Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (113)

Search Parameters:
Keywords = CALIOP

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 14740 KB  
Article
Cloud Mask Detection by Combining Active and Passive Remote Sensing Data
by Chenxi He, Zhitong Wang, Qin Lang, Lan Feng, Ming Zhang, Wenmin Qin, Minghui Tao, Yi Wang and Lunche Wang
Remote Sens. 2025, 17(19), 3315; https://doi.org/10.3390/rs17193315 - 27 Sep 2025
Abstract
Clouds cover nearly two-thirds of Earth’s surface, making reliable cloud mask data essential for remote sensing applications and atmospheric research. This study develops a TrAdaBoost transfer learning framework that integrates active CALIOP and passive MODIS observations to enable unified, high-accuracy cloud detection across [...] Read more.
Clouds cover nearly two-thirds of Earth’s surface, making reliable cloud mask data essential for remote sensing applications and atmospheric research. This study develops a TrAdaBoost transfer learning framework that integrates active CALIOP and passive MODIS observations to enable unified, high-accuracy cloud detection across FY-4A/AGRI, FY-4B/AGRI, and Himawari-8/9 AHI sensors. The proposed TrAdaBoost Cloud Mask algorithm (TCM) achieves robust performance in dual validations with CALIPSO VFM and MOD35/MYD35, attaining a hit rate (HR) above 0.85 and a cloudy probability of detection (PODcld) exceeding 0.89. Relative to official products, TCM consistently delivers higher accuracy, with the most pronounced gains on FY-4A/AGRI. SHAP interpretability analysis highlights that 0.47 μm albedo, 10.8/10.4 μm and 12.0/12.4 μm brightness temperatures and geometric factors such as solar zenith angles (SZA) and satellite zenith angles (VZA) are key contributors influencing cloud detection. Multidimensional consistency assessments further indicate strong inter-sensor agreement under diverse SZA and land cover conditions, underscoring the stability and generalizability of TCM. These results provide a robust foundation for the advancement of multi-source satellite cloud mask algorithms and the development of cloud data products integrated. Full article
(This article belongs to the Special Issue Remote Sensing in Clouds and Precipitation Physics)
Show Figures

Figure 1

18 pages, 4791 KB  
Article
A Machine-Learning-Based Cloud Detection and Cloud-Top Thermodynamic Phase Algorithm over the Arctic Using FY3D/MERSI-II
by Caixia Yu, Xiuqing Hu, Yanyu Lu, Wenyu Wu and Dong Liu
Remote Sens. 2025, 17(18), 3128; https://doi.org/10.3390/rs17183128 - 9 Sep 2025
Viewed by 398
Abstract
The Arctic, characterized by extensive ice and snow cover with persistent low solar elevation angles and prolonged polar nights, poses significant challenges for conventional spectral threshold methods in cloud detection and cloud-top thermodynamic phase classification. The study addressed these limitations by combining active [...] Read more.
The Arctic, characterized by extensive ice and snow cover with persistent low solar elevation angles and prolonged polar nights, poses significant challenges for conventional spectral threshold methods in cloud detection and cloud-top thermodynamic phase classification. The study addressed these limitations by combining active and passive remote sensing and developing a machine learning framework for cloud detection and cloud-top thermodynamic phase classification. Utilizing the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) cloud product from 2021 as the truth reference, the model was trained with spatiotemporally collocated datasets from FY3D/MERSI-II (Medium Resolution Spectral Imager-II) and CALIOP. The AdaBoost (Adaptive Boosting) machine learning algorithm was employed to construct the model, with considerations for six distinct Arctic surface types to enhance its performance. The accuracy test results showed that the cloud detection model achieved an accuracy of 0.92, and the cloud recognition model achieved an accuracy of 0.93. The inversion performance of the final model was then rigorously evaluated using a completely independent dataset collected in July 2022. Our findings demonstrated that our model results align well with results from CALIOP, and the detection and identification outcomes across various surface scenarios show high consistency with the actual situations displayed in false-color images. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

