Protein Kinase CK2α’, More than a Backup of CK2α
Abstract
1. Introduction
2. Genes and Proteins
3. Interacting Partners of CK2α’
4. Biological Functions of CK2α’
5. Inhibitors of CK2α’
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The protein kinase complement of the human genome. Science 2002, 298, 1912–1934. [Google Scholar] [CrossRef] [PubMed]
- Manning, G. Genomic overview of protein kinases. WormBook 2005, 1–19. [Google Scholar] [CrossRef] [PubMed]
- de Villavicencio-Diaz, T.; Rabalski, A.J.; Litchfield, D.W. Protein Kinase CK2: Intricate Relationships within Regulatory Cellular Networks. Pharmaceuticals 2017, 10, 27. [Google Scholar] [CrossRef] [PubMed]
- Meggio, F.; Pinna, L.A. One-thousand-and-one substrates of protein kinase CK2? FASEB J. 2003, 17, 349–368. [Google Scholar] [CrossRef]
- Pinna, L.A. The raison D’Etre of constitutively active protein kinases: The lesson of CK2. Acc. Chem. Res. 2003, 36, 378–384. [Google Scholar] [CrossRef]
- Tuazon, P.T.; Traugh, J.A. Casein kinase I and II--multipotential serine protein kinases: Structure, function, and regulation. Adv. Second. Messenger Phosphoprot. Res. 1991, 23, 123–164. [Google Scholar]
- Tarrant, M.K.; Rho, H.S.; Xie, Z.; Jiang, Y.L.; Gross, C.; Culhane, J.C.; Yan, G.; Qian, J.; Ichikawa, Y.; Matsuoka, T.; et al. Regulation of CK2 by phosphorylation and O-GlcNAcylation revealed by semisynthesis. Nat. Chem. Biol. 2012, 8, 262–269. [Google Scholar] [CrossRef]
- Pagano, M.A.; Sarno, S.; Poletto, G.; Cozza, G.; Pinna, L.A.; Meggio, F. Autophosphorylation at the regulatory beta subunit reflects the supramolecular organization of protein kinase CK2. Mol. Cell Biochem. 2005, 274, 23–29. [Google Scholar] [CrossRef]
- Montenarh, M.; Götz, C. The interactome of protein kinase CK2. In Protein kinase CK2; Pinna, L.A., Ed.; John Wiley & Sons, Inc.: Ames, IA, USA; Chichester, UK; Oxford, UK, 2013; pp. 76–116. [Google Scholar]
- Montenarh, M.; Grässer, F.A.; Götz, C. Protein Kinase CK2 and Epstein-Barr Virus. Biomedicines 2023, 11, 358. [Google Scholar] [CrossRef]
- Faust, M.; Montenarh, M. Subcellular localization of protein kinase CK2: A key to its function? Cell Tissue Res. 2000, 301, 329–340. [Google Scholar] [CrossRef]
- Borgo, C.; D’Amore, C.; Cesaro, L.; Sarno, S.; Pinna, L.A.; Ruzzene, M.; Salvi, M. How can a traffic light properly work if it is always green? The paradox of CK2 signaling. Crit. Rev. Biochem. Mol. Biol. 2021, 56, 321–359. [Google Scholar] [CrossRef]
- Roffey, S.E.; Litchfield, D.W. CK2 Regulation: Perspectives in 2021. Biomedicines 2021, 9, 1361. [Google Scholar] [CrossRef]
- Al-Quobaili, F.; Montenarh, M. CK2 and the regulation of the carbohydrate metabolism. Metabolism 2012, 61, 1512–1517. [Google Scholar] [CrossRef] [PubMed]
- Ampofo, E.; Nalbach, L.; Menger, M.D.; Montenarh, M.; Götz, C. Protein kinase CK2-A putative target for the therapy of diabetes mellitus. Int. J. Mol. Sci. 2019, 20, 4398. [Google Scholar] [CrossRef] [PubMed]
- Götz, C.; Montenarh, M. Protein kinase CK2 in development and differentiation. Biomed. Rep. 2016, 6, 127–133. [Google Scholar] [CrossRef]
- Montenarh, M. Protein kinase CK2 in DNA damage and repair. Transl. Cancer Res. 2016, 5, 49–63. [Google Scholar]
- St-Denis, N.A.; Litchfield, D.W. From birth to death: The role of protein kinase CK2 in the regulation of cell proliferation and survival. Cell. Mol. Life Sci. 2009, 66, 1817–1829. [Google Scholar] [CrossRef]
- Litchfield, D.W. Protein kinase CK2: Structure, regulation and role in cellular decisions of life and death. Biochem. J. 2003, 369, 1–15. [Google Scholar] [CrossRef]
