Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (383)

Search Parameters:
Keywords = CEPA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 57416 KiB  
Article
Green Synthesis and Characterization of Silver Nanoparticles Using Artemisia terrae-albae Extracts and Evaluation of Their Cytogenotoxic Effects
by Moldyr Dyusebaeva, Dmitriy Berillo, Zhansaya Yesbussinova, Nailya Ibragimova, Daniil Shepilov, Sandugash Sydykbayeva, Almagul Almabekova, Nurzhan Chinibayeva, Adewale Olufunsho Adeloye and Gulzat Berganayeva
Int. J. Mol. Sci. 2025, 26(15), 7499; https://doi.org/10.3390/ijms26157499 (registering DOI) - 3 Aug 2025
Abstract
The development of non-toxic silver nanoparticles (AgNPs) for medical and other diverse applications is steadily increasing. However, this study specifically aims to determine the cytotoxic effects of AgNPs synthesized via a green chemistry approach using aqueous-ethanol and ethyl acetate extracts of Artemisia terrae-albae [...] Read more.
The development of non-toxic silver nanoparticles (AgNPs) for medical and other diverse applications is steadily increasing. However, this study specifically aims to determine the cytotoxic effects of AgNPs synthesized via a green chemistry approach using aqueous-ethanol and ethyl acetate extracts of Artemisia terrae-albae. The photophysical, morphological, and size distribution characteristics of the synthesized AgNPs are analyzed using UV-Vis spectroscopy and transmission electron microscopy (TEM). A modified Allium cepa assay is employed to evaluate biological responses, including root growth, root number, and mitotic index. In this assay, the cell cycles of onion bulbs are synchronized and pre-incubated at 4 °C for 72 h prior to treatment. This study reveals that the AgNPs synthesized from the ethanol extract exhibit notable stability and higher cytotoxicity activity, with a root length of 0.6 ± 0.13 cm, root number of 16 ± 6.88, and mitotic index of 25.0 ± 2.6. These values are significantly more cytogenotoxic than those observed for the ethyl-acetate-derived nanoparticles, which show a root length of 0.8 ± 0.17 cm, root number of 18 ± 6.27, and mitotic index of 36 ± 3.6. These findings highlight the potential of green-synthesized AgNPs as effective cytotoxic agents, especially those obtained from ethanol extract, possibly due to a greater influence of the quantity of diverse phenolic compounds present in the complex mixtures than in the ethyl acetate extract, which otherwise enhanced their morphology, shape, and size. These, overall, contributed to the biological activity. Full article
(This article belongs to the Special Issue Latest Advances in Nanoparticles for Modern Biomedicine (2nd Edition))
Show Figures

Graphical abstract

27 pages, 2143 KiB  
Review
The Allium cepa Model: A Review of Its Application as a Cytogenetic Tool for Evaluating the Biosafety Potential of Plant Extracts
by Daniela Nicuță, Luminița Grosu, Oana-Irina Patriciu, Roxana-Elena Voicu and Irina-Claudia Alexa
Methods Protoc. 2025, 8(4), 88; https://doi.org/10.3390/mps8040088 (registering DOI) - 2 Aug 2025
Abstract
In establishing the safety or tolerability profile of bioactive plant extracts, it is important to perform toxicity studies using appropriate, accessible, and sustainable methods. The Allium cepa model is well known and frequently used for accurate environmental risk assessments, as well as for [...] Read more.
In establishing the safety or tolerability profile of bioactive plant extracts, it is important to perform toxicity studies using appropriate, accessible, and sustainable methods. The Allium cepa model is well known and frequently used for accurate environmental risk assessments, as well as for evaluating the toxic potential of the bioactive compounds of plant extracts. The present review focuses on this in vivo cytogenetic model, highlighting its widespread utilization and advantages as a first assessment in monitoring the genotoxicity and cytotoxicity of herbal extracts, avoiding the use of animals for testing. This plant-based assay allows for the detection of the possible cytotoxic and genotoxic effects induced on onion meristematic cells. The outcomes of the Allium cepa assay are comparable to other tests on various organisms, making it a reliable screening test due to its simplicity in terms of implementation, as well as its high sensitivity and reproducibility. Full article
(This article belongs to the Special Issue Feature Papers in Methods and Protocols 2025)
Show Figures

