Evaluation and Improvement of a CALIPSO-Based Algorithm for Cloud Base Height in China
Abstract
:1. Introduction
2. Data and Methods
2.1. CALIOP VFM
2.2. Airport Ceilometers
2.3. CBASE Algorithm and the Modification
- Using CALIOP-VFM profiles, all CALIOP profiles that have surface return signals are selected, and the signal return from the surface to the lowest cloud layer must not be “no signal” or “invalid”. The following are the requirements for the lowest cloud layer: “high” quality control, thermodynamic phase as “water”, and the minimum horizontal averaging distance of the lowest cloud layer is less than 1 km (to ensure consistency within the same CALIPSO footprint).
- Then, the CALIOP-VFM variables are roughly divided, with the following boundaries: 1. Horizontal distance (D) between the ceilometer measurements and the CALIOP footprints is divided into five parts: 0, 40, 60, 75, 88, and 100 km (distances greater than 100 km are discarded). 2. Number of CALIOP columns (n) with a cloud layer and a surface return within 100 km of the ceilometer, with boundaries at 0, 175, 250, 325, and 400 (counts greater than 400 are accepted). 3. Geometric thickness (Δz) of the lowest cloud layer is divided to 0, 0.25, 0.45, 0.625, and 1 km (thicknesses greater than 1 km are accepted).
- Using ground-based ceilometer data, we compute the root-mean-square error (RMSE) between its CBH observations (CBHc) and those from the satellite observations passing within 100 km (CBHs). The RMSE is defined as,
- 1.
- When calculating overall statistics like the RMSE, another factor comes into play. CBH above ground is always positive, which creates a boundary in the data. This means CBH values must be positive, and any negative data points have been excluded. This bias is less noticeable when CBH is high since it is unlikely for measurement errors to result in negative values. Because this bias is systematic, it cannot be averaged out and needs to be corrected. Since the bias is not linear, the Support Vector Machine (SVM) machine-learning algorithm [40] is employed to train on a dataset consisting of ceilometer observations and corresponding satellite-derived CBH. The SVM is designed to learn classification [40] or regression [41] tasks from a training dataset and is capable of handling outliers and accommodating nonlinear functions [42]. This algorithm employs an ε-regression SVM trained on the 2018 satellite and ceilometer observation dataset.
- 2.
- Because CALIOP can only observe the CBH of sufficiently thin clouds, in order to obtain CBH values for thicker clouds, the CBH is calculated as follows: All CBH columns within 100 km of the interest point are utilized to compute a combined value and uncertainty representative of the CBH and its deviation for thicker clouds. The expressions are:
3. Evaluation of CBASE CBH Algorithm
4. Application and Evaluation of CBASE in China
4.1. CNMETAR-CBASE over China
4.2. Global Evaluation of CNMETAR-CBASE
5. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. (Eds.) Climate Change 2021: The Physical Science Basis; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Hartmann, D.L.; Ockert-Bell, M.E.; Michelsen, M.L. The Effect of Cloud Type on Earth’s Energy Balance: Global Analysis. J. Clim. 1992, 5, 1281–1304. [Google Scholar] [CrossRef]
- Dhuria, H.L.; Kyle, H.L. Cloud Types and the Tropical Earth Radiation Budget. J. Clim. 1990, 3, 1409–1434. [Google Scholar] [CrossRef]
- Böhm, C.; Sourdeval, O.; Mülmenstädt, J.; Quaas, J.; Crewell, S. Cloud base height retrieval from multi-angle satellite data. Atmos. Meas. Tech. Discuss. 2018, 12, 1841–1860. [Google Scholar] [CrossRef]
- Goren, T.; Rosenfeld, D.; Sourdeval, O.; Quaas, J. Satellite Observations of Precipitating Marine Stratocumulus Show Greater Cloud Fraction for Decoupled Clouds in Comparison to Coupled Clouds. Geophys. Res. Lett. 2018, 45, 5126–5134. [Google Scholar] [CrossRef] [PubMed]
- Costa-Surós, M.; Calbó, J.; González, J.A.; Long, C.N. Comparing the cloud vertical structure derived from several methods based on radiosonde profiles and ground-based remote sensing measurements, Atmos. Meas. Tech. 2014, 7, 2757–2773. [Google Scholar] [CrossRef]