20 pages, 10137 KB  
Article
A Multi-Feature Fusion Approach for Sea Fog Detection Under Complex Background
by Shuyuan Yang, Yuzhu Tang, Zeming Zhou, Xiaofeng Zhao, Pinglv Yang, Yangfan Hu and Ran Bo
Remote Sens. 2025, 17(14), 2409; https://doi.org/10.3390/rs17142409 - 12 Jul 2025
Viewed by 415
Abstract
Sea fog is a natural phenomenon that significantly reduces visibility, posing navigational hazards for ships and impacting coastal activities. Geostationary meteorological satellite data have proven to be indispensable for sea fog monitoring due to their large spatial coverage and spatiotemporal consistency. However, the [...] Read more.
Sea fog is a natural phenomenon that significantly reduces visibility, posing navigational hazards for ships and impacting coastal activities. Geostationary meteorological satellite data have proven to be indispensable for sea fog monitoring due to their large spatial coverage and spatiotemporal consistency. However, the spectral similarities between sea fog and low clouds result in omissions and misclassifications. Furthermore, high clouds obscure certain sea fog regions, leading to under-detection and high false alarm rates. In this paper, we present a novel sea fog detection method to alleviate the challenges. Specifically, the approach leverages a fusion of spectral, motion, and spatiotemporal texture consistency features to effectively differentiate sea fog and low clouds. Additionally, a multi-scale self-attention module is incorporated to recover the sea fog region obscured by clouds. Based on the spatial distribution characteristics of sea fog and clouds, we redesigned the loss function to integrate total variation loss, focal loss, and dice loss. Experimental results validate the effectiveness of the proposed method, and the detection accuracy is compared with the vertical feature mask produced by the CALIOP and exhibits a high level of consistency. Full article
(This article belongs to the Special Issue Observations of Atmospheric and Oceanic Processes by Remote Sensing)
Show Figures

Graphical abstract

24 pages, 5485 KB  
Article
A Machine Learning Algorithm Using Texture Features for Nighttime Cloud Detection from FY-3D MERSI L1 Imagery
by Yilin Li, Yuhao Wu, Jun Li, Anlai Sun, Naiqiang Zhang and Yonglou Liang
Remote Sens. 2025, 17(6), 1083; https://doi.org/10.3390/rs17061083 - 19 Mar 2025
Cited by 1 | Viewed by 725
Abstract
Accurate cloud detection is critical for quantitative applications of satellite-based advanced imager observations, yet nighttime cloud detection presents challenges due to the lack of visible and near-infrared spectral information. Nighttime cloud detection using infrared (IR)-only information needs to be improved. Based on a [...] Read more.
Accurate cloud detection is critical for quantitative applications of satellite-based advanced imager observations, yet nighttime cloud detection presents challenges due to the lack of visible and near-infrared spectral information. Nighttime cloud detection using infrared (IR)-only information needs to be improved. Based on a collocated dataset from Fengyun-3D Medium Resolution Spectral Imager (FY-3D MERSI) Level 1 data and CALIPSO CALIOP lidar Level 2 product, this study proposes a novel framework leveraging Light Gradient-Boosting Machine (LGBM), integrated with grey level co-occurrence matrix (GLCM) features extracted from IR bands, to enhance nighttime cloud detection capabilities. The LGBM model with GLCM features demonstrates significant improvements, achieving an overall accuracy (OA) exceeding 85% and an F1-Score (F1) of nearly 0.9 when validated with an independent CALIOP lidar Level 2 product. Compared to the threshold-based algorithm that has been used operationally, the proposed algorithm exhibits superior and more stable performance across varying solar zenith angles, surface types, and cloud altitudes. Notably, the method produced over 82% OA over the cryosphere surface. Furthermore, compared to LGBM models without GLCM inputs, the enhanced model effectively mitigates the thermal stripe effect of MERSI L1 data, yielding more accurate cloud masks. Further evaluation with collocated MODIS-Aqua cloud mask product indicates that the proposed algorithm delivers more precise cloud detection (OA: 90.30%, F1: 0.9397) compared to that of the MODIS product (OA: 84.66%, F1: 0.9006). This IR-alone algorithm advancement offers a reliable tool for nighttime cloud detection, significantly enhancing the quantitative applications of satellite imager observations. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

