes: dp10 binds to CK2α’ and CK2α with opposite strand orientations, and the local conformations of the isoenzymes in the helix αD region are significantly different. Full article
(This article belongs to the Special Issue Past, Present and Future of Protein Kinase CK2 Research—2nd Edition)
Show Figures

Graphical abstract

27 pages, 2922 KB  
Article
Design and Synthesis of Novel Candidate CK1δ Proteolysis Targeting Chimeras (PROTACs)
by Malte Arnold, Temi Thompson, Lorraine Glennie, Mattes Hollnagel, Gopal Sapkota and Christian Peifer
Molecules 2025, 30(22), 4452; https://doi.org/10.3390/molecules30224452 - 18 Nov 2025
Viewed by 988
Abstract
The dysregulation of CK1 isoforms is linked to various types of diseases, including neurodegeneration and different types of neoplasia such as colon, pancreatic, breast, and ovarian cancer. For CK1 isoforms, a plethora of effective small molecule inhibitors are available. However, only a few [...] Read more.
The dysregulation of CK1 isoforms is linked to various types of diseases, including neurodegeneration and different types of neoplasia such as colon, pancreatic, breast, and ovarian cancer. For CK1 isoforms, a plethora of effective small molecule inhibitors are available. However, only a few degraders of CK1α and, more recently, proteolysis targeting chimeras (PROTACs) for CK1δ/CK1ε have been reported. In this study, we applied the PROTAC concept by harnessing molecular modelling to design and synthesize a series of candidate CK1δ-targeting PROTACs based on a highly specific and potent benzothiazole-based CK1δ inhibitor that we previously developed in our lab. In the present study, we established a modular synthetic platform to systematically generate a set of PROTAC degrader candidates consisting of the CK1δ-specific inhibitor scaffold, alkyl and PEG linker motifs with various lengths, and Cereblon (CRBN)-engaging pomalidomide and thalidomide derivatives as E3 ligase binders. We demonstrate that several PROTACs degrade CK1δ/ε in various cells. The most potent PROTAC P1d inhibits the phosphorylation of downstream substrates through CK1δ/ε degradation. We establish the requirement of CUL4ACRBN and the proteasome for the P1d-mediated degradation of CK1δ/ε. Full article
Show Figures

Graphical abstract

26 pages, 6732 KB  
Review
Casein Kinase 1α—A Target for Prostate Cancer Therapy?
by Emma Lishman-Walker and Kelly Coffey
Cancers 2024, 16(13), 2436; https://doi.org/10.3390/cancers16132436 - 2 Jul 2024
Cited by 2 | Viewed by 5211
Abstract
The androgen receptor (AR) is a key driver of prostate cancer (PCa) and, as such, current mainstay treatments target this molecule. However, resistance commonly arises to these therapies and, therefore, additional targets must be evaluated to improve patient outcomes. Consequently, alternative approaches for [...] Read more.
The androgen receptor (AR) is a key driver of prostate cancer (PCa) and, as such, current mainstay treatments target this molecule. However, resistance commonly arises to these therapies and, therefore, additional targets must be evaluated to improve patient outcomes. Consequently, alternative approaches for indirectly targeting the AR are sought. AR crosstalk with other signalling pathways, including several protein kinase signalling cascades, has been identified as a potential route to combat therapy resistance. The casein kinase 1 (CK1) family of protein kinases phosphorylate a multitude of substrates, allowing them to regulate a diverse range of pathways from the cell cycle to DNA damage repair. As well as its role in several signalling pathways that are de-regulated in PCa, mutational data suggest its potential to promote prostate carcinogenesis. CK1α is one isoform predicted to regulate AR activity via phosphorylation and has been implicated in the progression of several other cancer types. In this review, we explore how the normal biological function of CK1 is de-regulated in cancer, the impact on signalling pathways and how this contributes towards prostate tumourigenesis, with a particular focus on the CK1α isoform as a novel therapeutic target for PCa. Full article
(This article belongs to the Collection Prostate Cancer—from Molecular Mechanisms to Clinical Care)
Show Figures