- Zhu, Y.; Rosenfeld, D.; Yu, X.; Liu, G.; Dai, J.; Xu, X. Satellite retrieval of convective cloud base temperature based on the NPP/VIIRS Imager. Geophys. Res. Lett. 2014, 41, 1308–1313. [Google Scholar] [CrossRef]
- Lelli, L.; Vountas, M. Chapter 5—Aerosol and Cloud Bottom Altitude Covariations from Multisensor Spaceborne Measurements. In Remote Sensing of Aerosols, Clouds, and Precipitation; Islam, T., Hu, Y., Kokhanovsky, A., Wang, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 109–127. [Google Scholar] [CrossRef]
- Naud, C.M.; Muller, J.P.; Clothiaux, E.E.; Baum, B.A.; Menzel, W.P. Intercomparison of multiple years of MODIS, MISR and radar cloud-top heights. Ann. Geophys. 2005, 23, 2415–2424. [Google Scholar] [CrossRef]
- Naud, C.M.; Baum, B.A.; Pavolonis, M.; Heidinger, A.; Frey, R.; Zhang, H. Comparison of MISR and MODIS cloud-top heights in the presence of cloud overlap. Remote Sens. Environ. 2007, 107, 200–210. [Google Scholar] [CrossRef]
- Kokhanovsky, A.A.; Rozanov, V.V. Cloud bottom altitude determination from a satellite. IEEE Geosci. Remote Sens. Lett. 2005, 2, 280–283. [Google Scholar] [CrossRef]
- Fitch, K.E.; Hutchison, K.D.; Bartlett, K.S.; Wacker, R.S.; Gross, K.C. Assessing VIIRS cloud base height products with data collected at the Department of Energy Atmospheric Radiation Measurement sites. Int. J. Remote Sens. 2016, 37, 2604–2620. [Google Scholar] [CrossRef]
- Gao, D.; Yan, W.; Li, G. Cloud base altitude inversion based on FY-4A meteorological satellite. In Proceedings of the 35th Annual Meeting of the Chinese Meteorological Society, Hefei, China, 24 October 2018. [Google Scholar]
- Tan, Z.; Ma, S.; Han, D.; Gao, D.; Yan, W. Estimation of cloud base height for FY-4A satellite based on random forest algorithm. J. Infrared Millim. Wave 2019, 38, 8. [Google Scholar]
- Zhu, X.; Qian, Y.; Yan, W.; Li, G.; An, H. Application of cloud base height inversion algorithm based on multi-satellite observation results in China offshore waters. J. Meteorol. Sci. 2019, 39, 467–476. [Google Scholar]
- Meerkoetter, R.; Zinner, T. Satellite remote sensing of cloud base height for convective cloud fields: A case study. Geophys. Res. Lett. 2007, 34, L17805. [Google Scholar] [CrossRef]
- Cao, C.; De Luccia, F.J.; Xiong, X.; Wolfe, R.; Weng, F. Early On-Orbit Performance of the Visible Infrared Imaging Radiometer Suite Onboard the Suomi National Polar-Orbiting Partnership (S-NPP) Satellite. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1142–1156. [Google Scholar] [CrossRef]
- Mace, G.G.; Zhang, Q. The CloudSat radar-lidar geometrical profile product (RL-GeoProf): Updates, improvements, and selected results. J. Geophys. Res.-Atmos. 2014, 119, 9441–9462. [Google Scholar] [CrossRef]
- Marchand, R.; Mace, G.G.; Ackerman, T.; Stephens, G. Hydrometeor detection using Cloudsat—An earth-orbiting 94-GHz cloud radar. J. Atmos. Ocean. Technol. 2008, 25, 519–533. [Google Scholar] [CrossRef]
- Mülmenstädt, J.; Sourdeval, O.; Henderson, D.S.; L’Ecuyer, T.S.; Unglaub, C.; Jungandreas, L.; Böhm, C.; Russell, L.M.; Quaas, J. Using CALIOP to estimate cloud-field base height and its uncertainty: The Cloud Base Altitude Spatial Extrapolator (CBASE) algorithm and dataset. Earth Syst. Sci. Data 2018, 10, 2279–2293. [Google Scholar] [CrossRef]
- Sassen, K.; Wang, Z. Classifying clouds around the globe with the CloudSat radar: 1-year of results. Geophys. Res. Lett. 2008, 35, L04805. [Google Scholar] [CrossRef]
- Tanelli, S.; Durden, S.L.; Im, E.; Pak, K.S.; Reinke, D.G.; Partain, P.; Haynes, J.M.; Marchand, R.T. CloudSat’s Cloud Profiling Radar After Two Years in Orbit: Performance, Calibration, and Processing. IEEE Trans. Geosci. Remote Sens 2008, 46, 3560–3573. [Google Scholar] [CrossRef]
- Winker, D.M.; Hunt, W.H.; McGill, M.J. Initial performance assessment of CALIOP. Geophys. Res. Lett. 2007, 34, L19803. [Google Scholar] [CrossRef]
- World Meteorological Organization: Technical Regulations Volume II: Meteorological Service for International Air Navigation. 2013. Available online: https://library.wmo.int/pmb_ged/wmo_49-v2_2013_en.pdf (accessed on 4 December 2018).