28 pages, 18392 KB  
Article
CALIPSO Overpasses During Three Atmospheric Pollen Events Detected by Hirst-Type Volumetric Samplers in Two Urban Cities in Greece
by Archontoula Karageorgopoulou, Elina Giannakaki, Christos Stathopoulos, Thanasis Georgiou, Eleni Marinou, Vassilis Amiridis, Ioanna Pyrri, Maria-Christina Gatou, Xiaoxia Shang, Athanasios Charalampopoulos, Despoina Vokou and Athanasios Damialis
Atmosphere 2025, 16(3), 317; https://doi.org/10.3390/atmos16030317 - 10 Mar 2025
Viewed by 1824
Abstract
Vertically retrieved optical properties by Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) were investigated in the case of three selected events over Athens and Thessaloniki with documented high pollen concentrations. Hirst-type volumetric samplers were used to detect and characterize the pollen during [...] Read more.
Vertically retrieved optical properties by Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) were investigated in the case of three selected events over Athens and Thessaloniki with documented high pollen concentrations. Hirst-type volumetric samplers were used to detect and characterize the pollen during the CALIPSO overpasses. Only cases with a total pollen concentration greater than 400 grains m−3 for at least two hours per day were considered severe pollen events, while model simulations were used to exclude the presence of other depolarizing aerosol types. This study provides mean values of lidar-derived optical properties inside the detected pollen layers; i.e., optical values represent the atmosphere with the presence of pollen, in urban cities of Greece. Specifically, three observed aerosol layers, one over Athens and two over Thessaloniki with particulate color ratios of 0.652 ± 0.194, 0.638 ± 0.362, and 0.456 ± 0.284, and depolarization ratios of 8.70 ± 6.26%, 28.30 ± 14.16%, and 8.96 ± 6.87%, respectively, were misclassified by CALIPSO as marine-dusty marine, dust, and polluted dust. In cases of intense pollen presence, CALIPSO vertical profiles and aerobiological monitoring methods may be used synergistically to better characterize the atmospheric pollen layers. Full article
Show Figures

Graphical abstract

23 pages, 5994 KB  
Article
Three-Dimensional Distribution of Arctic Aerosols Based on CALIOP Data
by Yukun Sun and Liang Chang
Remote Sens. 2025, 17(5), 903; https://doi.org/10.3390/rs17050903 - 4 Mar 2025
Viewed by 1014
Abstract
Tropospheric aerosols play an important role in the notable warming phenomenon and climate change occurring in the Arctic. The accuracy of Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol optical depth (AOD) and the distribution of Arctic AOD based on the CALIOP Level 2 [...] Read more.
Tropospheric aerosols play an important role in the notable warming phenomenon and climate change occurring in the Arctic. The accuracy of Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol optical depth (AOD) and the distribution of Arctic AOD based on the CALIOP Level 2 aerosol products and the Aerosol Robotic Network (AERONET) AOD data during 2006–2021 were analyzed. The distributions, trends, and three-dimensional (3D) structures of the frequency of occurrences (FoOs) of different aerosol subtypes during 2006–2021 are also discussed. We found that the CALIOP AOD exhibited a high level of agreement with AERONET AOD, with a correlation coefficient of approximately 0.67 and an RMSE of less than 0.1. However, CALIOP usually underestimated AOD over the Arctic, especially in wet conditions during the late spring and early summer. Moreover, the Arctic AOD was typically higher in winter than in autumn, summer, and spring. Specifically, polluted dust (PD), dust, and clean marine (CM) were the dominant aerosol types in spring, autumn, and winter, while in summer, ES (elevated smoke) from frequent wildfires reached the highest FoOs. There were increasing trends in the FoOs of CM and dust, with decreasing trends in the FoOs of PD, PC (polluted continental), and DM (dusty marine) due to Arctic amplification. In general, the vertical distribution patterns of different aerosol types showed little seasonal variation, but their horizontal distribution patterns at various altitudes varied by season. Furthermore, locally sourced aerosols such as dust in Greenland, PD in eastern Siberia, and ES in middle Siberia can spread to surrounding areas and accumulate further north, affecting a broader region in the Arctic. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