- Unger, G.M.; Davis, A.T.; Slaton, J.W.; Ahmed, K. Protein kinase CK2 as regulator of cell survival: Implications for cancer therapy. Curr. Cancer Drug Targets 2004, 4, 77–84. [Google Scholar] [CrossRef]
- Pinna, L.A.; Meggio, F. Protein kinase CK2 (“casein kinase-2”) and its implication in cell division and proliferation. Progress Cell Cycle Res. 1997, 3, 77–97. [Google Scholar]
- Firnau, M.B.; Brieger, A. CK2 and the Hallmarks of Cancer. Biomedicines 2022, 10, 1987. [Google Scholar] [CrossRef]
- Iori, E.; Ruzzene, M.; Zanin, S.; Sbrignadello, S.; Pinna, L.A.; Tessari, P. Effects of CK2 inhibition in cultured fibroblasts from Type 1 Diabetic patients with or without nephropathy. Growth Factors 2015, 33, 259–266. [Google Scholar] [CrossRef]
- Rossi, M.; Ruiz de Azua, I.; Barella, L.F.; Sakamoto, W.; Zhu, L.; Cui, Y.; Lu, H.; Rebholz, H.; Matschinsky, F.M.; Doliba, N.M.; et al. CK2 acts as a potent negative regulator of receptor-mediated insulin release in vitro and in vivo. Proc. Natl. Acad. Sci. USA 2015, 112, E6818–E6824. [Google Scholar] [CrossRef]
- Schwind, L.; Wilhelm, N.; Kartarius, S.; Montenarh, M.; Gorjup, E.; Götz, C. Protein kinase CK2 is necessary for the adipogenic differentiation of human mesenchymal stem cells. Biochem. Biophys. Acta 2014, 1853, 2207–2216. [Google Scholar] [CrossRef]
- Wilhelm, N.; Kostelnik, K.; Götz, C.; Montenarh, M. Protein kinase CK2 is implicated in early steps of the differentiation of preadipocytes into adipocytes. Mol. Cell Biochem. 2012, 365, 37–45. [Google Scholar] [CrossRef]
- Borgo, C.; Milan, G.; Favaretto, F.; Stasi, F.; Fabris, R.; Salizzato, V.; Cesaro, L.; Belligoli, A.; Sanna, M.; Foletto, M.; et al. CK2 modulates adipocyte insulin-signaling and is up-regulated in human obesity. Sci. Rep. 2017, 7, 17569. [Google Scholar] [CrossRef]
- Piazza, F.; Manni, S.; Ruzzene, M.; Pinna, L.A.; Gurrieri, C.; Semenzato, G. Protein kinase CK2 in hematologic malignancies: Reliance on a pivotal cell survival regulator by oncogenic signaling pathways. Leukemia 2012, 26, 1174–1176. [Google Scholar] [CrossRef]
- Iftner, T.; Haedicke-Jarboui, J.; Wu, S.Y.; Chiang, C.M. Involvement of Brd4 in different steps of the papillomavirus life cycle. Virus Res. 2017, 231, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.; El-Guindy, A.; Countryman, J.; Ye, J.; Gradoville, L. Lytic cycle switches of oncogenic human gammaherpesviruses. Adv. Cancer Res. 2007, 97, 81–109. [Google Scholar] [PubMed]
- Barroso, M.M.S.; Lima, C.S.; Silva-Neto, M.A.C.; Da Poian, A.T. Mayaro virus infection cycle relies on casein kinase 2 activity. Biochem. Biophys. Res. Commun. 2002, 296, 1334–1339. [Google Scholar] [CrossRef] [PubMed]
- Ching, W.; Dobner, T.; Koyuncu, E. The human adenovirus type 5 E1B 55-kilodalton protein is phosphorylated by protein kinase CK2. J. Virol. 2012, 86, 2400–2415. [Google Scholar] [CrossRef]
- Franck, N.; Le Seyec, J.; Guguen-Guillouzo, C.; Erdtmann, L. Hepatitis C virus NS2 protein is phosphorylated by the protein kinase CK2 and targeted for degradation to the proteasome. J. Virol. 2005, 79, 2700–2708. [Google Scholar] [CrossRef]
- Trembley, J.H.; Wang, G.; Unger, G.; Slaton, J.; Ahmed, K. CK2: A key player in cancer biology. Cell. Mol. Life Sci. 2009, 66, 1858–1867. [Google Scholar] [CrossRef]
- Tawfic, S.; Yu, S.; Wang, H.; Faust, R.; Davis, A.; Ahmed, K. Protein kinase CK2 signaling in neoplasia. Histol. Histopathol. 2001, 16, 573–582. [Google Scholar]
- Yang, X.; Dickmander, R.J.; Bayati, A.; Taft-Benz, S.A.; Smith, J.L.; Wells, C.I.; Madden, E.A.; Brown, J.W.; Lenarcic, E.M.; Yount, B.L., Jr.; et al. Host Kinase CSNK2 is a Target for Inhibition of Pathogenic SARS-like beta-Coronaviruses. ACS Chem. Biol. 2022, 17, 1937–1950. [Google Scholar] [CrossRef]