Figure 1

12 pages, 3196 KB  
Article
Selection and Validation of Reference Genes in Sudan Grass (Sorghum sudanense (Piper) Stapf) under Various Abiotic Stresses by qRT-PCR
by Fangyan Wang, Peng Li, Qiuxu Liu, Gang Nie, Yongqun Zhu and Xinquan Zhang
Genes 2024, 15(2), 210; https://doi.org/10.3390/genes15020210 - 6 Feb 2024
Cited by 7 | Viewed by 1839
Abstract
Quantitative reverse transcription PCR (qRT-PCR) can screen applicable reference genes of species, and reference genes can be used to reduce experimental errors. Sudan grass (Sorghum sudanense (Piper) Stapf) is a high-yield, abiotic-tolerant annual high-quality forage with a wide range of uses. However, [...] Read more.
Quantitative reverse transcription PCR (qRT-PCR) can screen applicable reference genes of species, and reference genes can be used to reduce experimental errors. Sudan grass (Sorghum sudanense (Piper) Stapf) is a high-yield, abiotic-tolerant annual high-quality forage with a wide range of uses. However, no studies have reported reference genes suitable for Sudan grass. Therefore, we found eight candidate reference genes, including UBQ10, HIS3, UBQ9, Isoform0012931, PP2A, ACP2, eIF4α, and Actin, under salt stress (NaCl), drought stress (DR), acid aluminum stress (AlCl3), and methyl jasmonate treatment (MeJA). By using geNorm, NormFinder, BestKeeper, and RefFinder, we ranked eight reference genes on the basis of their expression stabilities. The results indicated that the best reference gene was PP2A under all treatments. eIF4α can be used in CK, MeJA, NaCl, and DR. HIS3 can serve as the best reference gene in AlCl3. Two target genes (Isoform0007606 and Isoform0002387) belong to drought-stress-response genes, and they are highly expressed in Sudan grass according to transcriptome data. They were used to verify eight candidate reference genes under drought stress. The expression trends of the two most stable reference genes were similar, but the trend in expression for Actin showed a significant difference. The reference genes we screened provided valuable guidance for future research on Sudan grass. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

16 pages, 2257 KB  
Review
Protein Kinase CK2α’, More than a Backup of CK2α
by Mathias Montenarh and Claudia Götz
Cells 2023, 12(24), 2834; https://doi.org/10.3390/cells12242834 - 14 Dec 2023
Cited by 9 | Viewed by 2399
Abstract
The serine/threonine protein kinase CK2 is implicated in the regulation of fundamental processes in eukaryotic cells. CK2 consists of two catalytic α or α’ isoforms and two regulatory CK2β subunits. These three proteins exist in a free form, bound to other cellular proteins, [...] Read more.
The serine/threonine protein kinase CK2 is implicated in the regulation of fundamental processes in eukaryotic cells. CK2 consists of two catalytic α or α’ isoforms and two regulatory CK2β subunits. These three proteins exist in a free form, bound to other cellular proteins, as tetrameric holoenzymes composed of CK2α22, CK2αα’/β2, or CK2α’22 as well as in higher molecular forms of the tetramers. The catalytic domains of CK2α and CK2α’ share a 90% identity. As CK2α contains a unique C-terminal sequence. Both proteins function as protein kinases. These properties raised the question of whether both isoforms are just backups of each other or whether they are regulated differently and may then function in an isoform-specific manner. The present review provides observations that the regulation of both CK2α isoforms is partly different concerning the subcellular localization, post-translational modifications, and aggregation. Up to now, there are only a few isoform-specific cellular binding partners. The expression of both CK2α isoforms seems to vary in different cell lines, in tissues, in the cell cycle, and with differentiation. There are different reports about the expression and the functions of the CK2α isoforms in tumor cells and tissues. In many cases, a cell-type-specific expression and function is known, which raises the question about cell-specific regulators of both isoforms. Another future challenge is the identification or design of CK2α’-specific inhibitors. Full article
Show Figures