22 pages, 35962 KB  
Article
Evaluation of ICESat-2 ATL09 Atmospheric Products Using CALIOP and MODIS Space-Based Observations
by Kenneth E. Christian, Stephen P. Palm, John E. Yorks and Edward P. Nowottnick
Remote Sens. 2025, 17(3), 482; https://doi.org/10.3390/rs17030482 - 30 Jan 2025
Cited by 1 | Viewed by 1204
Abstract
Since its launch in 2018, the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) mission has provided atmospheric products, including calibrated backscatter profiles and cloud and aerosol layer detection. While not the primary focus of the mission, these products garnered more interest after the [...] Read more.
Since its launch in 2018, the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) mission has provided atmospheric products, including calibrated backscatter profiles and cloud and aerosol layer detection. While not the primary focus of the mission, these products garnered more interest after the end of Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) data collection in 2023. In comparing the cloud and aerosol detection frequencies from CALIOP and ICESat-2, we find general agreement in the global patterns. The global cloud detection frequencies were similar in June, July, and August of 2019 (64.7% for ICESat-2 and 59.8% for CALIOP), as were the location and altitude of the tropical maximum; however, low daytime signal-to-noise ratios (SNRs) reduced ICESat-2’s detection frequencies compared to those of CALIOP. The ICESat-2 global aerosol detection frequencies were likewise lower. ICESat-2 generally retrieved a higher average global aerosol optical depth compared to the Moderate Resolution Imaging Spectroradiometer (MODIS) over the ocean, but the two were in closer agreement over regions with higher aerosol concentrations such as the Eastern Atlantic Ocean and the Northern Indian Ocean. The ICESat-2 and CALIOP orbital coincidences reveal highly correlated backscatter profiles as well as similar cloud and aerosol layer top altitudes. Future work with machine learning denoising techniques may allow for improved feature detection, especially during daytime. Full article
Show Figures

Figure 1

18 pages, 2990 KB  
Article
Statistics of Smoke Sphericity and Optical Properties Using Spaceborne Lidar Measurements
by Natalie Midzak, John E. Yorks and Jianglong Zhang
Remote Sens. 2025, 17(3), 409; https://doi.org/10.3390/rs17030409 - 25 Jan 2025
Viewed by 1211
Abstract
Smoke particles from biomass burning events are typically assumed to be spherical despite previous observations of non-spherical smoke. As such, large uncertainties exist in some physical and optical parameters used in lidar aerosol retrievals, including depolarization and lidar ratio of non-spherical smoke aerosols. [...] Read more.
Smoke particles from biomass burning events are typically assumed to be spherical despite previous observations of non-spherical smoke. As such, large uncertainties exist in some physical and optical parameters used in lidar aerosol retrievals, including depolarization and lidar ratio of non-spherical smoke aerosols. In this analysis, using NASA’s Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data during the biomass burning season over Africa from 2015 to 2017, we studied the frequency and distribution of non-spherical smoke particles to compare with findings of smoke particle non-sphericity from the Cloud-Aerosol Transport System (CATS) lidar. A supplemental smoke aerosol typing algorithm was developed to identify aerosol layers containing non-spherical smoke particles, which might otherwise be misclassified as desert dust, polluted dust, or dusty marine by the CALIOP standard aerosol typing algorithm. Then, the relationships between smoke particle sphericity, lidar ratio, and relative humidity are analyzed for CATS and CALIOP observations over Africa. Approximately 18% of smoke layers observed by CALIOP over Africa are non-spherical (depolarization ratio > 0.075) and agree with spatial distributions of non-spherical smoke found in CATS observations. A dependance of lidar ratio on relative humidity was found for layers of spherical smoke over Africa in both CATS and CALIOP data; however, no such dependance was evident for the depolarization ratio and layer relative humidity. While the supplemental smoke aerosol typing algorithm presented in this analysis was targeted only for specific biomass burning regions during biomass burning seasons and is not meant for global operational use, it presents one potential method for improved backscatter lidar aerosol typing. These results suggest that a dynamic lidar ratio, based on layer-relative humidity for spherical smoke, could be used to reduce uncertainties in smoke aerosol extinction retrievals for future backscatter lidars. Full article
Show Figures