- Trembley, J.H.; Kren, B.T.; Afzal, M.; Scaria, G.A.; Klein, M.A.; Ahmed, K. Protein kinase CK2—Diverse roles in cancer cell biology and therapeutic promise. Mol. Cell Biochem. 2023, 478, 899–926. [Google Scholar] [CrossRef]
- Borgo, C.; Ruzzene, M. Protein kinase CK2 inhibition as a pharmacological strategy. Adv. Protein Chem. Struct. Biol. 2021, 124, 23–46. [Google Scholar]
- Borgo, C.; D’Amore, C.; Sarno, S.; Salvi, M.; Ruzzene, M. Protein kinase CK2: A potential therapeutic target for diverse human diseases. Signal Transduct. Target. Ther. 2021, 6, 183. [Google Scholar] [CrossRef]
- Perea, S.E.; Baladron, I.; Valenzuela, C.; Perera, Y. CIGB-300: A peptide-based drug that impairs the Protein Kinase CK2-mediated phosphorylation. Semin. Oncol. 2018, 45, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Wells, C.I.; Drewry, D.H.; Pickett, J.E.; Tjaden, A.; Krämer, A.; Müller, S.; Gyenis, L.; Menyhart, D.; Litchfield, D.W.; Knapp, S.; et al. Development of a potent and selective chemical probe for the pleiotropic kinase CK2. Cell Chem. Biol. 2021, 28, 546–558. [Google Scholar] [CrossRef] [PubMed]
- Strum, S.W.; Gyenis, L.; Litchfield, D.W. CSNK2 in cancer: Pathophysiology and translational applications. Br. J. Cancer 2022, 126, 994–1003. [Google Scholar] [CrossRef] [PubMed]
- Pyerin, W.; Ackermann, K. The genes encoding human protein kinase CK2 and their functional links. Prog. Nucleic Acid. Res. Mol. Biol. 2003, 74, 239–273. [Google Scholar] [PubMed]
- Yang-Feng, T.L.; Naiman, T.; Kopatz, I.; Eli, D.; Dafni, N.; Canaani, D. Assignment of the human casein kinase II alpha’ subunit gene (CSNK2A1) to chromosome 16p13.2-p13.3. Genomics 1994, 19, 173. [Google Scholar] [CrossRef] [PubMed]
- Pyerin, W.; Ackermann, K. Transcriptional coordination of the genes encoding catalytic (CK2α) and regulatory (CK2β) subunits of human protein kinase CK2. Mol. Cell. Biochem. 2001, 227, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Lupp, S.; Gumhold, C.; Ampofo, E.; Montenarh, M.; Rother, K. CK2 kinase activity but not its binding to CK2 promoter regions is implicated in the regulation of CK2a and CK2b gene expression. Mol. Cell. Biochem. 2013, 384, 71–82. [Google Scholar] [CrossRef][Green Version]
- Dahmus, G.K.; Glover, C.V.; Brutlag, D.L.; Dahmus, M.E. Similarities in structure and function of calf thymus and Drosophila casein kinase II. J. Biol. Chem. 1984, 259, 9001–9006. [Google Scholar] [CrossRef]
- Litchfield, D.W.; Lozeman, F.J.; Piening, C.; Sommercorn, J.; Takio, K.; Walsh, K.A.; Krebs, E.G. Subunit structure of casein kinase II from bovine testis. Demonstration that the alpha and alpha’ subunits are distinct polypeptides. J. Biol. Chem. 1990, 265, 7638–7644. [Google Scholar] [CrossRef]
- Dominguez, I.; Degano, I.R.; Chea, K.; Cha, J.; Toselli, P.; Seldin, D.C. CK2α is essential for embryonic morphogenesis. Mol. Cell. Biochem. 2011, 356, 209–216. [Google Scholar] [CrossRef]
- Buchou, T.; Vernet, M.; Blond, O.; Jensen, H.H.; Pointu, H.; Olsen, B.B.; Cochet, C.; Issinger, O.G.; Boldyreff, B. Disruption of the regulatory β subunit of protein kinase CK2 in mice leads to a cell-autonomous defect and early embryonic lethality. Mol. Cell. Biol. 2003, 23, 908–915. [Google Scholar] [CrossRef]
- Xu, X.; Toselli, P.A.; Russell, L.D.; Seldin, D.C. Globozoospermia in mice lacking the casein kinase II α’ catalytic subunit. Nat. Genet. 1999, 23, 118–121. [Google Scholar] [CrossRef]
