Seasonal Variability in the Relationship between the Volume-Scattering Function at 180° and the Backscattering Coefficient Observed from Spaceborne Lidar and Biogeochemical Argo (BGC-Argo) Floats
Abstract
:1. Introduction
2. Materials and Methods
2.1. BGC-Argo bbp(700)
2.2. MODIS bbp(700)
2.3. CALIOP β(π)
2.4. Spatial and Temporal Matching Strategy
2.5. Calculation of Key Conversion Factors χp(π)
3. Results
3.1. Seasonal Variations in χp(π)
3.2. Variations of χp(π) between Day and Night
3.3. Comparison before and after Seasonal χp(π) Calibration
4. Discussion
4.1. Effect of Band Conversion Factor
4.2. Effect of Atmospheric Turbulence
4.3. Regional Differences in χp(π) Based on MODIS
5. Conclusions
- (1)
- Consistent seasonal fluctuations in the χp(π) values were seen at varying spatiotemporal scales, with the highest values recorded in summer (0.46–0.48) and lowest in winter (0.33–0.36), while fall and spring values remained in the middle range. The average calibrated conversion factor χp(π) through the 12 matching windows was computed; 0.40 for spring, 0.48 for summer, 0.43 for fall, and 0.35 for winter.
- (2)
- An analysis of the diurnal differences in χp(π) showed daytime values to be slightly higher than nighttime values in all seasons, with the highest daytime and lowest nighttime values in summer and winter, respectively, matching the overall daily trend in χp(π).
- (3)
- The passive ocean-color-remote-sensing product, MODIS bbp, was used to observe the seasonal fluctuations in χp(π) in 26 global sea areas, revealing three major seasonal variation patterns: “summer peak”, “decline”, and “autumn pole”. The “summer peak” was the most prevalent, aligning with the trend detected through the BGC-Argo floats.
- (4)
- After factoring in the seasonal variations in χp(π), the CALIOP bbp product was duly calibrated, yielding improved statistical results. The coefficient of determination increased noticeably from 0.84 to 0.89 post-calibration. Additionally, the root mean square error dropped from 4.0 × 10−4 m−1 to 3.0 × 10−4 m−1, and the mean absolute percentage error saw a considerable reduction from 31.48% to 25.27%.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tyler, J.; Richardson, W. Nephelometer for the Measurement of Volume Scattering Function in Situ. J. Opt. Soc. Am. 1958, 48, 354–357. [Google Scholar] [CrossRef]
- Sullivan, J.M.; Twardowski, M.S. Angular shape of the oceanic particulate volume scattering function in the backward direction. Appl. Opt. 2009, 48, 6811–6819. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Korchemkina, E. Volume Scattering Function of Seawater; Springer: Berlin/Heidelberg, Germany, 2018; pp. 151–195. [Google Scholar]
- Chami, M.; Shybanov, E.B.; Khomenko, G.A.; Lee, M.E.G.; Martynov, O.V.; Korotaev, G.K. Spectral variation of the volume scattering function measured over the full range of scattering angles in a coastal environment. Appl. Opt. 2006, 45, 3605–3619. [Google Scholar] [CrossRef] [PubMed]