Figure 1

17 pages, 10747 KB  
Article
Evaluation and Improvement of a CALIPSO-Based Algorithm for Cloud Base Height in China
by Ruolin Li and Xiaoyan Ma
Remote Sens. 2024, 16(15), 2801; https://doi.org/10.3390/rs16152801 - 31 Jul 2024
Viewed by 1943
Abstract
Clouds are crucial in regulating the Earth’s energy budget. Global cloud top heights have been easily retrieved from satellite measurements, but there are few methods for determining cloud base height (CBH) from satellite measurements. The Cloud Base Altitude Spatial Extrapolator (CBASE) algorithm was [...] Read more.
Clouds are crucial in regulating the Earth’s energy budget. Global cloud top heights have been easily retrieved from satellite measurements, but there are few methods for determining cloud base height (CBH) from satellite measurements. The Cloud Base Altitude Spatial Extrapolator (CBASE) algorithm was proposed to derive the height of the lower-troposphere liquid cloud base by using the Cloud-Aerosol Lidar with Orthogonal polarization cloud aerosol LiDAR (CALIOP) profiles and weather observations at airports from aviation routine and special weather report (METARs and SPECIs, called METAR) observation data in the United States. A modification to the CBASE algorithm over China (CNMETAR-CBASE) is presented in this paper. In this paper, the ability of the CBASE algorithm to calculate CBH in China is evaluated, and METAR observations over China (CNMETAR) were then used to modify the CBASE algorithm. The results including CNMETAR observation data in China can better retrieve CBH over China compared with the results using the original CBASE algorithm, and the accuracy of the global CBH results has been improved. Overestimations of CBH with the original algorithm range from 500 to 800 m in China, which have been reduced to about 300 m with an improved algorithm. The deviations calculated by the algorithm also have a significant reduction, from 480 m (CBASE) to 420 m (CNMETAR-CBASE). In conclusion, the modified CBASE algorithm not only calculates the CBH more accurately in China but also improves the results of the global CBH retrieved from satellites. Full article
(This article belongs to the Special Issue Remote Sensing: 15th Anniversary)
Show Figures

Figure 1

24 pages, 6596 KB  
Article
A Deep Learning Lidar Denoising Approach for Improving Atmospheric Feature Detection
by Patrick Selmer, John E. Yorks, Edward P. Nowottnick, Amanda Cresanti and Kenneth E. Christian
Remote Sens. 2024, 16(15), 2735; https://doi.org/10.3390/rs16152735 - 26 Jul 2024
Cited by 10 | Viewed by 3760
Abstract
Space-based atmospheric backscatter lidars provide critical information about the vertical distribution of clouds and aerosols, thereby improving our understanding of the climate system. They are additionally useful for detecting hazards to aviation and human health, such as volcanic plumes and man-made pollution events. [...] Read more.
Space-based atmospheric backscatter lidars provide critical information about the vertical distribution of clouds and aerosols, thereby improving our understanding of the climate system. They are additionally useful for detecting hazards to aviation and human health, such as volcanic plumes and man-made pollution events. The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP, 2006–2023), Cloud-Aerosol Transport System (CATS, 2015–2017), and Advanced Topographic Laser Altimeter System (ATLAS 2018–present) are three such lidars that operated within the past 20 years. The signal-to-noise ratio (SNR) for these lidars is significantly lower in daytime data compared with nighttime data due to the solar background signal increasing the detector response noise. Averaging horizontally across profiles has been the standard way to increase SNR, but this comes at the expense of resolution. Modern, deep learning-based denoising algorithms can be applied to improve the SNR without coarsening resolution. This paper describes how one such model architecture, Dense Dense U-Net (DDUNet), was trained to denoise CATS 1064 nm raw signal data (photon counts) using artificially noised nighttime data. Simulated CATS daytime 1064 nm data were then created to assess the model’s performance. The denoised simulated data increased the daytime SNR by a factor of 2.5 (on average) and decreased minimum detectable backscatter (MDB) to ~7.3×104 km−1sr−1, which is lower than the CALIOP 1064 nm night MDB value of 8.6×104 km−1sr−1. Layer detection was performed on simulated 2 km horizontal resolution denoised and 60 km averaged data. Despite the finer resolution input, the denoised layers had more true positives, fewer false positives, and an overall Jaccard Index of 0.54 versus 0.44 when compared to the layers detected on averaged data. Layer detection was also performed on a full month of denoised daytime CATS data (Aug. 2015) to detect layers for comparison with CATS standard Level 2 (L2) product layers. The detection on the denoised data yielded 2.33 times more, higher-quality bins within detected layers at 2.7–33 times finer resolution than the CATS L2 products. Full article
Show Figures