Figure 1

17 pages, 4062 KB  
Article
Discovery and Exploration of Protein Kinase CK2 Binding Sites Using CK2α′Cys336Ser as an Exquisite Crystallographic Tool
by Christian Werner, Dirk Lindenblatt, Kaido Viht, Asko Uri and Karsten Niefind
Kinases Phosphatases 2023, 1(4), 306-322; https://doi.org/10.3390/kinasesphosphatases1040018 - 25 Nov 2023
Cited by 8 | Viewed by 2967
Abstract
The structural knowledge about protein kinase CK2 is dominated by crystal structures of human CK2α, the catalytic subunit of human CK2, and the product of the CSNK2A1 gene. In contrast, far fewer structures of CK2α′, its paralogous isoform and the product of the [...] Read more.
The structural knowledge about protein kinase CK2 is dominated by crystal structures of human CK2α, the catalytic subunit of human CK2, and the product of the CSNK2A1 gene. In contrast, far fewer structures of CK2α′, its paralogous isoform and the product of the CSNK2A2 gene, have been published. However, according to a PDB survey, CK2α′ is the superior alternative for crystallographic studies because of the inherent potential of the single mutant CK2α′Cys336Ser to provide crystal structures with atomic resolution. In particular, a triclinic crystal form of CK2α′Cys336Ser is a robust tool to determine high-quality enzyme-ligand complex structures via soaking. In this work, further high-resolution CK2α′Cys336Ser structures in complex with selected ligands emphasizing this trend are described. In one of these structures, the “N-terminal segment site”, a small-molecule binding region never found in any eukaryotic protein kinase and holding the potential for the development of highly selective substrate-competitive CK2 inhibitors, was discovered. In order to also address the binding site for the non-catalytic subunit CK2β, which is inaccessible in these triclinic CK2α′Cys336Ser crystals for small molecules, a reliable path to a promising monoclinic crystal form of CK2α′Cys336Ser is presented. In summary, the quality of CK2α′Cys336Ser as an exquisite crystallographic tool is solidified. Full article
(This article belongs to the Special Issue Past, Present and Future of Protein Kinase CK2 Research)
Show Figures

Figure 1

15 pages, 3812 KB  
Article
Phosphorylation of Thymidylate Synthase and Dihydrofolate Reductase in Cancer Cells and the Effect of CK2α Silencing
by Patrycja Wińska, Anna Sobiepanek, Katarzyna Pawlak, Monika Staniszewska and Joanna Cieśla
Int. J. Mol. Sci. 2023, 24(3), 3023; https://doi.org/10.3390/ijms24033023 - 3 Feb 2023
Cited by 1 | Viewed by 3458
Abstract
Our previous research suggests an important regulatory role of CK2-mediated phosphorylation of enzymes involved in the thymidylate biosynthesis cycle, i.e., thymidylate synthase (TS), dihydrofolate reductase (DHFR), and serine hydroxymethyltransferase (SHMT). The aim of this study was to show whether silencing of the CK2α [...] Read more.
Our previous research suggests an important regulatory role of CK2-mediated phosphorylation of enzymes involved in the thymidylate biosynthesis cycle, i.e., thymidylate synthase (TS), dihydrofolate reductase (DHFR), and serine hydroxymethyltransferase (SHMT). The aim of this study was to show whether silencing of the CK2α gene affects TS and DHFR expression in A-549 cells. Additionally, we attempted to identify the endogenous kinases that phosphorylate TS and DHFR in CCRF-CEM and A-549 cells. We used immunodetection, immunofluorescence/confocal analyses, reverse transcription–quantitative polymerase chain reaction (RT-qPCR), in-gel kinase assay, and mass spectrometry analysis. Our results demonstrate that silencing of the CK2α gene in lung adenocarcinoma cells significantly increases both TS and DHFR expression and affects their cellular distribution. Additionally, we show for the first time that both TS and DHFR are very likely phosphorylated by endogenous CK2 in two types of cancer cells, i.e., acute lymphoblastic leukaemia and lung adenocarcinoma. Moreover, our studies indicate that DHFR is phosphorylated intracellularly by CK2 to a greater extent in leukaemia cells than in lung adenocarcinoma cells. Interestingly, in-gel kinase assay results indicate that the CK2α’ isoform was more active than the CK2α subunit. Our results confirm the previous studies concerning the physiological relevance of CK2-mediated phosphorylation of TS and DHFR. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