- Berthon, J.-F.; Shybanov, E.; Lee, M.E.G.; Zibordi, G. Measurements and modeling of the volume scattering function in the coastal northern Adriatic Sea. Appl. Opt. 2007, 46, 5189–5203. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.; Barnard, A.; Fietzek, P.; Lewis, M.R.; Sosik, H.M.; White, S.; Zielinski, O. Optical tools for ocean monitoring and research. Ocean Sci. 2009, 5, 661–684. [Google Scholar] [CrossRef]
- Sokolov, A.; Chami, M.; Dmitriev, E.; Khomenko, G. Parameterization of volume scattering function of coastal waters based on the statistical approach. Opt. Express 2010, 18, 4615–4636. [Google Scholar] [CrossRef]
- Churnside, J.; McCarty, B.; Lu, X. Subsurface Ocean Signals from an Orbiting Polarization Lidar. Remote Sens. 2013, 5, 3457–3475. [Google Scholar] [CrossRef]
- Sauzède, R.; Claustre, H.; Uitz, J.; Jamet, C.; Dall’Olmo, G.; D’Ortenzio, F.; Gentili, B.; Poteau, A.; Schmechtig, C. A neural network-based method for merging ocean color and Argo data to extend surface bio-optical properties to depth: Retrieval of the particulate backscattering coefficient. J. Geophys. Res. Ocean. 2016, 121, 2552–2571. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; Hu, Y.; O’Malley, R.T.; Boss, E.S.; Hostetler, C.A.; Siegel, D.A.; Sarmiento, J.L.; Schulien, J.; Hair, J.W.; Lu, X.; et al. Annual boom–bust cycles of polar phytoplankton biomass revealed by space-based lidar. Nat. Geosci. 2017, 10, 118–122. [Google Scholar] [CrossRef]
- Boss, E.; Pegau, W. Relationship of Light Scattering at an Angle in the Backward Direction to the Backscattering Coefficient. Appl. Opt. 2001, 40, 5503–5507. [Google Scholar] [CrossRef]
- Churnside, J.; Tatarskii, V.; Wilson, J. Oceanographic Lidar Attenuation Coefficients and Signal Fluctuations Measured from a Ship in the Southern California Bight. Appl. Opt. 1998, 37, 3105–3112. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Wen, Y.-M.; Duan, Z.-M.; Zhang, W.; Liu, F.-L. Retrieval of Chlorophyll a Concentration in Water Considering High-Concentration Samples and Spectral Absorption Characteristics. Sustainability 2021, 13, 12144. [Google Scholar] [CrossRef]
- Lu, X.; Hu, Y.; Pelon, J.; Trepte, C.; Liu, K.; Rodier, S.; Zeng, S.; Lucker, P.; Verhappen, R.; Wilson, J.; et al. Retrieval of ocean subsurface particulate backscattering coefficient from space-borne CALIOP lidar measurements. Opt. Express 2016, 24, 29001–29008. [Google Scholar] [CrossRef] [PubMed]
- Winker, D.; Vaughan, M.; Omar, A.; Hu, Y.; Powell, K.; Liu, Z.; Hunt, W.; Young, S. Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Behrenfeld, M.; Hu, Y.; Bisson, K.; Lu, X.; Westberry, T. Retrieval of ocean optical and plankton properties with the satellite Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) sensor: Background, data processing, and validation status. Remote Sens. Environ. 2022, 281, 113235. [Google Scholar] [CrossRef]
- Liu, D.; Xu, P.; Zhou, Y.; Chen, W.; Han, B.; Zhu, X.; He, Y.; Mao, Z.; Le, C.; Chen, P.; et al. Lidar Remote Sensing of Seawater Optical Properties: Experiment and Monte Carlo Simulation. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9489–9498. [Google Scholar] [CrossRef]
- Chen, P.; Jamet, C.; Liu, D. LiDAR Remote Sensing for Vertical Distribution of Seawater Optical Properties and Chlorophyll-a from the East China Sea to the South China Sea. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–21. [Google Scholar] [CrossRef]