Graphical abstract

22 pages, 9422 KB  
Article
Seasonal Variability in the Relationship between the Volume-Scattering Function at 180° and the Backscattering Coefficient Observed from Spaceborne Lidar and Biogeochemical Argo (BGC-Argo) Floats
by Miao Sun, Peng Chen, Zhenhua Zhang and Yunzhou Li
Remote Sens. 2024, 16(15), 2704; https://doi.org/10.3390/rs16152704 - 24 Jul 2024
Viewed by 1180
Abstract
The derivation of the particulate-backscattering coefficient (bbp) from Lidar signals is highly influenced by the parameter χp(π), which is defined by χp(π) = bbp/(2πβp(π)). This parameter facilitates the correlation of the [...] Read more.
The derivation of the particulate-backscattering coefficient (bbp) from Lidar signals is highly influenced by the parameter χp(π), which is defined by χp(π) = bbp/(2πβp(π)). This parameter facilitates the correlation of the particulate-volume-scattering function at 180°, denoted βp(π), with bbp. However, studies exploring the global and seasonal fluctuations of χp(π) remain sparse, largely due to measurement difficulties of βp(π) in the field conditions. This study pioneers the global data collection for χp(π), integrating bbp observations from Biogeochemical Argo (BGC-Argo) floats and βp(π) data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) spaceborne lidar. Our findings indicate that χp(π) experiences significant seasonal differences globally, peaking during summer and nadiring in winter. The global average χp(π) was calculated as 0.40, 0.48, 0.43, and 0.35 during spring, summer, autumn, and winter, respectively. The daytime values of χp(π) slightly exceeded those registered at night. To illuminate the seasonal variations in χp(π) in 26 sea regions worldwide, we deployed passive ocean color data MODIS bbp and active remote sensing data CALIOP βp(π), distinguishing three primary seasonal change patterns—the “summer peak”, the “decline”, and the “autumn pole”—with the “summer peak” typology being the most common. Post recalibration of the CALIOP bbp product considering seasonal χp(π) variations, we observed substantial statistical improvements. Specifically, the coefficient of determination (R2) markedly improved from 0.84 to 0.89, while the root mean square error (RMSE) declined from 4.0 × 10−4 m−1 to 3.0 × 10−4 m−1. Concurrently, the mean absolute percentage error (MAPE) also dropped significantly, from 31.48% to 25.27%. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