Figure 1

17 pages, 1554 KiB  
Article
Optimizing Fertilization Rate to Achieve High Onion Bulb Yield and High Nitrogen Fertilizer Productivity in Dry-Hot Valley Region of Southwest China
by Jiancha Li, Kun Li, Yilin Li, Xuewen Yue, Hongye Zhu, Liangtao Shi and Haidong Fang
Agronomy 2025, 15(8), 1822; https://doi.org/10.3390/agronomy15081822 - 28 Jul 2025
Viewed by 146
Abstract
Excessive fertilization is a widespread issue in onion (Allium cepa L.) production in Southwest China. This practice not only leads to environmental pollution but also decreases the marketable yield and fertilizer productivity of onions. Identifying an optimal fertilization rate is crucial for [...] Read more.
Excessive fertilization is a widespread issue in onion (Allium cepa L.) production in Southwest China. This practice not only leads to environmental pollution but also decreases the marketable yield and fertilizer productivity of onions. Identifying an optimal fertilization rate is crucial for promoting high-yield and highly efficient onion cultivation. The objective of this research is to determine the appropriate amount of fertilizer by investigating the effects of different fertilization rates on the growth characteristics and bulb yield of onion. The study was conducted over two consecutive growing seasons utilizing a randomized complete block design, which included six treatments: local routine fertilizer application (F1), a 20% reduction from F1 (F2), a 40% reduction from F1 (F3), a 60% reduction from F1 (F4), an 80% reduction from F1 (F5), and no fertilizer application (F0). The results show that, at the mature stage, aboveground dry matter quantity and its accumulation rate of onion under treatment F2 were found to be the highest among all other treatments across both growing seasons. Following the onset of bulbing, dry matter accumulation initially increased but subsequently decreased with reduced fertilizer supply; notably, it was greater under treatment F2 compared to other treatments. Compared with F1, the PFPN (partial factor productivity of nitrogen fertilizer) under treatment F2 increased by 35.2% and 32.0%, and the marketable bulb yield under treatment F2 increased by 8.4% and 5.8% during the 2022–2023 and 2023–2024 growing seasons, respectively. The marketable bulb yield demonstrated extremely significant positive correlations with aboveground dry matter and the dry matter accumulation rate throughout all growth periods in both growing seasons. Furthermore, marketable bulb yield exhibited extremely significant positive correlations with dry matter translocation before the onset of bulbing and dry matter accumulation following bulbing initiation. It was concluded that the appropriate fertilizer application (F2), characterized by a fertilization rate of 339-216-318 kg ha−1 for N-P2O5-K2O, enhanced onion bulb yield and nitrogen fertilizer productivity by promoting post-bulbing dry matter accumulation. This study emphasizes the significance of optimizing the fertilization rate as a crucial factor in achieving high-yield and highly efficient onion cultivation by enhancing dry matter accumulation. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

18 pages, 3095 KiB  
Article
Investigating Seed Germination, Seedling Growth, and Enzymatic Activity in Onion (Allium cepa) Under the Influence of Plasma-Treated Water
by Sabnaj Khanam, Young June Hong, Eun Ha Choi and Ihn Han
Int. J. Mol. Sci. 2025, 26(15), 7256; https://doi.org/10.3390/ijms26157256 - 27 Jul 2025
Viewed by 296
Abstract
Seed germination and early seedling growth are pivotal stages that define crop establishment and yield potential. Conventional agrochemicals used to improve these processes often raise environmental concerns, highlighting the need for sustainable alternatives. In this study, we demonstrated that water treated with cylindrical [...] Read more.
Seed germination and early seedling growth are pivotal stages that define crop establishment and yield potential. Conventional agrochemicals used to improve these processes often raise environmental concerns, highlighting the need for sustainable alternatives. In this study, we demonstrated that water treated with cylindrical dielectric barrier discharge (c-DBD) plasma, enriched with nitric oxide (NO) and reactive nitrogen species (RNS), markedly enhanced onion (Allium cepa) seed germination and seedling vigor. The plasma-treated water (PTW) promoted rapid imbibition, broke dormancy, and accelerated germination rates beyond 98%. Seedlings irrigated with PTW exhibited significantly increased biomass, root and shoot length, chlorophyll content, and antioxidant enzyme activities, accompanied by reduced lipid peroxidation. Transcriptomic profiling revealed that PTW orchestrated a multifaceted regulatory network by upregulating gibberellin biosynthesis genes (GA3OX1/2), suppressing abscisic acid signaling components (ABI5), and activating phenylpropanoid metabolic pathways (PAL, 4CL) and antioxidant defense genes (RBOH1, SOD). These molecular changes coincided with elevated NO2 and NO3 levels and finely tuned hydrogen peroxide dynamics, underpinning redox signaling crucial for seed activation and stress resilience. Our findings establish plasma-generated NO-enriched water as an innovative, eco-friendly technology that leverages redox and hormone crosstalk to stimulate germination and early growth, offering promising applications in sustainable agriculture. Full article
(This article belongs to the Special Issue Plasma-Based Technologies for Food Safety and Health Enhancement)
Show Figures