- Lacour, L.; Larouche, R.; Babin, M. In situ evaluation of spaceborne CALIOP lidar measurements of the upper-ocean particle backscattering coefficient. Opt. Express 2020, 28, 26989–26999. [Google Scholar] [CrossRef] [PubMed]
- Bisson, K.; Boss, E.; Werdell, P.; Ibrahim, A.; Behrenfeld, M. Particulate Backscattering in the Global Ocean: A Comparison of Independent Assessments. Geophys. Res. Lett. 2021, 48, e2020GL090909. [Google Scholar] [CrossRef]
- Sun, M.; Chen, P.; Zhang, Z.; Zhong, C.; Xie, C.; Pan, D. Evaluation of the CALIPSO Lidar-observed particulate backscattering coefficient on different spatiotemporal matchup scales. Front. Mar. Sci. 2023, 10, 1181268. [Google Scholar] [CrossRef]
- Vadakke Chanat, S.; Jamet, C. Validation protocol for the evaluation of space-borne lidar particulate back-scattering coefficient bbp. Front. Remote Sens. 2023, 4, 1194580. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, X.; Xiong, Y.; Gray, D.J.; He, M.-X. Variability of relationship between the volume scattering function at 180° and the backscattering coefficient for aquatic particles. Appl. Opt. 2020, 59, C31–C41. [Google Scholar] [CrossRef]
- Hair, J.; Hostetler, C.; Hu, Y.; Behrenfeld, M.; Butler, C.; Harper, D.; Hare, R.; Berkoff, T.; Cook, A.; Collins, J.; et al. Combined Atmospheric and Ocean Profiling from an Airborne High Spectral Resolution Lidar. EPJ Web Conf. 2016, 119, 22001. [Google Scholar] [CrossRef]
- Zhang, X.; Boss, E.; Gray, D. Significance of scattering by oceanic particles at angles around 120 degree. Opt. Express 2014, 22, 31329–31336. [Google Scholar] [CrossRef]
- Lee, J.H.; Churnside, J.H.; Marchbanks, R.D.; Donaghay, P.L.; Sullivan, J.M. Oceanographic lidar profiles compared with estimates from in situ optical measurements. Appl. Opt. 2013, 52, 786–794. [Google Scholar] [CrossRef]
- Churnside, J.; Sullivan, J.; Twardowski, M. Lidar extinction-to-backscatter ratio of the ocean. Opt. Express 2014, 22, 18698–18706. [Google Scholar] [CrossRef]
- Churnside, J.H.; Marchbanks, R.D. Subsurface plankton layers in the Arctic Ocean. Geophys. Res. Lett. 2015, 42, 4896–4902. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, L.; Gray, D.; Xiong, Y. The shape of particle backscattering in theNorth Pacific Ocean: The χ factor. Appl. Opt. 2021, 60, 1260–1266. [Google Scholar] [CrossRef]
- Maffione, R.A.; Honey, R.C. Instrument for measuring the volume scattering function in the backward direction. In Ocean Optics XI; SPIE: St. Bellingham, WA, USA, 1992; pp. 15–26. [Google Scholar]
- Chami, M.; Thirouard, A.; Harmel, T. POLVSM (Polarized Volume Scattering Meter) instrument: An innovative device to measure the directional and polarized scattering properties of hydrosols. Opt. Express 2014, 22, 26403–26428. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, X.; Perry, M.J. Light scattering by pure seawater: Effect of pressure. Deep Sea Res. Part I Oceanogr. Res. Pap. 2019, 146, 103–109. [Google Scholar] [CrossRef]