- Guerra, B.; Siemer, S.; Boldyreff, B.; Issinger, O.G. Protein kinase CK2: Evidence for a protein kinase CK2β subunit fraction, devoid of the catalytic CK2α subunit, in mouse brain and testicles. FEBS Lett. 1999, 462, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Thornburg, W.; Lindell, T.J. Purification of rat liver nuclear protein kinase NII. J. Biol. Chem. 1977, 252, 6660–6665. [Google Scholar] [CrossRef]
- Lolli, G.; Naressi, D.; Sarno, S.; Battistutta, R. Characterization of the oligomeric states of the CK2 alpha2beta2 holoenzyme in solution. Biochem. J. 2017, 474, 2405–2416. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lolli, G.; Ranchio, A.; Battistutta, R. Active Form of the Protein Kinase CK2 alphabeta Holoenzyme Is a Strong Complex with Symmetric Architecture. ACS Chem. Biol. 2013, 9, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Gyenis, L.; Litchfield, D.W. The emerging CK2 interactome: Insights into the regulation and functions of CK2. Mol. Cell. Biochem. 2008, 316, 5–14. [Google Scholar] [CrossRef]
- Nickelsen, A.; Götz, C.; Lenz, F.; Niefind, K.; König, S.; Jose, J. Analyzing the interactome of human CK2b in prostate carcinoma cells reveals HSP70-1 and Rho guanin nucleotide exchange factor 12 as novel interaction partners. FASEB BioAdvances 2023, 5, 114–130. [Google Scholar] [CrossRef]
- Bolanos-Garcia, V.M.; Fernandez-Recio, J.; Allende, J.E.; Blundell, T.L. Identifying interaction motifs in CK2beta–a ubiquitous kinase regulatory subunit. Trends Biochem. Sci. 2006, 31, 654–661. [Google Scholar] [CrossRef]
- Bischoff, N.; Raaf, J.; Olsen, B.; Bretner, M.; Issinger, O.G.; Niefind, K. Enzymatic activity with an incomplete catalytic spine: Insights from a comparative structural analysis of human CK2α and its paralogous isoform CK2α’. Mol. Cell. Biochem. 2011, 356, 57–65. [Google Scholar] [CrossRef]
- Roig, J.; Krehan, A.; Colomer, D.; Pyerin, W.; Itarte, E.; Plana, M. Multiple forms of protein kinase CK2 present in leukemic cells: In vitro study of its origin by proteolysis. Mol. Cell. Biochem. 1999, 191, 229–234. [Google Scholar] [CrossRef]
- Faust, M.; Schuster, N.; Montenarh, M. Specific binding of protein kinase CK2 catalytic subunits to tubulin. FEBS Lett. 1999, 462, 51–56. [Google Scholar] [CrossRef]
- Olsen, B.B.; Boldyreff, B.; Niefind, K.; Issinger, O.G. Purification and characterization of the CK2α’-based holoenzyme, an isozyme of CK2α: A comparative analysis. Protein Expr. Purif. 2005, 47, 651–661. [Google Scholar] [CrossRef] [PubMed]
- Boldyreff, B.; James, P.; Staudenmann, W.; Issinger, O.-G. Ser2 is the autophosphorylation site in the β subunit from bicistronically expressed human casein kinase-2 and from native rat liver casein kinase-2β. Eur. J. Biochem. 1993, 218, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Palen, E.; Traugh, J.A. Phosphorylation of casein kinase II. Biochemistry 1991, 30, 5586–5590. [Google Scholar] [CrossRef] [PubMed]
- Olsen, B.B.; Rasmussen, T.; Niefind, K.; Issinger, O.G. Biochemical characterization of CK2α and α’ paralogues and their derived holoenzymes: Evidence for the existence of a heterotrimeric CK2α’-holoenzyme forming trimeric complexes. Mol. Cell Biochem. 2008, 316, 37–47. [Google Scholar] [CrossRef]
- Appel, K.; Wagner, P.; Boldyreff, B.; Issinger, O.-G.; Montenarh, M. Mapping of the interaction sites of the growth suppressor protein p53 with the regulatory β-subunit of protein kinase CK2. Oncogene 1995, 11, 1971–1978. [Google Scholar]
- Lüscher, B.; Litchfield, D.W. Biosynthesis of casein kinase II in lymphoid cell lines. Eur. J. Biochem. 1994, 220, 521–526. [Google Scholar] [CrossRef]
- Glover, C.V. A filamentous form of Drosophila casein kinase II. J. Biol. Chem. 1986, 261, 14349–14354. [Google Scholar] [CrossRef]