20 pages, 41845 KB  
Article
ROCK2-Specific Inhibitor KD025 Suppresses Adipocyte Differentiation by Inhibiting Casein Kinase 2
by Nhu Nguyen Quynh Tran and Kwang-Hoon Chun
Molecules 2021, 26(16), 4747; https://doi.org/10.3390/molecules26164747 - 5 Aug 2021
Cited by 16 | Viewed by 4765
Abstract
KD025, a ROCK2 isoform-specific inhibitor, has an anti-adipogenic activity which is not mediated by ROCK2 inhibition. To identify the target, we searched binding targets of KD025 by using the KINOMEscanTM screening platform, and we identified casein kinase 2 (CK2) as a novel [...] Read more.
KD025, a ROCK2 isoform-specific inhibitor, has an anti-adipogenic activity which is not mediated by ROCK2 inhibition. To identify the target, we searched binding targets of KD025 by using the KINOMEscanTM screening platform, and we identified casein kinase 2 (CK2) as a novel target. KD025 showed comparable binding affinity to CK2α (Kd = 128 nM). By contrast, CK2 inhibitor CX-4945 and ROCK inhibitor fasudil did not show such cross-reactivity. In addition, KD025 effectively inhibited CK2 at a nanomolar concentration (IC50 = 50 nM). We examined if the inhibitory effect of KD025 on adipocyte differentiation is through the inhibition of CK2. Both CX-4945 and KD025 suppressed the generation of lipid droplets and the expression of proadipogenic genes Pparg and Cebpa in 3T3-L1 cells during adipocyte differentiation. Fasudil exerted no significant effect on the quantity of lipid droplets, but another ROCK inhibitor Y-27632 increased the expression of Pparg and Cebpa. Both CX-4945 and KD025 acted specifically in the middle stage (days 1–3) but were ineffective when treated at days 0–1 or the late stages, indicating that CX-4945 and KD025 may regulate the same target, CK2. The mRNA and protein levels of CK2α and CK2β generally decreased in 3T3-L1 cells at day 2 but recovered thereafter. Other well-known CK2 inhibitors DMAT and quinalizarin inhibited effectively the differentiation of 3T3-L1 cells. Taken together, the results of this study confirmed that KD025 inhibits ROCK2 and CK2, and that the inhibitory effect on adipocyte differentiation is through the inhibition of CK2. Full article
(This article belongs to the Special Issue New Advances in the Development of Kinase Inhibitors)
Show Figures

Graphical abstract

34 pages, 15246 KB  
Article
Repeated Administration of Clinically Relevant Doses of the Prescription Opioids Tramadol and Tapentadol Causes Lung, Cardiac, and Brain Toxicity in Wistar Rats
by Joana Barbosa, Juliana Faria, Fernanda Garcez, Sandra Leal, Luís Pedro Afonso, Ana Vanessa Nascimento, Roxana Moreira, Frederico C. Pereira, Odília Queirós, Félix Carvalho and Ricardo Jorge Dinis-Oliveira
Pharmaceuticals 2021, 14(2), 97; https://doi.org/10.3390/ph14020097 - 27 Jan 2021
Cited by 23 | Viewed by 8494
Abstract
Tramadol and tapentadol, two structurally related synthetic opioid analgesics, are widely prescribed due to the enhanced therapeutic profiles resulting from the synergistic combination between μ-opioid receptor (MOR) activation and monoamine reuptake inhibition. However, the number of adverse reactions has been growing along with [...] Read more.
Tramadol and tapentadol, two structurally related synthetic opioid analgesics, are widely prescribed due to the enhanced therapeutic profiles resulting from the synergistic combination between μ-opioid receptor (MOR) activation and monoamine reuptake inhibition. However, the number of adverse reactions has been growing along with their increasing use and misuse. The potential toxicological mechanisms for these drugs are not completely understood, especially for tapentadol, owing to its shorter market history. Therefore, in the present study, we aimed to comparatively assess the putative lung, cardiac, and brain cortex toxicological damage elicited by the repeated exposure to therapeutic doses of both prescription opioids. To this purpose, male Wistar rats were intraperitoneally injected with single daily doses of 10, 25, and 50 mg/kg tramadol or tapentadol, corresponding to a standard analgesic dose, an intermediate dose, and the maximum recommended daily dose, respectively, for 14 consecutive days. Such treatment was found to lead mainly to lipid peroxidation and inflammation in lung and brain cortex tissues, as shown through augmented thiobarbituric acid reactive substances (TBARS), as well as to increased serum inflammation biomarkers, such as C reactive protein (CRP) and tumor necrosis factor-α (TNF-α). Cardiomyocyte integrity was also shown to be affected, since both opioids incremented serum lactate dehydrogenase (LDH) and α-hydroxybutyrate dehydrogenase (α-HBDH) activities, while tapentadol was associated with increased serum creatine kinase muscle brain (CK-MB) isoform activity. In turn, the analysis of metabolic parameters in brain cortex tissue revealed increased lactate concentration upon exposure to both drugs, as well as augmented LDH and creatine kinase (CK) activities following tapentadol treatment. In addition, pneumo- and cardiotoxicity biomarkers were quantified at the gene level, while neurotoxicity biomarkers were quantified both at the gene and protein levels; changes in their expression correlate with the oxidative stress, inflammatory, metabolic, and histopathological changes that were detected. Hematoxylin and eosin (H & E) staining revealed several histopathological alterations, including alveolar collapse and destruction in lung sections, inflammatory infiltrates, altered cardiomyocytes and loss of striation in heart sections, degenerated neurons, and accumulation of glial and microglial cells in brain cortex sections. In turn, Masson’s trichrome staining confirmed fibrous tissue deposition in cardiac tissue. Taken as a whole, these results show that the repeated administration of both prescription opioids extends the dose range for which toxicological injury is observed to lower therapeutic doses. They also reinforce previous assumptions that tramadol and tapentadol are not devoid of toxicological risk even at clinical doses. Full article
Show Figures