- Algorri, J.F.; Roldán-Varona, P.; Fernández-Manteca, M.G.; López-Higuera, J.M.; Rodriguez-Cobo, L.; Cobo-García, A. Photonic Microfluidic Technologies for Phytoplankton Research. Biosensors 2022, 12, 1024. [Google Scholar] [CrossRef]
- Poteau, A.; Boss, E.; Claustre, H. Particulate concentration and seasonal dynamics in the mesopelagic ocean based on the backscattering coefficient measured with Biogeochemical-Argo floats. Geophys. Res. Lett. 2017, 44, 6933–6939. [Google Scholar] [CrossRef]
- Barbieux, M.; Uitz, J.; Bricaud, A.; Organelli, E.; Poteau, A.; Schmechtig, C.; Gentili, B.; Obolensky, G.; Leymarie, E.; Penkerc’h, C.; et al. Assessing the Variability in the Relationship Between the Particulate Backscattering Coefficient and the Chlorophyll a Concentration from a Global Biogeochemical-Argo Database. J. Geophys. Res. Ocean. 2018, 123, 1229–1250. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, L. Estimating scattering of pure water from density fluctuation of the refractive index. Opt. Express 2009, 17, 1671–1678. [Google Scholar] [CrossRef]
- Sullivan, J.; Twardowski, M.; Zaneveld, J.R.V.; Moore, C. Measuring optical backscattering in water. Light Scatt. Rev. 2013, 7, 189–224. [Google Scholar]
- Organelli, E.; Claustre, H.; Bricaud, A.; Schmechtig, C.; Poteau, A.; Xing, X.; Prieur, L.; D’Ortenzio, F.; Dall’Olmo, G.; Vellucci, V. A Novel Near-Real-Time Quality-Control Procedure for Radiometric Profiles Measured by Bio-Argo Floats: Protocols and Performances. J. Atmos. Ocean. Technol. 2016, 33, 160303130530002. [Google Scholar] [CrossRef]
- Dall’Olmo, G.; Bhaskar TVS, U.; Bittig, H.; Boss, E.; Brewster, J.; Claustre, H.; Donnelly, M.; Maurer, T.; Nicholson, D.; Paba, V.; et al. Real-time quality control of optical backscattering data from Biogeochemical-Argo floats. Open Res. Eur. 2022, 2, 118. [Google Scholar] [CrossRef]
- Briggs, N.; Perry, M.J.; Cetinić, I.; Lee, C.; D’Asaro, E.; Gray, A.; Rehm, E. High-resolution observations of aggregate flux during a sub-polar North Atlantic spring bloom. Deep Sea Res. Part I Oceanogr. Res. Pap. 2011, 58, 1031–1039. [Google Scholar] [CrossRef]
- Boss, E.; Picheral, M.; Leeuw, T.; Chase, A.; Karsenti, E.; Gorsky, G.; Taylor, L.; Slade, W.; Ras, J.; Claustre, H. The characteristics of particulate absorption, scattering and attenuation coefficients in the surface ocean; Contribution of the Tara Oceans expedition. Methods Oceanogr. 2013, 7, 52–62. [Google Scholar] [CrossRef]
- Behrenfeld, M.; Gaube, P.; Penna, A.; O’Malley, R.; Burt, W.; Hu, Y.; Bontempi, P.; Steinberg, D.; Boss, E.; Siegel, D.; et al. Global satellite-observed daily vertical migrations of ocean animals. Nature 2019, 576. [Google Scholar] [CrossRef]
- Kokhanovsky, A.A. Parameterization of the Mueller matrix of oceanic waters. J. Geophys. Res. 2003, 108, 257–261. [Google Scholar] [CrossRef]
- Voss, K.J.; Fry, E.S. Measurement of the Mueller matrix for ocean water. Appl. Opt. 1984, 23, 4427–4439. [Google Scholar] [CrossRef]
- Hu, Y.; Stamnes, K.; Vaughan, M.; Pelon, J.; Weimer, C.; Wu, D.; Cisewski, M.; Sun, W.; Yang, P.; Lin, B.; et al. Sea surface wind speed estimation from space-based lidar measurements. Atmos. Chem. Phys. 2008, 8, 3593–3601. [Google Scholar] [CrossRef]
