Statistics of Smoke Sphericity and Optical Properties Using Spaceborne Lidar Measurements
Abstract
1. Introduction
2. Data and Methodology
2.1. Cloud-Aerosol Transport System
2.2. Cloud-Aerosol Lidar with Orthogonal Polarization
2.3. Identification of Non-Spherical Smoke Regions Using CALIOP Data
2.4. Constrained Lidar Ratio Calculations for Smoke Layers
3. Results
3.1. Observations of Non-Sphrical Smoke Using CALIOP
3.2. Dependence of Smoke Aerosol Lidar Ratio on Depolarization Using CATS and CALIOP Observations
3.3. Dependence of Smoke Aerosol Lidar Ratio on Relative Humidity Using CATS and CALIOP Observations
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Markowicz, K.M.; Flatau, P.J.; Kardas, A.E.; Remiszewska, J.; Stelmaszczyk, K.; Woeste, L. Ceilometer retrieval of the boundary layer vertical aerosol extinction structure. J. Atmos. Ocean. Technol. 2008, 25, 928–944. [Google Scholar] [CrossRef]
- Spinhirne, J.D.; Reagan, J.A.; Herman, B.M. Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique. J. Appl. Meteorol. Climatol. 1980, 19, 426–438. [Google Scholar] [CrossRef]
- Klett, J.D. Stable analytical inversion solution for processing lidar returns. Appl. Opt. 1981, 20, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Fernald, F.G. Analysis of atmospheric lidar observations: Some comments. Appl. Opt. 1984, 23, 652–653. [Google Scholar] [CrossRef] [PubMed]
- Müller, D.; Ansmann, A.; Mattis, I.; Tesche, M.; Wandinger, U.; Althausen, D.; Pisani, G. Aerosol-type-dependent lidar ratios observed with Raman lidar. J. Geophys. Res. Atmos. 2007, 112, 1–11. [Google Scholar] [CrossRef]
- Pauly, R.M.; Yorks, J.E.; Hlavka, D.L.; McGill, M.J.; Amiridis, V.; Palm, S.P.; Rodier, S.D.; Vaughan, M.A.; Selmer, P.A.; Kupchock, A.W.; et al. Cloud-Aerosol Transport System (CATS) 1064 nm calibration and validation. Atmos. Meas. Tech. 2019, 12, 6241–6258. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.; Zhang, J.; Reid, J.S.; Yorks, J.E. Investigation of CATS aerosol products and application toward global diurnal variation of aerosols. Atmos. Chem. Phys. 2019, 19, 12687–12707. [Google Scholar] [CrossRef]
- Schuster, G.L.; Vaughan, M.; MacDonnell, D.; Su, W.; Winker, D.; Dubovik, O.; Lapyonok, T.; Trepte, C. Comparison of CALIPSO aerosol optical depth retrievals to AERONET measurements, and a climatology for the lidar ratio of dust. Atmos. Chem. Phys. 2012, 12, 7431–7452. [Google Scholar] [CrossRef]
- Rogers, R.R.; Vaughan, M.A.; Hostetler, C.A.; Burton, S.P.; Ferrare, R.A.; Young, S.A.; Hair, J.W.; Obland, M.D.; Harper, D.B.; Cook, A.L.; et al. Looking through the haze: Evaluating the CALIPSO level 2 aerosol optical depth using airborne high spectral resolution lidar data. Atmos. Meas. Tech. 2014, 7, 4317–4340. [Google Scholar] [CrossRef]
- Palm, S.; Hart, W.; Hlavka, D.; Welton, E.J.; Mahesh, A.; Spinhirne, J. GLAS Atmospheric Data Products. Geoscience Laser Altimeter System (GLAS): Algorithm Theoretical Basis Document Version 4.2; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2002.