- Lolli, G.; Pinna, L.A.; Battistutta, R. Structural determinants of protein kinase CK2 regulation by autoinhibitory polymerization. ACS Chem. Biol. 2012, 7, 1158–1163. [Google Scholar] [CrossRef]
- Quezada Meza, C.P.; Ruzzene, M. Protein kinase CK2 and SARS-CoV-2: An expected interplay story. Kinases Phosphatases 2023, 1, 288–305. [Google Scholar] [CrossRef]
- Filhol, O.; Cochet, C.; Delagoutte, T.; Chambaz, E.M. Polyamine binding activity of casein kinase II. Biochem. Biophys. Res. Commun. 1991, 180, 945–952. [Google Scholar] [CrossRef]
- Litchfield, D.W.; Lozeman, F.J.; Cicirelli, M.F.; Harrylock, M.; Ericsson, L.H.; Piening, C.J.; Krebs, E.G. Phosphorylation of the beta subunit of casein kinase II in human A431 cells. Identification of the autophosphorylation site and a site phosphorylated by p34cdc2. J. Biol. Chem. 1991, 266, 20380–20389. [Google Scholar] [CrossRef]
- Ceglia, I.; Flajolet, M.; Rebholz, H. Predominance of CK2α over CK2α’ in the mammalian brain. Mol. Cell Biochem. 2011, 356, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Alvarado-Diaz, C.P.; Tapia, J.C.; Antonelli, M.; Moreno, R.D. Differential localization of α’ and beta subunits of protein kinase CK2 during rat spermatogenesis. Cell Tissue Res. 2009, 338, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Rebholz, H.; Zhou, M.; Nairn, A.C.; Greengard, P.; Flajolet, M. Selective Knockout of the Casein Kinase 2 in D1 Medium Spiny Neurons Controls Dopaminergic Function. Biol. Psychiatry 2013, 74, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Borgo, C.; Franchin, C.; Scalco, S.; Bosello-Travain, V.; Donella-Deana, A.; Arrigoni, G.; Salvi, M.; Pinna, L.A. Generation and quantitative proteomics analysis of CK2a/a’(-/-) cells. Sci. Rep. 2017, 7, 42409. [Google Scholar] [CrossRef] [PubMed]
- Borgo, C.; D’Amore, C.; Cesaro, L.; Itami, K.; Hirota, T.; Salvi, M.; Pinna, L.A. A N-terminally deleted form of the CK2α’ catalytic subunit is sufficient to support cell viability. Biochem. Biophys. Res. Commun. 2020, 531, 409–415. [Google Scholar] [CrossRef]
- Borgo, C.; Cesaro, L.; Hirota, T.; Kuwata, K.; D’Amore, C.; Ruppert, T.; Blatnik, R.; Salvi, M.; Pinna, L.A. Analysis of the phosphoproteome of CK2α((-/-))/Deltaα’ C2C12 myoblasts compared to the wild-type cells. Open Biol. 2023, 13, 220220. [Google Scholar] [CrossRef]
- Gietz, R.D.; Graham, K.C.; Litchfield, D.W. Interactions between the subunits of casein kinase II. J. Biol. Chem. 1995, 270, 13017–13021. [Google Scholar] [CrossRef]
- Litchfield, D.W.; Slominski, E.; Lewenza, S.; Narvey, M.; Bosc, D.G.; Gietz, R.D. Analysis of interactions between the subunits of protein kinase CK2. Biochem. Cell Biol. 1996, 74, 541–547. [Google Scholar] [CrossRef]
- Bischoff, N.; Olsen, B.; Raaf, J.; Bretner, M.; Issinger, O.G.; Niefind, K. Structure of the Human Protein Kinase CK2 Catalytic Subunit CK2α’ and Interaction Thermodynamics with the Regulatory Subunit CK2beta. J. Mol. Biol. 2011, 407, 1–12. [Google Scholar] [CrossRef]
- Varjosalo, M.; Sacco, R.; Stukalov, A.; Van Drogen, A.; Planyavsky, M.; Hauri, S.; Aebersold, R.; Bennett, K.L.; Colinge, J.; Gstaiger, M.; et al. Interlaboratory reproducibility of large-scale human protein-complex analysis by standardized AP-MS. Nat. Methods 2013, 10, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Heriche, J.K.; Lebrin, F.; Rabilloud, T.; LeRoy, D.; Chambaz, E.M.; Goldberg, Y. Regulation of protein phosphatase 2A by direct interaction with casein kinase 2α. Science 1997, 276, 952–955. [Google Scholar] [CrossRef] [PubMed]