- Stephens, G.L.; Vane, D.G.; Boain, R.J.; Mace, G.G.; Sassen, K.; Wang, Z.E.; Illingworth, A.J.; O’Connor, E.J.; Rossow, W.B.; Durden, S.L.; et al. The CloudSat mission and the A-Train—A new dimension of space-based observations of clouds and precipitation. Bull. Am. Meteorol. Soc. 2002, 83, 1771–1790. [Google Scholar] [CrossRef]
- Braun, B.M.; Sweetser, T.H.; Graham, C.; Bartsch, J. CloudSat’s A-Train Exit and the Formation of the C-Train: An Orbital Dynamics Perspective. In Proceedings of the 2019 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2019; pp. 1–10. [Google Scholar] [CrossRef]
- Vaughan, M.A.; Winker, D.M.; Powell, K.A. CALIOP Algorithm Theoretical Basis Document Part 2: Feature Detection and Layer Properties Algorithms. 2005. Available online: https://www-calipso.larc.nasa.gov/resources/pdfs/PC-SCI-202_Part2_rev1x01.pdf (accessed on 4 December 2018).
- NASA/LARC/SD/ASDC CALIPSO Lidar Level 2 Vertical Feature Mask (VFM), V4-20. 2018. Available online: https://asdc.larc.nasa.gov/project/CALIPSO/CAL_LID_L2_VFM-Standard-V4-20_V4-20 (accessed on 20 July 2024).
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. Roy. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Benjamin, S.G.; Weygandt, S.S.; Brown, J.M.; Hu, M.; Alexander, C.R.; Smirnova, T.G.; Olson, J.B.; James, E.P.; Dowell, D.C.; Grell, G.A.; et al. A North American Hourly Assimilation and Model Forecast Cycle: The Rapid Refresh. Mon. Weather Rev. 2016, 144, 1669–1694. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration, Department of Defense, Federal Aviation Administration, and United States Navy: Automated Surface Observing System User’s Guide. 1998. Available online: http://www.nws.noaa.gov/asos/pdfs/aum-toc.pdf (accessed on 4 December 2018).
- An, N.; Wang, K.; Zhou, C.; Pinker, R.T. Observed Variability of Cloud Frequency and Cloud-Base Height within 3600 m above the Surface over the Contiguous United States. J. Clim. 2017, 30, 3725–3742. [Google Scholar] [CrossRef]
- Ikeda, K.; Steiner, M.; Thompson, G. Examination of Mixed Phase Precipitation Forecasts from the High-Resolution Rapid Refresh Model Using Surface Observations and Sounding Data. Weather Forecast. 2017, 32, 949–967. [Google Scholar] [CrossRef]
- Heese, B.; Flentje, H.; Althausen, D.; Ansmann, A.; Frey, S. Ceilometer lidar comparison: Backscatter coefficient retrieval and signal-to-noise ratio determination. Atmos. Meas. Tech. 2010, 3, 1763–1770. [Google Scholar] [CrossRef]
- Rossow, W.B.; Schiffer, R.A. Advances in understanding clouds from ISCCP. Bull. Am. Meteorol. Soc. 1999, 80, 2261–2287. [Google Scholar] [CrossRef]
- Vaisala:Vaisala CT25K Laser Ceilometer. 1999. Available online: https://psl.noaa.gov/data/cruises/CT25K.pdf (accessed on 20 July 2024).