- Omar, A.H.; Winker, D.M.; Vaughan, M.A.; Hu, Y.; Trepte, C.R.; Ferrare, R.A.; Lee, K.-P.; Hostetler, C.A.; Kittaka, C.; Rogers, R.R.; et al. The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J. Atmos. Ocean. Technol. 2009, 26, 1994–2014. [Google Scholar] [CrossRef]
- Kim, M.-H.; Omar, A.H.; Tackett, J.L.; Vaughan, M.A.; Winker, D.M.; Trepte, C.R.; Hu, Y.; Liu, Z.; Poole, L.R.; Pitts, M.C.; et al. The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm. Atmos. Meas. Tech. 2018, 11, 6107–6135. [Google Scholar] [CrossRef] [PubMed]
- Nowottnick, E.P.; Christian, K.E.; Yorks, J.E.; McGill, M.J.; Midzak, N.; Selmer, P.A.; Lu, Z.; Wang, J.; Salinas, S.V. Aerosol Detection from the Cloud–Aerosol Transport System on the International Space Station: Algorithm Overview and Implications for Diurnal Sampling. Atmosphere 2022, 13, 1439. [Google Scholar] [CrossRef]
- Burton, S.P.; Hair, J.W.; Kahnert, M.; Ferrare, R.A.; Hostetler, C.A.; Cook, A.L.; Harper, D.B.; Berkoff, T.A.; Seaman, S.T.; Collins, J.E.; et al. Observations of the spectral dependence of linear particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar. Atmos. Chem. Phys. 2015, 15, 13453–13473. [Google Scholar] [CrossRef]
- Martins, J.V.; Hobbs, P.V.; Weiss, R.E.; Artaxo, P. Sphericity and morphology of smoke particles from biomass burning in Brazil. J. Geophys. Res. Atmos. 1998, 103, 32051–32057. [Google Scholar] [CrossRef]
- Midzak, N.; Yorks, J.E.; Zhang, J.; Nowottnick, E.P. An investigation of non-spherical smoke particles using CATS lidar. J. Geophys. Res. Atmos. 2023, 128, e2023D038805. [Google Scholar] [CrossRef]
- Liu, L.; Mishchenko, M.I. Scattering and radiative properties of morphologically complex carbonaceous aerosols: A systematic modeling study. Remote Sens. 2018, 10, 1634. [Google Scholar] [CrossRef]
- Mishchenko, M.I.; Dlugach, J.M.; Liu, L. Linear depolarization of lidar returns by aged smoke particles. Appl. Opt. 2016, 55, 9968–9973. [Google Scholar] [CrossRef]
- Sorensen, C.M. Light scattering by fractal aggregates: A review. Aerosol Sci. Technol. 2001, 35, 648–687. [Google Scholar] [CrossRef]
- Haarig, M.; Ansmann, A.; Baars, H.; Jimenez, C.; Veselovskii, I.; Engelmann, R.; Althausen, D. Depolarization and lidar ratios at 355, 532, and 1064 nm and microphysical properties of aged tropospheric and stratospheric Canadian wildfire smoke. Atmos. Chem. Phys. 2018, 18, 11847–11861. [Google Scholar] [CrossRef]
- Ansmann, A.; Baars, H.; Chudnovsky, A.; Mattis, I.; Veselovskii, I.; Haarig, M.; Seifert, P.; Engelmann, R.; Wandinger, U. Extreme levels of Canadian wildfire smoke in the stratosphere over central Europe on 21–22 August 2017. Atmos. Chem. Phys. 2018, 18, 11831–11845. [Google Scholar] [CrossRef]
- Khaykin, S.M.; Godin-Beekmann, S.; Keckhut, P.; Hauchecorne, A.; Jumelet, J.; Vernier, J.-P.; Bourassa, A.; Degenstein, D.A.; Rieger, L.A.; Bingen, C.; et al. Variability and evolution of the midlatitude stratospheric aerosol budget from 22 years of ground-based lidar and satellite observations. Atmos. Chem. Phys. 2017, 17, 1829–1845. [Google Scholar] [CrossRef]