18 pages, 1739 KB  
Article
Polar Stratospheric Cloud Observations at Concordia Station by Remotely Controlled Lidar Observatory
by Luca Di Liberto, Francesco Colao, Federico Serva, Alessandro Bracci, Francesco Cairo and Marcel Snels
Remote Sens. 2024, 16(12), 2228; https://doi.org/10.3390/rs16122228 - 19 Jun 2024
Viewed by 1263
Abstract
Polar stratospheric clouds (PSCs) form in polar regions, typically between 15 and 25 km above mean sea level, when the local temperature is sufficiently low. PSCs play an important role in the ozone chemistry and the dehydration and denitrification of the stratosphere. Lidars [...] Read more.
Polar stratospheric clouds (PSCs) form in polar regions, typically between 15 and 25 km above mean sea level, when the local temperature is sufficiently low. PSCs play an important role in the ozone chemistry and the dehydration and denitrification of the stratosphere. Lidars with a depolarization channel may be used to detect and classify different classes of PSCs. The main PSC classes are water ice, nitric acid trihydrate (NAT), and supercooled ternary solutions (STSs), the latter being liquid droplets consisting of water, nitric acid, and sulfuric acid. PSCs have been observed at the lidar observatory at Concordia Station from 2014 onward. The harsh environmental conditions at Concordia during winter render successful lidar operation difficult. To facilitate the operation of the observatory, several measures have been put in place to achieve an almost complete remote control of the system. PSC occurrence is strongly correlated with local temperatures and is affected by dynamics, as the PSC coverage during the observation season shows. PSC observations in 2021 are shown as an example of the capability and functionality of the lidar observatory. A comparison of the observations with the satellite-borne CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) lidar has been made to demonstrate the quality of the data and their representativeness for the Antarctic Plateau. Full article
Show Figures

Graphical abstract

20 pages, 20652 KB  
Article
Three-Dimensional Structure and Transport Properties of Dust Aerosols in Central Asia—New Insights from CALIOP Observations, 2007–2022
by Jinglong Li, Qing He, Yonghui Wang, Xiaofei Ma, Xueqi Zhang and Yongkang Li
Remote Sens. 2024, 16(12), 2049; https://doi.org/10.3390/rs16122049 - 7 Jun 2024
Cited by 5 | Viewed by 1725
Abstract
Central Asia (CA) is one of the major sources of global dust aerosols. They pose a serious threat to regional climate change and environmental health and also make a significant contribution to the global dust load. However, there is still a gap in [...] Read more.
Central Asia (CA) is one of the major sources of global dust aerosols. They pose a serious threat to regional climate change and environmental health and also make a significant contribution to the global dust load. However, there is still a gap in our understanding of dust transport in this region. Therefore, this study utilizes Cloud–Aerosol LiDAR with Orthogonal Polarization (CALIOP) data from 2007 to 2022 to depict the three-dimensional spatiotemporal distribution of dust aerosols over CA and to analyze their transport processes. In addition, the Tropospheric Monitoring Instrument (TROPOMI) was employed to assist in monitoring the movement of typical dust events, and the trajectory model was utilized to simulate the forward and backward trajectories of a dust incident. Additionally, a random forest (RF) model was employed to rank the contributions of various environmental factors. The findings demonstrate that high extinction values (0.6 km−1) are mostly concentrated within the Tarim Basin of Xinjiang, China, maintaining high values up to 2 km in altitude, with a noticeable decrease as the altitude increases. The frequency of dust occurrences is especially pronounced in the spring and summer seasons, with dust frequencies in the Tarim Basin and the Karakum and Kyzylkum deserts exceeding 80%, indicating significant seasonal and regional differences. The high values of dust optical depth (DOD) in CA are primarily concentrated in the summer, concurrent with the presence of a stable aerosol layer of dust in the atmosphere with a thickness of 0.62 km. Furthermore, dust from CA can traverse the Tianshan mountains via the westerlies, transporting it eastward. Additionally, skin temperature can mitigate regional air pollution. Our results contribute to a deeper understanding of the dynamic processes of dust in CA and provide scientific support for the development of regional climate regulation strategies. Full article
Show Figures