- Litchfield, D.W.; Bosc, D.G.; Canton, D.A.; Saulnier, R.B.; Vilk, G.; Zhang, C.J. Functional specialization of CK2 isoforms and characterization of isoform-specific binding partners. Mol. Cell. Biochem. 2001, 227, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Bosc, D.G.; Graham, K.C.; Saulnier, R.B.; Zhang, C.J.; Prober, D.; Gietz, R.D.; Litchfield, D.W. Identification and characterization of CKIP-1, a novel pleckstrin homology domain-containing protein that interacts with protein kinase CK2. J. Biol. Chem. 2000, 275, 14295–14306. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, B.; Götz, C.; Dudek, J.; Hessenauer, A.; Matti, U.; Montenarh, M. KIF5C, a new binding partner for protein kinase CK2 with a preference for CK2α’. Cell Mol. Life Sci. 2009, 66, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Amin, E.B.; Mayo, M.W.; Chudgar, N.P.; Bucciarelli, P.R.; Kadota, K.; Adusumilli, P.S.; Jones, D.R. CK2α’ Drives Lung Cancer Metastasis by Targeting BRMS1 Nuclear Export and Degradation. Cancer Res. 2016, 76, 2675–2686. [Google Scholar] [CrossRef]
- Hathaway, G.M.; Traugh, J.A. Casein Kinases–Multipotential Protein Kinases. Curr. Top. Cell Reg. 1982, 21, 101–127. [Google Scholar]
- Singh, T.J.; Huang, K. Glykogen synthase (casein) kinase I: Tissue distribution and subcellular localization. FEBS Lett. 1985, 190, 84–88. [Google Scholar] [CrossRef]
- Kandror, K.V.; Benumov, A.O.; Stepanov, A.S. Casein kinase II from Rana temporaria oocytes. Eur. J. Biochem. 1989, 180, 441–448. [Google Scholar] [CrossRef]
- Schneider, H.R.; Issinger, O.-G. Nucleolin (C23), a physiological substrate for casein kinase II. Biochem. Biophys. Res. Commun. 1988, 156, 1390–1397. [Google Scholar] [CrossRef]
- Filhol, O.; Cochet, C.; Chambaz, E.M. Cytoplasmic and nuclear distribution of casein kinase II: Characterization of the enzyme uptake by bovine adrenocortical nuclear preparation. Biochemistry 1990, 29, 9928–9936. [Google Scholar] [CrossRef]
- Pfaff, M.; Anderer, F.A. Casein kinase II accumulation in the nucleolus and its role in nucleolar phosphorylation. Biochim. Biophys. Acta 1988, 969, 100–109. [Google Scholar] [CrossRef]
- Yu, I.J.; Spector, D.L.; Bae, Y.-S.; Marshak, D.R. Immunocytochemical localization of casein kinase II during interphase and mitosis. J. Cell Biol. 1991, 114, 1217–1232. [Google Scholar] [CrossRef] [PubMed]
- Belenguer, P.; Baldin, V.; Mathieu, C.; Prats, H.; Bensaid, M.; Bouche, G.; Amalric, F. Protein kinase NII and the regulation of rDNA transcription in mammalian cells. Nucleic Acids Res. 1989, 17, 6625–6636. [Google Scholar] [CrossRef] [PubMed]
- Hornbeck, P.V.; Zhang, B.; Murray, B.; Kornhauser, J.M.; Latham, V.; Skrzypek, E. PhosphoSitePlus, 2014: Mutations, PTMs and recalibrations. Nucleic Acids Res 2015, 43, D512–D520. [Google Scholar] [CrossRef] [PubMed]
- Duncan, J.S.; Turowec, J.P.; Duncan, K.E.; Vilk, G.; Wu, C.; Luscher, B.; Li, S.S.; Gloor, G.B.; Litchfield, D.W. A Peptide-based target screen implicates the protein kinase CK2 in the global regulation of caspase signaling. Sci. Signal 2011, 4, ra30. [Google Scholar] [CrossRef] [PubMed]
- Turowec, J.P.; Vilk, G.; Gabriel, M.; Litchfield, D.W. Characterizing the convergence of protein kinase CK2 and caspase-3 reveals isoform-specific phosphorylation of caspase-3 by CK2α’: Implications for pathological roles of CK2 in promoting cancer cell survival. Oncotarget 2013, 4, 560–571. [Google Scholar] [CrossRef]
- Zheng, R.; Wang, Y.; Li, Y.; Guo, J.; Wen, Y.; Jiang, C.; Yang, Y.; Shen, Y. FSIP2 plays a role in the acrosome development during spermiogenesis. J. Med. Genet. 2023, 60, 254–264. [Google Scholar] [CrossRef]