- He, Y.; Jing, D.; Yin, Z.; Ohneiser, K.; Yi, F. Long-term (2010–2021) lidar observations of stratospheric aerosols in Wuhan, China. Atmos. Chem. Phys. 2024, 24, 11431–11450. [Google Scholar] [CrossRef]
- Kar, J.; Vaughan, M.; Tackett, J.; Liu, Z.; Omar, A.; Rodier, S.; Trepte, C.; Lucker, P. Swelling of Transported Smoke from Savanna fires over the Southeast Atlantic Ocean. Remote Sens. Environ. 2018, 211, 105–111. [Google Scholar] [CrossRef]
- Midzak, N.; Yorks, J.E.; Zhang, J.; Limbacher, J.A.; Kalashnikova, O.V.; Garay, M.J. Constrained retrievals of aerosol optical properties using combined lidar and imager measurements during the FIREX-AQ campaign. Front. Remote Sens. 2022, 3, 818605. [Google Scholar] [CrossRef]
- Hu, Y.; Vaughan, M.; Liu, Z.; Powell, K.; Rodier, S. Retrieving optical depths and lidar ratios for transparent layers above opaque water clouds from CALIPSO lidar measurements. IEEE Geosci. Remote Sens. Lett. 2007, 4, 523–526. [Google Scholar] [CrossRef]
- Yorks, J.E.; Palm, S.P.; Hlavka, D.L.; McGill, M.J.; Nowottnick, E.; Selmer, P.; Hart, W.D. The Cloud-Aerosol Transport System (CATS) Algorithm Theoretical Basis Document. 2015. Available online: http://cats.gsfc.nasa.gov/media/docs/CATS_ATBD.pdf (accessed on 11 January 2025).
- McGill, M.J.; Yorks, J.E.; Scott, V.S.; Kupchock, A.W.; Selmer, P.A. The cloud-aerosol transport system (CATS): A technology demonstration on the international space station. In Lidar Remote Sensing for Environmental Monitoring XV, Proceedings of the SPIE Optical Engineering + Applications 2015, San Diego, CA, USA, 9–13 August 2015; SPIE: Greenbelt, MD, USA, 2015; Volume 9612, pp. 34–39. [Google Scholar]
- Yorks, J.E.; Selmer, P.A.; Kupchock, A.; Nowottnick, E.P.; Christian, K.E.; Rusinek, D.; Dacic, N.; McGill, M.J. Aerosol and Cloud Detection Using Machine Learning Algorithms and Space-Based Lidar Data. Atmosphere 2021, 12, 606. [Google Scholar] [CrossRef]
- Luo, B.; Minnett, P.J.; Szczodrak, M.; Nalli, N.R.; Morris, V.R. Accuracy assessment of MERRA-2 and ERA-Interim sea surface temperature, air temperature, and humidity profiles over the atlantic ocean using AEROSE measurements. J. Clim. 2020, 33, 6889–6909. [Google Scholar] [CrossRef]
- Winker, D.M.; Pelon, J.; Coakley, J.A., Jr.; Ackerman, S.A.; Charlson, R.J.; Colarco, P.R.; Flamant, P.; Fu, Q.; Hoff, R.M.; Kittaka, C.; et al. The CALIPSO mission: A global 3D view of aerosols and clouds. Bull. Am. Meteorol. Soc. 2010, 91, 1211–1230. [Google Scholar] [CrossRef]
- Adebiyi, A.A.; Zuidema, P.; Abel, S.J. The Convolution of Dynamics and Moisture with the Presence of Shortwave Absorbing Aerosols over the Southeast Atlantic. J. Clim. 2015, 28, 1997–2024. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Eck, T.F.; Holben, B.N.; Reid, J.S.; Dubovik, O.; Smirnov, A.; O’Neill, N.T.; Slutsker, I.; Kinne, S. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res. Atmos. 1999, 104, 31333–31349. [Google Scholar]