Figure 1

12 pages, 560 KiB  
Article
Varietal Susceptibility of Yellow Onions to Blanching and Its Impact on Probiotic Fermentation
by Katarzyna Grzelak-Błaszczyk, Robert Klewicki, Sylwia Ścieszka, Lidia Piekarska-Radzik, Michał Sójka, Michalina Jaszczak, Elżbieta Klewicka, Bartosz Fotschki and Jerzy Juśkiewicz
Molecules 2025, 30(14), 3002; https://doi.org/10.3390/molecules30143002 - 17 Jul 2025
Viewed by 260
Abstract
The purpose of this study was to determine the impact of blanching various onion (Allium cepa L.) varieties on the process of lactic fermentation by probiotic strain Levilactobacillus brevis ŁOCK 0944. The materials for the research were twelve varieties of yellow onion: Venecia, [...] Read more.
The purpose of this study was to determine the impact of blanching various onion (Allium cepa L.) varieties on the process of lactic fermentation by probiotic strain Levilactobacillus brevis ŁOCK 0944. The materials for the research were twelve varieties of yellow onion: Venecia, Moondance, Sedona, Alonso, Hysky, Centro, Dormo, Hypark, Hybelle, Armstrong, EXP 2236, and Hysinger. We also studied the resulting changes in bioactive compound content. Acidic bacterial metabolites, the lactic acid bacteria count, and the polyphenol and carbohydrate contents were assessed in both raw onions and onions blanched at 60 °C, before and after fermentation. Onion varieties that showed morphological changes after blanching (Hysky, Centro, Dormo) demonstrated better growth of L. brevis and higher lactic acid production. Blanching loosened the tissue structure, reducing the carbohydrate content in the blanched and fermented onions, particularly Alonso, Centro, Dormo, and Hypark varieties. Although the combined process reduced the polyphenol content, four varieties showed no statistically significant differences, indicating variety-specific responses. The varying susceptibility of onion varieties to thermal treatment highlights the importance of selecting the appropriate variety for further processing. Full article
Show Figures

Graphical abstract

23 pages, 3856 KiB  
Article
Synthesis of Epoxyoxirenes: Phytotoxic Activity and Enzymatic Target Identification
by Kamylla C. F. de Faria, Elson S. Alvarenga, Denilson F. Oliveira, Vitor C. Baia and Armin F. Isenmann
Plants 2025, 14(13), 1933; https://doi.org/10.3390/plants14131933 - 24 Jun 2025
Viewed by 688
Abstract
Chemical control is key to minimizing agricultural losses, driving the search for more efficient and selective herbicides. This study reports the synthesis of epoxyoxirenes, their phytotoxic evaluation, and an in silico analysis to identify the protein target of the most active compound in [...] Read more.
Chemical control is key to minimizing agricultural losses, driving the search for more efficient and selective herbicides. This study reports the synthesis of epoxyoxirenes, their phytotoxic evaluation, and an in silico analysis to identify the protein target of the most active compound in plants. Compounds 2–19 were tested on Lactuca sativa spp., Allium cepa spp., Cucumis sativus spp., Triticum aestivum, and Bidens pilosa. The synthetic route began with anhydride 1, obtained via a Diels–Alder reaction between maleic anhydride and furan (91% yield). Anhydride 1 was converted into amides 27 through reactions with aromatic amines (>92% yields), followed by cyclization to imides 813 (60–83% yields), and subsequent epoxidation to afford epoxides 1419 (62–98% yields). All the compounds interfered with seedling development, with compounds 27 showing the greatest phytotoxicity to B. pilosa at concentrations of 500 μM and 1000 μM. An in silico analysis suggested plant tubulin as a potential protein target for the most active compounds. These findings highlight epoxyoxirenes as promising scaffolds for novel herbicide development and support further investigation into their mechanism of action. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Graphical abstract