- Churnside, J.H. Polarization effects on oceanographic lidar. Opt. Express 2008, 16, 1196–1207. [Google Scholar] [CrossRef]
- Haëntjens, N.; Boss, E.; Talley, L.D. Revisiting Ocean Color algorithms for chlorophyll a and particulate organic carbon in the Southern Ocean using biogeochemical floats. J. Geophys. Res. Ocean. 2017, 122, 6583–6593. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, L.; He, M.-X. Scattering by pure seawater: Effect of salinity. Opt. Express 2009, 17, 5698–5710. [Google Scholar] [CrossRef]
- Stramski, D.; Bricaud, A.; Morel, A. Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community. Appl. Opt. 2001, 40, 2929–2945. [Google Scholar] [CrossRef]
- Zhang, X.; Twardowski, M.; Lewis, M. Retrieving composition and sizes of oceanic particle subpopulations from the volume scattering function. Appl. Opt. 2011, 50, 1240–1259. [Google Scholar] [CrossRef]
- Pulina, S.; Stanca, E.; Luglié, A.; Satta, C.T.; Padedda, B.M. Phytoplankton cell geometric shapes along Mediterranean seasonal environmental variability in natural and artificial lakes. J. Plankton Res. 2022, 44, 208–223. [Google Scholar] [CrossRef]
- Ahmed, A.; Madhusoodhanan, R.; Yamamoto, T.; Fernandes, L.; Al-Said, T.; Nithyanandan, M.; Thuslim, F.; Al-Zakri, W.; Al-Yamani, F. Analysis of phytoplankton variations and community structure in Kuwait Bay, Northwestern Arabian Gulf. J. Sea Res. 2022, 180, 102163. [Google Scholar] [CrossRef]
- Yang, X.; Gao, M. Fluctuation characteristics of laser transmissions in atmospheric turbulence. Optik 2020, 202, 163624. [Google Scholar] [CrossRef]
- Davis, J.I. Consideration of atmospheric turbulence in laser systems design. Appl. Opt. 1966, 5, 139–147. [Google Scholar] [CrossRef]
- Liao, Q.; Sheng, Z.; Zhou, S.; Guo, P.; Long, Z.; He, M.; Guan, J. A Preliminary Study on the Inversion Method for the Refraction Structure Parameter from Vortex Electromagnetic Waves. Remote Sens. 2023, 15, 3140. [Google Scholar] [CrossRef]
- He, Y.; Zhu, X.; Sheng, Z.; He, M. Identification of stratospheric disturbance information in China based on the round-trip intelligent sounding system. Atmos. Chem. Phys. 2024, 24, 3839–3856. [Google Scholar] [CrossRef]
- Meyer, R.A. Light scattering from biological cells: Dependence of backscatter radiation on membrane thickness and refractive index. Appl. Opt. 1979, 18, 585–588. [Google Scholar] [CrossRef]
- Bernard, S.; Probyn, T.; Quirantes, A. Simulating the optical properties of phytoplankton cells using a two-layered spherical geometry. Biogeosci. Discuss 2009, 6, 1497–1563. [Google Scholar]
- Litchman, E.; Klausmeier, C.; Schofield, O.; Falkowski, P. The role of functional traits and trade-offs in structuring phytoplankton communities: Scaling from cellular to ecosystem level. Ecol. Lett. 2007, 10, 1170–1181. [Google Scholar] [CrossRef]
- Litchman, E.; Klausmeier, C.A. Trait-Based Community Ecology of Phytoplankton. Annu. Rev. Ecol. Evol. Syst. 2008, 39, 615–639. [Google Scholar] [CrossRef]
- Van de Waal, D.B.; Litchman, E. Multiple global change stressor effects on phytoplankton nutrient acquisition in a future ocean. Philos. Trans. R. Soc. B 2020, 375, 20190706. [Google Scholar] [CrossRef]