- Allalunis-Turner, M.J.; Barron, G.M.; Day, R.S., III; Dobler, K.D.; Mirzayans, R. Isolation of two cell lines from a human malignant glioma specimen differing in sensitivity to radiation and chemotherapeutic drugs. Radiat. Res. 1993, 134, 349–354. [Google Scholar] [CrossRef]
- Anderson, C.W.; Dunn, J.J.; Freimuth, P.I.; Galloway, A.M.; Allalunis-Turner, M.J. Frameshift mutation in PRKDC, the gene for DNA-PKcs, in the DNA repair-defective, human, glioma-derived cell line M059J. Radiat. Res. 2001, 156, 2–9. [Google Scholar] [CrossRef]
- Olsen, B.B.; Fischer, U.; Rasmussen, T.L.; Montenarh, M.; Meese, E.; Fritz, G.; Issinger, O.G. Lack of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is accompanied by increased CK2α’ levels. Mol. Cell Biochem. 2011, 356, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Salizzato, V.; Zanin, S.; Borgo, C.; Lidron, E.; Salvi, M.; Rizzuto, R.; Pallafacchina, G.; Donella-Deana, A. Protein kinase CK2 subunits exert specific and coordinated functions in skeletal muscle differentiation and fusogenic activity. FASEB J. 2019, 33, 10648–10667. [Google Scholar] [CrossRef] [PubMed]
- Zonta, F.; Borgo, C.; Quezada Meza, C.P.; Masgras, I.; Rasola, A.; Salvi, M.; Pinna, L.A.; Ruzzene, M. Contribution of the CK2 Catalytic Isoforms α and α’ to the Glycolytic Phenotype of Tumor Cells. Cells 2021, 10, 181. [Google Scholar] [CrossRef] [PubMed]
- Lettieri, A.; Borgo, C.; Zanieri, L.; D’Amore, C.; Oleari, R.; Paganoni, A.; Pinna, L.A.; Cariboni, A.; Salvi, M. Protein Kinase CK2 Subunits Differentially Perturb the Adhesion and Migration of GN11 Cells: A Model of Immature Migrating Neurons. Int. J. Mol. Sci. 2019, 20, 5951. [Google Scholar] [CrossRef]
- Novak, M.J.; Tabrizi, S.J. Huntington’s disease. BMJ 2010, 340, c3109. [Google Scholar] [CrossRef]
- Fan, M.M.; Zhang, H.; Hayden, M.R.; Pelech, S.L.; Raymond, L.A. Protective up-regulation of CK2 by mutant huntingtin in cells co-expressing NMDA receptors. J. Neurochem. 2007, 104, 790–805. [Google Scholar] [CrossRef]
- Gomez-Pastor, R.; Burchfiel, E.T.; Neef, D.W.; Jaeger, A.M.; Cabiscol, E.; McKinstry, S.U.; Doss, A.; Aballay, A.; Lo, D.C.; Akimov, S.S.; et al. Abnormal degradation of the neuronal stress-protective transcription factor HSF1 in Huntington’s disease. Nat. Commun. 2017, 8, 14405. [Google Scholar] [CrossRef]
- Yu, D.; Zarate, N.; White, A.; Coates, D.J.; Tsai, W.; Nanclares, C.; Cuccu, F.; Yue, J.S.; Brown, T.G.; Mansky, R.H.; et al. CK2 α prime and α-synuclein pathogenic functional interaction mediates synaptic dysregulation in huntington’s disease. Acta Neuropathol. Commun. 2022, 10, 83. [Google Scholar] [CrossRef]
- Kashihara, T.; Nakada, T.; Kojima, K.; Takeshita, T.; Yamada, M. Angiotensin II activates CaV 1.2 Ca2+ channels through beta-arrestin2 and casein kinase 2 in mouse immature cardiomyocytes. J. Physiol. 2017, 595, 4207–4225. [Google Scholar] [CrossRef]
- Hauck, L.; Harms, C.; Rohne, J.; Gertz, K.; Dietz, R.; Endres, M.; von Harsdorf, R. Protein kinase CK2 links extracellular growth factor signaling with the control of p27(Kip1) stability in the heart. Nat. Med. 2008, 14, 315–324. [Google Scholar] [CrossRef]
- Orlandini, M.; Semplici, F.; Ferruzzi, R.; Meggio, F.; Pinna, L.A.; Oliviero, S. Protein kinase CK2α’ is induced by serum as a delayed early gene and cooperates with Ha-ras in fibroblast transformation. J. Biol. Chem. 1998, 273, 21291–21297. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, D.R.; Yu, J.; Shanker, K.; Deshpande, N.; Varambally, R.; Ghosh, D.; Barrette, T.; Pandey, A.; Chinnaiyan, A.M. ONCOMINE: A cancer microarray database and integrated data-mining platform. Neoplasia 2004, 6, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Ortega, C.E.; Seidner, Y.; Dominguez, I. Mining CK2 in cancer. PLoS ONE 2014, 9, e115609. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Peng, L.R.; Yu, A.Q.; Li, J. CSNK2A2 promotes hepatocellular carcinoma progression through activation of NF-kappaB pathway. Ann. Hepatol. 2023, 28, 101118. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Guan, B.; Maghami, S.; Bieberich, C.J. NKX3.1 is regulated by protein kinase CK2 in prostate tumor cells. Mol. Cell. Biol. 2006, 26, 3008–3017. [Google Scholar] [CrossRef] [PubMed]