22 pages, 4812 KiB  
Article
Inhibition of Triacylglycerol Accumulation and Oxidized Hydroperoxides in Hepatocytes by Allium cepa (Bulb)
by Dya Fita Dibwe, Saki Oba, Satomi Monde and Shu-Ping Hui
Antioxidants 2025, 14(6), 653; https://doi.org/10.3390/antiox14060653 - 29 May 2025
Viewed by 632
Abstract
Recent studies have demonstrated that dietary plant extracts can inhibit the development of lipid droplets (LDs) and oxidized LDs (oxLDs) in hepatic cells. These findings suggest that such extracts may be beneficial in combating metabolic dysfunction-associated fatty liver disease (MAFLD) and its more [...] Read more.
Recent studies have demonstrated that dietary plant extracts can inhibit the development of lipid droplets (LDs) and oxidized LDs (oxLDs) in hepatic cells. These findings suggest that such extracts may be beneficial in combating metabolic dysfunction-associated fatty liver disease (MAFLD) and its more advanced stage, metabolic dysfunction-associated steatohepatitis (MASH). We examined nine Allium extracts (ALs: AL1–9) to assess their capacity to decrease lipid droplet accumulation (LDA) and oxidative stress by suppressing lipid formation and oxidation in liver cells. Among the Allium extracts tested, AL6 exhibited significant inhibitory effects against LDA. Furthermore, we employed our lipidomic method to assess the accumulation and suppression of intracellular triacylglycerol (TAG) and oxidized TAG hydroperoxide [TG (OOH) n = 3] by AL6 in liver cells under oleic acid (OA) and linoleic acid (LA) loading conditions. These findings indicate that foods derived from Allium species prevent the formation of lipid droplets by decreasing intracellular lipids and lipid hydroperoxides in the hepatocytes. Analysis of the metabolome of bioactive lipid droplet accumulation inhibition (LDAI) AL6 using LC-MS/MS and 1D-NMR [1H, 13C, DEPT 90, and 135] techniques revealed that AL6 is primarily composed of carbohydrates, glucosidic metabolites, and organosulfur compounds, with small amounts of polyols, fatty acyls, small peptides, and amino acids. This implies that AL6 could be a valuable resource for developing functional foods and drug discovery targeting metabolic dysfunction-associated fatty liver disease (MAFLD)/metabolic dysfunction-associated steatohepatitis (MASH) and related disorders. Full article
(This article belongs to the Special Issue Potential Health Benefits of Dietary Antioxidants)
Show Figures