- Bernardi Aubry, F.; Pugnetti, A.; Roselli, L.; Stanca, E.; Acri, F.; Finotto, S.; Basset, A. Phytoplankton morphological traits in a nutrient-enriched, turbulent Mediterranean microtidal lagoon. J. Plankton Res. 2017, 39, 564–576. [Google Scholar] [CrossRef]
- Reynolds, C.S. The Ecology of Phytoplankton; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
Parameters | Data Origin | Period | Web Source | Resolution |
---|---|---|---|---|
bbp(700), Depth | BGC-Argo | 2010–2017 | ftp://ftp.ifremer.fr/ifremer/argo/ (accessed on 9 June 2022) | Variable |
bbp(532), time | CALIOP | 2010–2017 | http://orca.science.oregonstate.edu/lidar_nature_2019.php (accessed on 9 June 2022) | 16-day visit time 70 m footprint size |
bbp(443), Kd(490) | MODIS-Aqua | 2010–2017 | https://search.earthdata.nasa.gov/ (accessed on 9 June 2022) | monthly averaged 9 km |
Space Window | Time Window | After Calibration | ||||
N | R-Squared | RMSE/m−1 | MAPE/% | SD | ||
9 km | ±3 h | 43 | 0.89 | 3.0 × 10−4 | 25.27 | 7.0 × 10−4 |
±6 h | 50 | 0.84 | 3.0 × 10−4 | 26.36 | 7.0 × 10−4 | |
±12 h | 87 | 0.70 | 5.0 × 10−4 | 30.72 | 8.0 × 10−4 | |
±24 h | 147 | 0.60 | 5.0 × 10−4 | 29.89 | 9.0 × 10−4 | |
Space Window | Time Window | Before Calibration (χp(π) = 1.00) | ||||
N | R-Squared | RMSE/m−1 | MAPE/% | SD | ||
9 km | ±3 h | 43 | 0.73 | 7.0 × 10−4 | 121.97 | 7.0 × 10−4 |
±6 h | 50 | 0.64 | 8.0 × 10−4 | 125.74 | 8.0 × 10−4 | |
±12 h | 86 | 0.52 | 9.0 × 10−4 | 120.59 | 9.0 × 10−4 | |
±24 h | 147 | 0.47 | 9.0 × 10−4 | 118.50 | 1.0 × 10−3 | |
Space Window | Time Window | Before Calibration (χp(π) = 0.50) | ||||
N | R-Squared | RMSE/m−1 | MAPE/% | SD | ||
9 km | ±3 h | 44 | 0.84 | 4.0 × 10−4 | 31.48 | 7.0 × 10−4 |
±6 h | 51 | 0.78 | 4.0 × 10−4 | 32.78 | 7.0 × 10−4 | |
±12 h | 88 | 0.67 | 5.0 × 10−4 | 36.41 | 8.0 × 10−4 | |
±24 h | 149 | 0.58 | 5.0 × 10−4 | 34.13 | 9.0 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.; Chen, P.; Zhang, Z.; Li, Y. Seasonal Variability in the Relationship between the Volume-Scattering Function at 180° and the Backscattering Coefficient Observed from Spaceborne Lidar and Biogeochemical Argo (BGC-Argo) Floats. Remote Sens. 2024, 16, 2704. https://doi.org/10.3390/rs16152704
Sun M, Chen P, Zhang Z, Li Y. Seasonal Variability in the Relationship between the Volume-Scattering Function at 180° and the Backscattering Coefficient Observed from Spaceborne Lidar and Biogeochemical Argo (BGC-Argo) Floats. Remote Sensing. 2024; 16(15):2704. https://doi.org/10.3390/rs16152704
Chicago/Turabian StyleSun, Miao, Peng Chen, Zhenhua Zhang, and Yunzhou Li. 2024. "Seasonal Variability in the Relationship between the Volume-Scattering Function at 180° and the Backscattering Coefficient Observed from Spaceborne Lidar and Biogeochemical Argo (BGC-Argo) Floats" Remote Sensing 16, no. 15: 2704. https://doi.org/10.3390/rs16152704
APA StyleSun, M., Chen, P., Zhang, Z., & Li, Y. (2024). Seasonal Variability in the Relationship between the Volume-Scattering Function at 180° and the Backscattering Coefficient Observed from Spaceborne Lidar and Biogeochemical Argo (BGC-Argo) Floats. Remote Sensing, 16(15), 2704. https://doi.org/10.3390/rs16152704