Graphical abstract

16 pages, 8355 KB  
Article
Contribution of the CK2 Catalytic Isoforms α and α’ to the Glycolytic Phenotype of Tumor Cells
by Francesca Zonta, Christian Borgo, Camila Paz Quezada Meza, Ionica Masgras, Andrea Rasola, Mauro Salvi, Lorenzo A. Pinna and Maria Ruzzene
Cells 2021, 10(1), 181; https://doi.org/10.3390/cells10010181 - 18 Jan 2021
Cited by 11 | Viewed by 3950
Abstract
CK2 is a Ser/Thr protein kinase overexpressed in many cancers. It is usually present in cells as a tetrameric enzyme, composed of two catalytic (α or α’) and two regulatory (β) subunits, but it is active also in its monomeric form, and the [...] Read more.
CK2 is a Ser/Thr protein kinase overexpressed in many cancers. It is usually present in cells as a tetrameric enzyme, composed of two catalytic (α or α’) and two regulatory (β) subunits, but it is active also in its monomeric form, and the specific role of the different isoforms is largely unknown. CK2 phosphorylates several substrates related to the uncontrolled proliferation, motility, and survival of cancer cells. As a consequence, tumor cells are addicted to CK2, relying on its activity more than healthy cells for their life, and exploiting it for developing multiple oncological hallmarks. However, little is known about CK2 contribution to the metabolic rewiring of cancer cells. With this study we aimed at shedding some light on it, especially focusing on the CK2 role in the glycolytic onco-phenotype. By analyzing neuroblastoma and osteosarcoma cell lines depleted of either one (α) or the other (α’) CK2 catalytic subunit, we also aimed at disclosing possible pro-tumor functions which are specific of a CK2 isoform. Our results suggest that both CK2 α and α’ contribute to cell proliferation, survival and tumorigenicity. The analyzed metabolic features disclosed a role of CK2 in tumor metabolism, and suggest prominent functions for CK2 α isoform. Results were also confirmed by CK2 pharmacological inhibition. Overall, our study provides new information on the mechanism of cancer cells addiction to CK2 and on its isoform-specific functions, with fundamental implications for improving future therapeutic strategies based on CK2 targeting. Full article
Show Figures