Figure 1

23 pages, 8092 KiB  
Article
Freshwater Algae Biostimulant in Mitigating Impacts of Saline Irrigation on Onions
by Jean Carlos Nogueira, Jefferson dos Santos Gomes Calaça, Carla Veronica Barbosa de Souza Gomes, Luiz Emanuel Callou Menezes, José Raliuson Inácio Silva, Alexandre Maniçoba da Rosa Ferraz Jardim, Luiz Guilherme Medeiros Pessoa, João Henrique Barbosa da Silva, Ramon Freire da Silva, Thiago Jardelino Dias and Genival Barros Júnior
Plants 2025, 14(10), 1559; https://doi.org/10.3390/plants14101559 - 21 May 2025
Viewed by 550
Abstract
Salinity poses a significant challenge in modern agriculture, often inhibiting growth and yield, especially in sensitive crops like onions (Allium cepa L.). This study evaluated the effectiveness of a freshwater-algae-based biostimulant on two onion cultivars, Franciscana IPA-10 and Vale Ouro IPA-11, to [...] Read more.
Salinity poses a significant challenge in modern agriculture, often inhibiting growth and yield, especially in sensitive crops like onions (Allium cepa L.). This study evaluated the effectiveness of a freshwater-algae-based biostimulant on two onion cultivars, Franciscana IPA-10 and Vale Ouro IPA-11, to mitigate saline irrigation’s adverse effects. Five biostimulant concentrations (0, 1, 2, 3, and 4 mL L−1, applied to the soil) were tested, along with two foliar treatments at 2 mL L−1 as controls. Our findings showed that applying 4 mL L−1 to the soil boosted growth rates to 1.0 cm per day (1), increased the potassium-to-sodium ratio in bulbs, and improved both average bulb weight by 25.11% and overall productivity by 24.28%, relative to untreated conditions. These results suggest that the biostimulant at 4 mL L−1 is an effective method to enhance resilience to saline stress and increase productivity in the IPA-10 and IPA-11 cultivars. However, while the biostimulant improved plant performance, it did not counteract the accumulation of salts in the soil. Therefore, additional management practices such as leaching and drainage are recommended to ensure sustainable onion production under saline water irrigation. Full article
Show Figures

Figure 1

17 pages, 2132 KiB  
Review
Onion Male Sterility: Genetics, Genomics and Breeding
by Hela Chikh-Rouhou, Saurabh Singh, Srija Priyadarsini and Cristina Mallor
Horticulturae 2025, 11(5), 539; https://doi.org/10.3390/horticulturae11050539 - 16 May 2025
Cited by 1 | Viewed by 1001
Abstract
Onion, belonging to the Allium genus, is an essential and versatile vegetable crop that plays a pivotal role in culinary traditions worldwide. Renowned for its distinctive flavor and nutritional value, onion is an indispensable ingredient in countless dishes. As the global demand for [...] Read more.
Onion, belonging to the Allium genus, is an essential and versatile vegetable crop that plays a pivotal role in culinary traditions worldwide. Renowned for its distinctive flavor and nutritional value, onion is an indispensable ingredient in countless dishes. As the global demand for onion continues to surge, securing a stable supply of high-quality, high-yielding onion varieties becomes ever more pressing. The onion umbel bears numerous tiny flowers that are protandrous in nature. Hybrid breeding is limited in onion due to high inbreeding depression, tedious emasculation and lack of elite inbreds. In this quest for crop improvement, the phenomenon of male sterility stands out as a key tool in modern onion breeding. Male sterility, which is recognized as the incapacity to produce viable pollen grains, inhibition of anther dehiscence and production of non-functional male gametes, has been harnessed as a mechanism to control cross-pollination and escalating hybrid development. The successful utilization of stable male sterile lines in onion holds the promise of producing uniform, high-yielding and disease-resistant hybrids. In recent decades, scientific advances have illuminated the molecular intricacies underlying male sterility systems in onion. Much progress has been made in elucidating the regulation of male sterility systems in the post-genomics era. This review highlights the current status of molecular markers linked with male sterility and provides genetic and molecular insights into its regulation. Additionally, it discusses the role of male sterility as a transformative tool in onion breeding in the genomics era. Full article
(This article belongs to the Special Issue Vegetable Genomics and Breeding Research)
Show Figures