- Holben, B.N.; Kaufman, Y.J.; Setzer, A.W.; Tanre, D.D.; Ward, D.E. Optical properties of aerosol emissions from biomass burning in the tropics, BASE-A. In Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications; MIT Press: Cambridge, MA, USA, 1991; pp. 403–411. [Google Scholar]
- Kaufman, Y.J.; Setzer, A.; Ward, D.; Tanre, D.; Holben, B.N.; Menzel, P.; Pereira, M.C.; Rasmussen, R. Biomass burning airborne and spaceborne experiment in the Amazonas (BASE-A). J. Geophys. Res. Atmos. 1992, 97, 14581–14599. [Google Scholar] [CrossRef]
- Reid, J.S.; Eck, T.F.; Christopher, S.A.; Hobbs, P.V.; Holben, B. Use of the Ångstrom exponent to estimate the variability of optical and physical properties of aging smoke particles in Brazil. J. Geophys. Res. Atmos. 1999, 104, 27473–27489. [Google Scholar]
- Tackett, J.L.; Kar, J.; Vaughan, M.A.; Getzewich, B.J.; Kim, M.-H.; Vernier, J.-P.; Omar, A.H.; Magill, B.E.; Pitts, M.C.; Winker, D.M. The CALIPSO version 4.5 stratospheric aerosol subtyping algorithm. Atmos. Meas. Tech. 2023, 16, 745–768. [Google Scholar] [CrossRef]
- Yorks, J.E.; Hlavka, D.L.; Hart, W.D.; McGill, M.J. Statistics of cloud optical properties from airborne lidar measurements. J. Atmos. Ocean. Technol. 2011, 28, 869–883. [Google Scholar] [CrossRef]
- Liu, Z.; Winker, D.; Omar, A.; Vaughan, M.; Kar, J.; Trepte, C.; Hu, Y.; Schuster, G. Evaluation of CALIOP 532 nm aerosol optical depth over opaque water clouds. Atmos. Chem. Phys. 2015, 15, 1265–1288. [Google Scholar] [CrossRef]
- Fernald, F.G.; Herman, B.M.; Reagan, J.A. Determination of aerosol height distributions by lidar. J. Appl. Meteorol. Climatol. 1972, 11, 482–489. [Google Scholar] [CrossRef]
- Welton, E.J.; Voss, K.J.; Gordon, H.R.; Maring, H.; Smirnov, A.; Holben, B.; Schmid, B.; Livingston, J.M.; Russell, P.B.; Durkee, P.A.; et al. Ground-based lidar measurements of aerosols during ACE-2: Instrument description, results, and comparisons with other ground-based and airborne measurements. Tellus 2000, 52, 636–651. [Google Scholar] [CrossRef]
- Burton, S.P.; Ferrare, R.A.; Hostetler, C.A.; Hair, J.W.; Kittaka, C.; Vaughan, M.A.; Obland, M.D.; Rogers, R.R.; Cook, A.L.; Harper, D.B.; et al. Using airborne high spectral resolution lidar data to evaluate combined active plus passive retrievals of aerosol extinction profiles. J. Geophys. Res. Atmos. 2010, 115, D00H15. [Google Scholar] [CrossRef]
- McGill, M.J.; Hlavka, D.L.; Hart, W.D.; Welton, E.J.; Campbell, J.R. Airborne lidar measurements of aerosol optical properties during SAFARI-2000. J. Geophys. Res. Atmos. 2003, 108, 8493. [Google Scholar] [CrossRef]
- Swap, R.J.; Annegarn, H.J.; Cook, B.; Desanker, P.; Djolov, G.; Doddridge, B.; Dowty, P. Southern African Regional Science Initiative: Safari 2000: Science Plan; The University of Virginia: Charlottesville, VA, USA, 1999. [Google Scholar]