Figure 1

19 pages, 887 KB  
Review
Targeting Casein Kinase 1 (CK1) in Hematological Cancers
by Pavlína Janovská, Emmanuel Normant, Hari Miskin and Vítězslav Bryja
Int. J. Mol. Sci. 2020, 21(23), 9026; https://doi.org/10.3390/ijms21239026 - 27 Nov 2020
Cited by 58 | Viewed by 10169
Abstract
The casein kinase 1 enzymes (CK1) form a family of serine/threonine kinases with seven CK1 isoforms identified in humans. The most important substrates of CK1 kinases are proteins that act in the regulatory nodes essential for tumorigenesis of hematological malignancies. Among those, the [...] Read more.
The casein kinase 1 enzymes (CK1) form a family of serine/threonine kinases with seven CK1 isoforms identified in humans. The most important substrates of CK1 kinases are proteins that act in the regulatory nodes essential for tumorigenesis of hematological malignancies. Among those, the most important are the functions of CK1s in the regulation of Wnt pathways, cell proliferation, apoptosis and autophagy. In this review we summarize the recent developments in the understanding of biology and therapeutic potential of the inhibition of CK1 isoforms in the pathogenesis of chronic lymphocytic leukemia (CLL), other non-Hodgkin lymphomas (NHL), myelodysplastic syndrome (MDS), acute myeloid leukemia (AML) and multiple myeloma (MM). CK1δ/ε inhibitors block CLL development in preclinical models via inhibition of WNT-5A/ROR1-driven non-canonical Wnt pathway. While no selective CK1 inhibitors have reached clinical stage to date, one dual PI3Kδ and CK1ε inhibitor, umbralisib, is currently in clinical trials for CLL and NHL patients. In MDS, AML and MM, inhibition of CK1α, acting via activation of p53 pathway, showed promising preclinical activities and the first CK1α inhibitor has now entered the clinical trials. Full article
(This article belongs to the Special Issue Protein Kinases: Function, Substrates, and Implication in Diseases)
Show Figures

Figure 1

14 pages, 2566 KB  
Article
Involvement of the Endothelin Receptor Type A in the Cardiovascular Inflammatory Response Following Scorpion Envenomation
by Amina Sifi, Sonia Adi-Bessalem and Fatima Laraba-Djebari
Toxins 2020, 12(6), 389; https://doi.org/10.3390/toxins12060389 - 12 Jun 2020
Cited by 7 | Viewed by 3575
Abstract
Elevated levels of endothelin-1 (ET-1) were recorded in sera of scorpion sting patients. However, no studies focused on the mechanism of ET-1 involvement in the pathogenesis of scorpion envenomation, particularly in the cardiovascular system which is seriously affected in severe cases of scorpion [...] Read more.
Elevated levels of endothelin-1 (ET-1) were recorded in sera of scorpion sting patients. However, no studies focused on the mechanism of ET-1 involvement in the pathogenesis of scorpion envenomation, particularly in the cardiovascular system which is seriously affected in severe cases of scorpion stings. Inflammation induced by Androctonus australis hector (Aah) scorpion venom in the heart together with the aorta was studied in mice pretreated with a specific endothelin A receptor (ETA-R) inhibitor. ETA-R inhibition resulted in the attenuation of the high amounts of cytokine (tumor necrosis factor alpha (TNF-α) and interleukin-17 (IL-17)) recorded in the sera of envenomed mice. The recovery of the oxidative stress marker balance and matrix metalloproteinase (MMP) expression were also observed, concomitantly with the reduction of tissular neutrophil infiltration. Additionally, the cardiac and the aortic tissue alterations, and the metabolic enzymes (creatine kinase (CK) and muscle–brain isoform creatine kinase (CK-MB)) overspread into sera were significantly attenuated. Obtained results suggest the implication of endothelin throughout its ETA receptors in the inflammatory response observed in the cardiovascular components during scorpion envenomation. Further knowledge is needed to better understand the implication of the endothelin axis and to improve the therapeutic management of severe scorpion sting cases. Full article
Show Figures