Figure 1

18 pages, 4186 KiB  
Article
Agro-Industrial Waste from Pistacia vera: Chemical Profile and Bioactive Properties
by Mauricio Piñeiro, Victoria Parera, Javier E. Ortiz, Olimpia Llalla-Cordova, Sofia Manrique, Brisa Castro, Maximiliano Ighani, Lorena C. Luna and Gabriela E. Feresin
Plants 2025, 14(10), 1420; https://doi.org/10.3390/plants14101420 - 9 May 2025
Viewed by 496
Abstract
In Argentina and globally, pistachio (Pistacia vera) production has significantly grown, driven by its high nutritional value and food industry demand. Its harvesting and processing generate about 40% of pistachio waste (PW), including leaves, twigs, seed coats, green, and empty kernels. [...] Read more.
In Argentina and globally, pistachio (Pistacia vera) production has significantly grown, driven by its high nutritional value and food industry demand. Its harvesting and processing generate about 40% of pistachio waste (PW), including leaves, twigs, seed coats, green, and empty kernels. Underutilized PW has led to environmental problems, including soil and water contamination by landfill accumulation. However, it could be a potential source of undiscovered bioactive compounds. This study aimed to characterize the chemical profile and to evaluate the bioactive properties of PW. The dried pistachio waste (dPW) was used to prepare the pistachio waste decoction (PWD) (10% w/v). The total phenolic content (TPC) and flavonoid content (FC) were quantified, and the chemical profile was analyzed using UPLC-DAD-ESI-MS/MS. Nematicidal activity against Meloidogyne incognita (J2), acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibition, antioxidant capacity (ABTS, DPPH, FRAP), and phytotoxicity on Allium cepa, Lactuca sativa, and Raphanus sativus were evaluated. The UPLC-DAD-ESI-MS/MS analysis identified 26 compounds, including phenolics, flavonoids, and unsaturated fatty acids. The main compounds were gallic acid, anacardic acid, and quercetin derivatives. The TPC and FC were 212.65 mg GAE/g dPW and 0.022 mg QE/g dPW, respectively, displaying strong antioxidant activity across the assays DPPH, ABTS, and FRAP. PWD exhibited nematicidal activity against M. incognita (J2) (LC50 = 0.12% at 24 h). Alterations in the cuticle were observed, including structural disorganization and detachment from internal tissues. Additionally, a remarkable cholinesterase inhibitory effect was detected at 2.0% PWD (42.65% for AChE and 58.90% for BuChE). PWD showed low phytotoxic effects across the tested species, and the germination percentage (GP) and the mean germination time (MGT) were not significantly affected (GP > 79%). These findings highlight the potential of PW as a sustainable alternative for M. incognita control, the remarkable nematicidal, anticholinesterase, and antioxidant properties, and the low phytotoxicity, supporting its use in sustainable agricultural practices. Full article
Show Figures

Figure 1

26 pages, 7173 KiB  
Review
Recent Developments in the Use of Covalent Organic Frameworks for Photocatalytic Water Decontamination
by Víctor Cepa-López, Miguel Sánchez-Fuente, Alicia Moya and Rubén Mas-Ballesté
Inorganics 2025, 13(5), 152; https://doi.org/10.3390/inorganics13050152 - 6 May 2025
Viewed by 1141
Abstract
Water pollution by persistent organic and inorganic contaminants constitutes a significant problem for ecosystems and public health. Organic substances such as dyes, pharmaceutical residues, pesticides, and phenolic compounds are increasingly detected in water due to industrial and agricultural activities. Alongside these, toxic heavy [...] Read more.
Water pollution by persistent organic and inorganic contaminants constitutes a significant problem for ecosystems and public health. Organic substances such as dyes, pharmaceutical residues, pesticides, and phenolic compounds are increasingly detected in water due to industrial and agricultural activities. Alongside these, toxic heavy metals contribute to the complexity of water treatment challenges. Conventional remediation methods often fall short due to high operational costs or limited efficiency. In this context, photocatalysis has emerged as a promising approach for pollutant degradation in water under light irradiation. In this sense, covalent organic frameworks (COFs), a class of porous, crystalline materials formed by the covalent linkage of organic units, offer great advantages as photocatalysts. Their tunable electronic properties, structural diversity, and high stability under aqueous conditions make them ideal for visible light-driven processes. This review explores the structural features that govern the photocatalytic activity of COFs, including conjugation, bandgap modulation, and donor–acceptor structures. Mechanistic insights into photocatalytic degradation are also discussed. Finally, examples of pre-designed COFs are presented with their application in the photodegradation of water pollutants, and their main reactive oxygen species (ROS) involved in the photodegradation mechanism. Overall, this review aims to provide a foundation for the rational design of COFs in advanced water treatment technologies. Full article
(This article belongs to the Special Issue Crystalline Porous Materials for Environment and Sensing)
Show Figures