- Zuidema, P.; Sedlacek, A.J.; Flynn, C.; Springston, S.; Delgadillo, R.; Zhang, J.; Aiken, A.C.; Koontz, A.; Muradyan, P. The Ascension Island boundary layer in the remote Southeast Atlantic is often smoky. Geophys. Res. Lett. 2018, 45, 4456–4465. [Google Scholar] [CrossRef]
- Swap, R.J.; Annegarn, H.J.; Suttles, J.T.; Haywood, J.; Helmlinger, M.C.; Hely, C.; Hobbs, P.V.; Holben, B.N.; Ji, J.; King, M.D.; et al. The Southern African Regional Science Initiative (SAFARI 2000): Overview of the dry season field campaign. S. Afr. J. Sci. 2002, 98, 125–130. [Google Scholar]
- Zuidema, P.; Redemann, J.; Haywood, J.; Wood, R.; Piketh, S.; Hipondoka, M.; Formenti, P. Smoke and Clouds above the Southeast Atlantic: Upcoming Field Campaigns Probe Absorbing Aerosol’s Impact on Climate. Bull. Am. Meteorol. Soc. 2016, 97, 1131–1135. [Google Scholar] [CrossRef]
- Matichuk, R.I.; Colarco, P.R.; Smith, J.A.; Toon, O.B. Modeling the transport and optical properties of smoke aerosols from African savanna fires during the Southern African Regional Science Initiative campaign (SAFARI 2000). J. Geophys. Res. Atmos. 2007, 112, D08203. [Google Scholar] [CrossRef]
- Hobbs, P.V. Summary of Types of Data Collected on the University of Washington’s Convair C131-A aircraft in the Smoke, Clouds, and Radiation-Brazil (SCAR-B) Field Study from 17 August–20 September 1995; University of Washington: Seattle, WA, USA, 1996. [Google Scholar]
- Pósfai, M.; Simonics, R.; Li, J.; Hobbs, P.V.; Buseck, P.R. Individual aerosol particles from biomass burning in southern Africa: 1. Compositions and size distributions of carbonaceous particles. J. Geophys. Res. Atmos. 2003, 108, 8483. [Google Scholar] [CrossRef]
- Freitas, S.R.; Longo, K.M.; Chatfield, R.; Latham, D.; Dias, M.A.F.S.; Andreae, M.O.; Prins, E.; Santos, J.C.; Gielow, R.; Carvalho, J.A., Jr. Including the sub-grid scale plume rise of vegetation fires in low resolution atmospheric transport models. Atmos. Chem. Phys. 2007, 7, 3385–3398. [Google Scholar] [CrossRef]
- Darbyshire, E.; Morgan, W.T.; Allan, J.D.; Liu, D.; Flynn, M.J.; Dorsey, J.R.; O’Shea, S.J.; Lowe, D.; Szpek, K.; Marenco, F.; et al. The vertical distribution of biomass burning pollution over tropical South America from aircraft in situ measurements during SAMBBA. Atmos. Chem. Phys. 2019, 19, 5771–5790. [Google Scholar] [CrossRef]
- Bond, T.C.; Bergstrom, R.W. Light absorption by carbonaceous particles: An Investigative review. Aerosol Sci. Technol. 2006, 40, 27–67. [Google Scholar] [CrossRef]
- Martins, J.V.; Artaxo, P.; Liousse, C.; Reid, J.S.; Hobbs, P.V.; Kaufman, Y.J. Effects of black carbon content, particle size, and mixing on light absorption by aerosols from biomass burning in Brazil. J. Geophys. Res. Atmos. 1998, 103, 32041–32050. [Google Scholar] [CrossRef]
- Mikhailov, E.F.; Vlasenko, S.S.; Podgorny, I.A.; Ramanathan, V.; Corrigan, C.E. Optical properties of soot–water drop agglomerates: An experimental study. J. Geophys. Res. Atmos. 2006, 111, D07209. [Google Scholar] [CrossRef]