Graphical abstract

6 pages, 1874 KB  
Proceeding Paper
Synergy of CALIOP and Ground-Based Solar Radiometer Data to Study Statistical Characteristics of Aerosols in Regions with a Low Aerosol Load
by Anatoli Chaikovsky, Andrey Bril, Philippe Goloub, Zhengqiang Li, Vladislav Peshcherenkov, Fiodar Asipenka, Luc Blarel, Gael Dubois, Mikhail Korol, Aliaksandr Lapionak, Aleksey Malinka, Natallia Miatselskaya, Thierry Podvin and Ying Zhang
Environ. Sci. Proc. 2024, 29(1), 70; https://doi.org/10.3390/ECRS2023-16860 - 6 Jun 2024
Viewed by 1339
Abstract
The statistical characteristics of combined lidar and radiometric measurements obtained from satellite lidar CALIOP and ground-based sun-radiometer stations were used as input datasets to retrieve the altitude profiles of aerosol parameters (LRS-C technique). The signal-to-noise ratio of the input satellite lidar signals increased [...] Read more.
The statistical characteristics of combined lidar and radiometric measurements obtained from satellite lidar CALIOP and ground-based sun-radiometer stations were used as input datasets to retrieve the altitude profiles of aerosol parameters (LRS-C technique). The signal-to-noise ratio of the input satellite lidar signals increased when averaging over a large array of measured data. An algorithm and software package for processing the input dataset of the LRS-C sounding of atmospheric aerosol in regions with medium and low aerosol loads was developed. This paper presents the results of studying long-term changes in the concentration profiles of aerosol modes in regions of East Europe (AERONET site Minsk, 53.92° N, 27.60° E) and East Antarctic (AERONET site Vechernaya Hill, 67.66° S, 46.16° E). Full article
(This article belongs to the Proceedings of ECRS 2023)
Show Figures

Figure 1

33 pages, 5439 KB  
Article
Assessing Lidar Ratio Impact on CALIPSO Retrievals Utilized for the Estimation of Aerosol SW Radiative Effects across North Africa, the Middle East, and Europe
by Anna Moustaka, Marios-Bruno Korras-Carraca, Kyriakoula Papachristopoulou, Michael Stamatis, Ilias Fountoulakis, Stelios Kazadzis, Emmanouil Proestakis, Vassilis Amiridis, Kleareti Tourpali, Thanasis Georgiou, Stavros Solomos, Christos Spyrou, Christos Zerefos and Antonis Gkikas
Remote Sens. 2024, 16(10), 1689; https://doi.org/10.3390/rs16101689 - 9 May 2024
Cited by 3 | Viewed by 2409
Abstract
North Africa, the Middle East, and Europe (NAMEE domain) host a variety of suspended particles characterized by different optical and microphysical properties. In the current study, we investigate the importance of the lidar ratio (LR) on Cloud-Aerosol Lidar with Orthogonal Polarization–Cloud-Aerosol Lidar and [...] Read more.
North Africa, the Middle East, and Europe (NAMEE domain) host a variety of suspended particles characterized by different optical and microphysical properties. In the current study, we investigate the importance of the lidar ratio (LR) on Cloud-Aerosol Lidar with Orthogonal Polarization–Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIOP-CALIPSO) aerosol retrievals towards assessing aerosols’ impact on the Earth-atmosphere radiation budget. A holistic approach has been adopted involving collocated Aerosol Robotic Network (AERONET) observations, Radiative Transfer Model (RTM) simulations, as well as reference radiation measurements acquired using spaceborne (Clouds and the Earth’s Radiant Energy System-CERES) and ground-based (Baseline Surface Radiation Network-BSRN) instruments. We are assessing the clear-sky shortwave (SW) direct radiative effects (DREs) on 550 atmospheric scenes, identified within the 2007–2020 period, in which the primary tropospheric aerosol species (dust, marine, polluted continental/smoke, elevated smoke, and clean continental) are probed using CALIPSO. RTM runs have been performed relying on CALIOP retrievals in which the default and the DeLiAn (Depolarization ratio, Lidar ratio, and Ångström exponent)-based aerosol-speciated LRs are considered. The simulated fields from both configurations are compared against those produced when AERONET AODs are applied. Overall, the DeLiAn LRs leads to better results mainly when mineral particles are either solely recorded or coexist with other aerosol species (e.g., sea-salt). In quantitative terms, the errors in DREs are reduced by ~26–27% at the surface (from 5.3 to 3.9 W/m2) and within the atmosphere (from −3.3 to −2.4 W/m2). The improvements become more significant (reaching up to ~35%) for moderate-to-high aerosol loads (AOD ≥ 0.2). Full article
Show Figures

Figure 1

Back to TopTop