Graphical abstract

24 pages, 5186 KiB  
Article
Shift of Microbiota and Modulation of Resistome in the Ceca of Broiler Chicken Fed Berry Pomace Alone or in Combination of a Multienzyme Mixture
by Munene Kithama, Yousef I. Hassan, Xianhua Yin, Joshua Tang, Lindsey Clairmont, Olimpia Sienkiewicz, Kelly Ross, Calvin Ho-Fung Lau, Dion Lepp, Xin Zhao, Elijah G. Kiarie and Moussa S. Diarra
Microorganisms 2025, 13(5), 1044; https://doi.org/10.3390/microorganisms13051044 - 30 Apr 2025
Viewed by 382
Abstract
Alternative feed additives are being investigated due to the restriction of antibiotics use to decrease antimicrobial resistance (AMR) in food-producing animals. This study investigated the effects of dietary American cranberry (Vaccinium macrocarpon) and wild blueberry (V. angustifolium) pomaces on [...] Read more.
Alternative feed additives are being investigated due to the restriction of antibiotics use to decrease antimicrobial resistance (AMR) in food-producing animals. This study investigated the effects of dietary American cranberry (Vaccinium macrocarpon) and wild blueberry (V. angustifolium) pomaces on the cecal microbiota and resistome profiles as well as the short-chain fatty acid levels. Male broiler chickens Cobb500 were fed a basal diet with either 55 ppm bacitracin methylene disalicylate (BMD); 0.5% (CRP0.5) and 1% (CRP1) cranberry pomace; and 0.5% (LBP0.5) and 1% (LBP1) lowbush blueberry pomace with or without a multienzyme mixture (ENZ). The results showed that at 21 days of age, the total coliform counts decreased in the CRP0.5-fed birds compared to BMD (p < 0.05). The use of pomace significantly increased the abundance of Lactobacillus and Bacteroides regardless of ENZ, while CRP decreased the Proteobacteria phylum abundance. In-feed ENZ tended to increase the relative abundance of genes conferring aminoglycoside resistance. Treatment with CRP0.5 decreased the abundance of cepA genes encoding for macrolide (MACROLIDE) and lincomycin (InuD) resistance while increasing those for tetracycline (tetO and tetX) resistance. These results showed, for the first time, the potential of the studied enzymes in influencing berry pomace’s effects on antimicrobial resistance gene profiles in broilers. Full article
Show Figures

Figure 1

16 pages, 2705 KiB  
Article
The Effects of Increasing Boron on Growth, Yield, and Nutritional Value of Scallion (Allium cepa L.) Grown as a Bunch Harvest
by Halil Samet and Yakup Çikili
Horticulturae 2025, 11(5), 450; https://doi.org/10.3390/horticulturae11050450 - 22 Apr 2025
Viewed by 513
Abstract
Scallions are a highly valued leafy vegetable and are enjoyed worldwide due to their appealing taste and nutritional benefits. A combination of short cultivation cycles and high market demand not only enhances food security but also offers a profitable opportunity for growers. In [...] Read more.
Scallions are a highly valued leafy vegetable and are enjoyed worldwide due to their appealing taste and nutritional benefits. A combination of short cultivation cycles and high market demand not only enhances food security but also offers a profitable opportunity for growers. In our study, we aim to evaluate the effect of increasing boron (B) applications, specifically 0, 0.2, 0.4, 0.8, 1.2, and 1.6 mM B supplied as boric acid (H3BO3) in the nutrient solution, on several key physiological and agronomic parameters in scallions. Results showed that the effects of increasing B levels on biomass production were insignificant, but the root fresh weight (FW) significantly decreased with all B levels. Higher B levels (1.2 and 1.6 mM) caused decreases of 22.9% and 29.6%, respectively. The effects of all B levels on photosynthetic pigment contents [chlorophyll (Chl) a, b, a + b, and carotenoid (Car)], root and shoot membrane permeability (MP), and root, shoot, and leaf nutritional status [phosphorus (P), potassium (K), calcium (Ca), and sodium (Na) concentrations] were found insignificantly. However, all B levels caused a significant increase in the B concentrations of the root, shoot, and leaf of scallions and plants translocated the majority of applied B into their leaves. The translocation factor (TF) of B from the root to the leaf was found to be 138.2%, 133.3%, and 107.3% with 0.8, 1.2, and 1.6 mM B levels, respectively. Moreover, plants exposed to high levels of B showed no significant response or toxicity symptoms. We concluded that B is a phloem mobile element in onion, a non-graminaceous monocotyledonous plant, and therefore accumulates in the upper organs but illustrates partial toxicity symptoms in leaves. Studies with higher B concentrations could be recommended to determine critical B levels for green onion production in B-contaminated areas. Full article
(This article belongs to the Special Issue Biotic and Abiotic Stress Responses of Horticultural Plants)
Show Figures