- Vaisala: CL31 Ceilometer for Cloud Height Detection. 2009. Available online: https://psl.noaa.gov/data/cruises/CL31.pdf (accessed on 20 July 2024).
- Civil Aviation Administration of China (CAAC). Civil Aviation Automatic Meteorological Observation System Technical Specifications; Air Traffic Management Bureau: Beijing, China, 2012; Available online: https://www.ccaonline.cn/wp-content/uploads/2018/01/ffa1e11cd0856c46cc62.pdf (accessed on 20 July 2024).
- Civil Aviation Administration of China (CAAC). Civil Aviation Automatic Meteorological Observation System Technical Specifications; Air Traffic Management Bureau: Beijing, China, 2018; Available online: http://ccbj.net.cn/Documents/%E6%B0%91%E8%88%AA%E8%A7%84%E8%8C%83/2.%E3%80%8A%E6%B0%91%E7%94%A8%E8%88%AA%E7%A9%BA%E8%87%AA%E5%8A%A8%E6%B0%94%E8%B1%A1%E8%A7%82%E6%B5%8B%E7%B3%BB%E7%BB%9F%E6%8A%80%E6%9C%AF%E8%A7%84%E8%8C%83%E3%80%8BAP-117-TM-2018-03R1.pdf (accessed on 20 July 2024).
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995. [Google Scholar] [CrossRef]
- Smola, A.J.; Scholkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, M.; Wang, S.; Zhao, P.; Wang, J.; Zhou, P. Estimation and Analysis of Precipitation Cloud Base Height in China. Meterology Mon. 2016, 42, 1135–1145. [Google Scholar] [CrossRef]
- Tang, Y. Research on The Cloud Base Height Over Eastern China; Lanzhou University: Lanzhou, China, 2021. [Google Scholar]
- Viúdez-Mora, A.; Costa-Surós, M.; Calbó, J.; González, J.A. Modeling atmospheric longwave radiation at the surface during overcast skies: The role of cloud base height. J. Geophys. Res. Atmos. 2015, 120, 199–214. [Google Scholar] [CrossRef]
- Zhang, W.; Lv, D. Comparison of cloud base heights by ground-based sky IR brightness temperature measurements with cloud radar and ceilometer in Shouxian. Chin. J. Atmos. Sci. 2012, 36, 657–672. (In Chinese) [Google Scholar]
- Desmons, M.; Ferlay, N.; Parol, F.; Mcharek, L.; Van-bauce, C. Improved information about the vertical location and extent of monolayer clouds from POLDER3 measurements in the oxygen A-band. Atmos. Meas. Tech. 2013, 6, 2221–2238. [Google Scholar] [CrossRef]
- LeCun, Y.A.; Bottou, L.; Orr, G.B.; Müller, K.R. Efficient BackProp. In Neural Networks: Tricks of the Trade; Lecture Notes in Computer Science; Montavon, G., Orr, G.B., Müller, K.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7700. [Google Scholar] [CrossRef]
- Mitchell, T.M. Machine learning. Published by McGraw-Hill, Maidenhead, U.K., International Student Edition. ISBN: 0-07-115467-1, 414 pages. soft cover. Softw. Test. Verif. Reliab. 1997, 9, 191–193. [Google Scholar] [CrossRef]
- Caruana, R. Multitask Learning. Mach. Learn. 1997, 28, 41–75. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Ma, X. Evaluation and Improvement of a CALIPSO-Based Algorithm for Cloud Base Height in China. Remote Sens. 2024, 16, 2801. https://doi.org/10.3390/rs16152801
Li R, Ma X. Evaluation and Improvement of a CALIPSO-Based Algorithm for Cloud Base Height in China. Remote Sensing. 2024; 16(15):2801. https://doi.org/10.3390/rs16152801
Chicago/Turabian StyleLi, Ruolin, and Xiaoyan Ma. 2024. "Evaluation and Improvement of a CALIPSO-Based Algorithm for Cloud Base Height in China" Remote Sensing 16, no. 15: 2801. https://doi.org/10.3390/rs16152801
APA StyleLi, R., & Ma, X. (2024). Evaluation and Improvement of a CALIPSO-Based Algorithm for Cloud Base Height in China. Remote Sensing, 16(15), 2801. https://doi.org/10.3390/rs16152801