- Gialitaki, A.; Tsekeri, A.; Amiridis, V.; Ceolato, R.; Paulien, L.; Kampouri, A.; Gkikas, A.; Solomos, S.; Marinou, E.; Haarig, M.; et al. Is the near-spherical shape the new black for smoke? Atmos. Chem. Phys. Discuss. 2020, 20, 14005–14021. [Google Scholar] [CrossRef]
- Wu, Z.J.; Zheng, J.; Shang, D.J.; Du, Z.F.; Wu, Y.S.; Zeng, L.M.; Wiedensohler, A.; Hu, M. Particle hygroscopicity and its link to chemical composition in the urban atmosphere of Beijing, China, during summertime. Atmos. Chem. Phys. 2016, 16, 1123–1138. [Google Scholar] [CrossRef]
- Nicolae, D.; Nemuc, A.; Müller, D.; Talianu, C.; Vasilescu, J.; Belegante, L.; Kolgotin, A. Characterization of fresh and aged biomass burning events using multiwavelength Raman lidar and mass spectrometry. J. Geophys. Res. Atmos. 2013, 118, 2956–2965. [Google Scholar] [CrossRef]
- Eggers, N.; Graßl, S.; Ritter, C. Assessment of Hygroscopic Behavior of Arctic Aerosol by Contemporary Lidar and Radiosonde Observations. Remote Sens. 2024, 16, 3087. [Google Scholar] [CrossRef]
- Chipade, R.A.; Pandya, M.R. Theoretical derivation of aerosol lidar ratio using Mie theory for CALIOP-CALIPSO and OPAC aerosol models. Atmos. Meas. Tech. 2023, 16, 5443–5459. [Google Scholar] [CrossRef]
- Ackermann, J. The extinction-to-backscatter ratio of tropospheric aerosol: A numerical study. J. Atmos. Ocean. Technol. 1998, 15, 1043–1050. [Google Scholar] [CrossRef]
- Anderson, T.L.; Masonis, S.J.; Covert, D.S.; Charlson, R.J.; Rood, M.J. In situ measurement of the aerosol extinction-to-backscatter ratio at a polluted continental site. J. Geophys. Res. Atmos. 2000, 105, 26907–26915. [Google Scholar] [CrossRef]
- Zhao, G.; Zhao, C.; Kuang, Y.; Tao, J.; Tan, W.; Bian, Y.; Li, J.; Li, C. Impact of aerosol hygroscopic growth on retrieving aerosol extinction coefficient profiles from elastic-backscatter lidar signals. Atmos. Chem. Phys. 2017, 17, 12133–12143. [Google Scholar] [CrossRef]
- Dawson, K.W.; Ferrare, R.A.; Moore, R.H.; Clayton, M.B.; Thorsen, T.J.; Eloranta, E.W. Ambient aerosol hygroscopic growth from combined Raman lidar and HSRL. J. Geophys. Res. Atmos. 2020, 125, e2019JD031708zz. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Midzak, N.; Yorks, J.E.; Zhang, J. Statistics of Smoke Sphericity and Optical Properties Using Spaceborne Lidar Measurements. Remote Sens. 2025, 17, 409. https://doi.org/10.3390/rs17030409
Midzak N, Yorks JE, Zhang J. Statistics of Smoke Sphericity and Optical Properties Using Spaceborne Lidar Measurements. Remote Sensing. 2025; 17(3):409. https://doi.org/10.3390/rs17030409
Chicago/Turabian StyleMidzak, Natalie, John E. Yorks, and Jianglong Zhang. 2025. "Statistics of Smoke Sphericity and Optical Properties Using Spaceborne Lidar Measurements" Remote Sensing 17, no. 3: 409. https://doi.org/10.3390/rs17030409
APA StyleMidzak, N., Yorks, J. E., & Zhang, J. (2025). Statistics of Smoke Sphericity and Optical Properties Using Spaceborne Lidar Measurements. Remote Sensing, 17(3), 409. https://doi.org/10.3390/rs17030409