Figure 1

20 pages, 1683 KiB  
Article
Phenol, Cyanide, and Thiocyanate in Aquatic Media: The Ecotoxicity of Individual Substances and Their Mixtures
by Ana Tutić, Martina Miloloža, Matija Cvetnić, Šime Ukić and Dajana Kučić Grgić
Environments 2025, 12(4), 128; https://doi.org/10.3390/environments12040128 - 20 Apr 2025
Viewed by 531
Abstract
Although the coking industry is a major polluter, it is still an important and irreplaceable industry in many countries. Wastewater from the coking industry typically contains large amounts of various hazardous substances, including phenols, cyanides, and thiocyanates; we conducted a comprehensive study on [...] Read more.
Although the coking industry is a major polluter, it is still an important and irreplaceable industry in many countries. Wastewater from the coking industry typically contains large amounts of various hazardous substances, including phenols, cyanides, and thiocyanates; we conducted a comprehensive study on their ecotoxicity. This included five different toxicity tests with common species from different trophic levels: the bacteria Aliivibrio fischeri and Pseudomonas putida, the microalgae Chlorella sp., the duckweed Lemna minor, and the onion plant Allium cepa. These tests have rarely or never been used for these three toxicants. The results show that cyanide generally has the highest toxicity, while phenol has a relatively equal or higher toxicity than thiocyanate, depending on the test. Since no data on the joint toxic action of these three toxicants can be found in the literature, and although their joint occurrence in the aquatic environment is very likely, we performed joint toxic action analysis. The analysis was performed for binary and ternary mixtures of the toxicants using the Aliivibrio fischeri test. The concentration addition model was used as a reference model for the toxic behavior of these mixtures. The results obtained showed a synergistic deviation from the concentration addition model for combinations of phenol with cyanide and with thiocyanate, while the combination of cyanide and thiocyanate led to additive toxic behavior. Full article
(This article belongs to the Special Issue Environmental Pollution Risk Assessment)
Show Figures

Figure 1

17 pages, 1331 KiB  
Article
Unlocking the Health Secrets of Onions: Investigating the Phytochemical Power and Beneficial Properties of Different Varieties and Their Parts
by Adele Muscolo, Angela Maffia, Federica Marra, Santo Battaglia, Mariateresa Oliva, Carmelo Mallamaci and Mariateresa Russo
Molecules 2025, 30(8), 1758; https://doi.org/10.3390/molecules30081758 - 14 Apr 2025
Viewed by 1776
Abstract
Onions (Allium cepa L.) are widely consumed worldwide and are recognized for their high content of bioactive compounds with potential health benefits. This study investigates the nutritional and phytochemical properties of three onion varieties—Tropea red onion, red onion, and yellow onion—analyzed in [...] Read more.
Onions (Allium cepa L.) are widely consumed worldwide and are recognized for their high content of bioactive compounds with potential health benefits. This study investigates the nutritional and phytochemical properties of three onion varieties—Tropea red onion, red onion, and yellow onion—analyzed in their whole form as well as in their peel and pulp. An innovative drying system was employed to assess its impact on the retention of bioactive compounds. The results highlight significant differences in nutrient composition among varieties and onion parts. The peel exhibited the highest concentrations of proteins, phenolic compounds, flavonoids, and antioxidants, followed by the whole onion and pulp. Tropea red onion stood out for its superior antioxidant capacity, vitamin C content, and phenolic acid levels, reinforcing its potential for functional food applications. This study also revealed that mineral content, particularly calcium, potassium, and sulfates, varied across onion varieties, influencing their nutritional and health-promoting properties. These findings support the valorization of onion byproducts for their bioactive potential and sustainability in the food industry. The data emphasize the need for further research on innovative processing techniques that enhance the bioavailability and effectiveness of onion-derived health-promoting compounds. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Products in Food—2nd Edition)
Show Figures

Graphical abstract

Back to TopTop