- Baier, A.; Galicka, A.; Nazaruk, J.; Szyszka, R. Selected flavonoid compounds as promising inhibitors of protein kinase CK2α and CK2α’, the catalytic subunits of CK2. Phytochemistry 2017, 136, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Lindenblatt, D.; Applegate, V.; Nickelsen, A.; Klussmann, M.; Neundorf, I.; Gotz, C.; Jose, J.; Niefind, K. Molecular Plasticity of Crystalline CK2α’ Leads to KN2, a Bivalent Inhibitor of Protein Kinase CK2 with Extraordinary Selectivity. J. Med. Chem. 2021, 65, 1302–1312. [Google Scholar] [CrossRef]
- Jose, J.; Meyer, T.F. The autodisplay story, from discovery to biotechnical and biomedical applications. Microbiol. Mol. Biol. Rev. 2007, 71, 600–619. [Google Scholar] [CrossRef]
- Lakhan, R.; Said, H.M. Lipopolysaccharide inhibits colonic biotin uptake via interference with membrane expression of its transporter: A role for a casein kinase 2-mediated pathway. Am. J. Physiol. Cell Physiol. 2017, 312, C376–C384. [Google Scholar] [CrossRef]
- Gratz, A.; Bollacke, A.; Stephan, S.; Nienberg, C.; Le, B.M.; Götz, C.; Jose, J. Functional display of heterotetrameric human protein kinase CK2 on Escherichia coli: A novel tool for drug discovery. Microb. Cell Fact. 2015, 14, 74. [Google Scholar] [CrossRef]
- Bollacke, A.; Nienberg, C.; Borgne, M.L.; Jose, J. Toward selective CK2α and CK2α’ inhibitors: Development of a novel whole-cell kinase assay by Autodisplay of catalytic CK2α’. J. Pharm. Biomed. Anal. 2016, 121, 253–260. [Google Scholar] [CrossRef]
- Tsuyuguchi, M.; Nakaniwa, T.; Kinoshita, T. Crystal structures of human CK2α2 in new crystal forms arising from a subtle difference in salt concentration. Acta Crystallogr. F Struct. Biol. Commun. 2018, 74, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Nakaniwa, T.; Kinoshita, T.; Sekiguchi, Y.; Tada, T.; Nakanishi, I.; Kitaura, K.; Suzuki, Y.; Ohno, H.; Hirasawa, A.; Tsujimoto, G. Structure of human protein kinase CK2 α 2 with a potent indazole-derivative inhibitor. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2009, 65, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Werner, C.; Lindenblatt, D.; Viht, K.; Uri, A.; Niefind, K. Discovery and exploration of protein kinase CK2 binding sites using CK2α’Cys336Ser as an exquisite crytallographic tool. Kinases Phosphatases 2023, 1, 306–322. [Google Scholar] [CrossRef]
CK2β | Tubulin | PP2A | CKIP-1 | KIF5C | BRMS1 | |
---|---|---|---|---|---|---|
CK2α | + | + | + | + | - | - |
CK2α’ | + | + | - | - | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montenarh, M.; Götz, C. Protein Kinase CK2α’, More than a Backup of CK2α. Cells 2023, 12, 2834. https://doi.org/10.3390/cells12242834
Montenarh M, Götz C. Protein Kinase CK2α’, More than a Backup of CK2α. Cells. 2023; 12(24):2834. https://doi.org/10.3390/cells12242834
Chicago/Turabian StyleMontenarh, Mathias, and Claudia Götz. 2023. "Protein Kinase CK2α’, More than a Backup of CK2α" Cells 12, no. 24: 2834. https://doi.org/10.3390/cells12242834
APA StyleMontenarh, M., & Götz, C. (2023). Protein Kinase CK2α’, More than a Backup of CK2α. Cells, 12(24), 2834. https://doi.org/10.3390/cells12242834