Figure 1

19 pages, 4348 KB  
Article
Unexpected Binding Mode of a Potent Indeno[1,2-b]indole-Type Inhibitor of Protein Kinase CK2 Revealed by Complex Structures with the Catalytic Subunit CK2α and Its Paralog CK2α′
by Jennifer Hochscherf, Dirk Lindenblatt, Benedict Witulski, Robin Birus, Dagmar Aichele, Christelle Marminon, Zouhair Bouaziz, Marc Le Borgne, Joachim Jose and Karsten Niefind
Pharmaceuticals 2017, 10(4), 98; https://doi.org/10.3390/ph10040098 - 13 Dec 2017
Cited by 18 | Viewed by 6850
Abstract
Protein kinase CK2, a member of the eukaryotic protein kinase superfamily, is associated with cancer and other human pathologies and thus an attractive drug target. The indeno[1,2-b]indole scaffold is a novel lead structure to develop ATP-competitive CK2 inhibitors. Some indeno[1,2-b [...] Read more.
Protein kinase CK2, a member of the eukaryotic protein kinase superfamily, is associated with cancer and other human pathologies and thus an attractive drug target. The indeno[1,2-b]indole scaffold is a novel lead structure to develop ATP-competitive CK2 inhibitors. Some indeno[1,2-b]indole-based CK2 inhibitors additionally obstruct ABCG2, an ABC half transporter overexpressed in breast cancer and co-responsible for drug efflux and resistance. Comprehensive derivatization studies revealed substitutions of the indeno[1,2-b]indole framework that boost either the CK2 or the ABCG2 selectivity or even support the dual inhibition potential. The best indeno[1,2-b]indole-based CK2 inhibitor described yet (IC50 = 25 nM) is 5-isopropyl-4-(3-methylbut-2-enyl-oxy)-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione (4p). Herein, we demonstrate the membrane permeability of 4p and describe co-crystal structures of 4p with CK2α and CK2α′, the paralogs of human CK2 catalytic subunit. As expected, 4p occupies the narrow, hydrophobic ATP site of CK2α/CK2α′, but surprisingly with a unique orientation: its hydrophobic substituents point towards the solvent while its two oxo groups are hydrogen-bonded to a hidden water molecule. An equivalent water molecule was found in many CK2α structures, but never as a critical mediator of ligand binding. This unexpected binding mode is independent of the interdomain hinge/helix αD region conformation and of the salt content in the crystallization medium. Full article
Show Figures

Graphical abstract

37 pages, 8128 KB  
Article
Optimized 4,5-Diarylimidazoles as Potent/Selective Inhibitors of Protein Kinase CK1δ and Their Structural Relation to p38α MAPK
by Jakob Halekotte, Lydia Witt, Chiara Ianes, Marc Krüger, Mike Bührmann, Daniel Rauh, Christian Pichlo, Elena Brunstein, Andreas Luxenburger, Ulrich Baumann, Uwe Knippschild, Joachim Bischof and Christian Peifer
Molecules 2017, 22(4), 522; https://doi.org/10.3390/molecules22040522 - 24 Mar 2017
Cited by 40 | Viewed by 9688
Abstract
The involvement of protein kinase CK1δ in the pathogenesis of severe disorders such as Alzheimer’s disease, amyotrophic lateral sclerosis, familial advanced sleep phase syndrome, and cancer has dramatically increased interest in the development of effective small molecule inhibitors for both therapeutic application and [...] Read more.
The involvement of protein kinase CK1δ in the pathogenesis of severe disorders such as Alzheimer’s disease, amyotrophic lateral sclerosis, familial advanced sleep phase syndrome, and cancer has dramatically increased interest in the development of effective small molecule inhibitors for both therapeutic application and basic research. Unfortunately, the design of CK1 isoform-specific compounds has proved to be highly complicated due to the existence of six evolutionarily conserved human CK1 members that possess similar, different, or even opposite physiological and pathophysiological implications. Consequently, only few potent and selective CK1δ inhibitors have been reported so far and structurally divergent approaches are urgently needed in order to establish SAR that might enable complete discrimination of CK1 isoforms and related p38α MAPK. In this study we report on design and characterization of optimized 4,5-diarylimidazoles as highly effective ATP-competitive inhibitors of CK1δ with compounds 11b (IC50 CK1δ = 4 nM, IC50 CK1ε = 25 nM), 12a (IC50 CK1δ = 19 nM, IC50 CK1ε = 227 nM), and 16b (IC50 CK1δ = 8 nM, IC50 CK1ε = 81 nM) being among the most potent CK1δ-targeting agents published to date. Inhibitor compound 11b, displaying potential as a pharmacological tool, has further been profiled over a panel of 321 protein kinases exhibiting high selectivity. Cellular efficacy has been evaluated in human pancreatic cancer cell lines Colo357 (EC50 = 3.5 µM) and Panc89 (EC50 = 1.5 µM). SAR is substantiated by X-ray crystallographic analysis of 16b in CK1δ and 11b in p38α. Full article
(This article belongs to the Special Issue Kinase Inhibitors)
Show Figures

Graphical abstract

Back to TopTop