Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (131)

Search Parameters:
Keywords = C4 alkylation catalysts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
5 pages, 302 KiB  
Short Note
(5R,7R,11bR)-9-(di(1H-Indol-3-yl)methyl)-4,4,7,11b-tetramethyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b-dodecahydrophenanthro[3,2-b]furan-5-yl Acetate
by Jessica A. Perez-Rangel, Gabriela Servín-García, Atilano Gutiérrez-Carrillo, Alejandro Islas-Jácome, Luis Chacón-García, Rosa E. del Río and Carlos J. Cortés-García
Molbank 2025, 2025(3), M2034; https://doi.org/10.3390/M2034 - 7 Jul 2025
Viewed by 304
Abstract
The semi-synthesis of the (5R,7R,11bR)-9-(di(1H-indol-3-yl)methyl)-4,4,7,11b-tetramethyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b-dodecahydrophenanthro[3,2-b]furan-5-yl acetate was performed via a pseudo-multicomponent reaction involving a double Friedel–Crafts alkylation between the natural product-derived aldehyde 6β-acetoxyvouacapane and the corresponding indole. The transformation was carried [...] Read more.
The semi-synthesis of the (5R,7R,11bR)-9-(di(1H-indol-3-yl)methyl)-4,4,7,11b-tetramethyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b-dodecahydrophenanthro[3,2-b]furan-5-yl acetate was performed via a pseudo-multicomponent reaction involving a double Friedel–Crafts alkylation between the natural product-derived aldehyde 6β-acetoxyvouacapane and the corresponding indole. The transformation was carried out under solvent-free mechanochemical conditions using mortar and pestle grinding, with ZnCl2 as the catalyst. Structural elucidation of the target compound was accomplished using 1D and 2D NMR spectroscopy (1H, 13C, COSY, HSQC, and HMBC), FT-IR, and high-resolution mass spectrometry (HRMS). Full article
Show Figures

Graphical abstract

18 pages, 4872 KiB  
Article
Computational Study of Catalytic Poisoning Mechanisms in Polypropylene Polymerization: The Impact of Dimethylamine and Diethylamine on the Deactivation of Ziegler–Natta Catalysts and Co-Catalysts
by Joaquín Alejandro Hernández Fernández, Katherine Liset Ortiz Paternina and Heidis Cano-Cuadro
Polymers 2025, 17(13), 1834; https://doi.org/10.3390/polym17131834 - 30 Jun 2025
Viewed by 376
Abstract
In this study, density functional theory (DFT) was used to analyze the processes that govern the interactions among triethylaluminum (TEAL), the Ziegler–Natta (ZN) catalyst, and the inhibitory compounds dimethylamine (DMA) and diethylamine (DEA) during olefin polymerization. The structural and charge characteristics of these [...] Read more.
In this study, density functional theory (DFT) was used to analyze the processes that govern the interactions among triethylaluminum (TEAL), the Ziegler–Natta (ZN) catalyst, and the inhibitory compounds dimethylamine (DMA) and diethylamine (DEA) during olefin polymerization. The structural and charge characteristics of these inhibitors were examined through steric maps and DFT calculations. Combined DFT calculations (D3-B3LYP/6-311++G(d,p)) and IR spectroscopic analysis show that the most efficient way to deactivate the ZN catalyst is via the initial formation of the TEAL·DMA complex. This step has a kinetic barrier of only 27 kcal mol−1 and a negative ΔG, in stark contrast to the >120 kcal mol−1 required to form TEAL·DEA. Once generated, TEAL·DMA adsorbs onto the TiCl4/MgCl2 cluster with adsorption energies of −22.9 kcal mol−1 in the gas phase and −25.4 kcal mol−1 in n-hexane (SMD model), values 5–10 kcal mol−1 more favorable than those for TEAL·DEA. This explains why, although dimethylamine is present at only 140 ppm, its impact on productivity (−19.6%) is practically identical to that produced by 170 ppm of diethylamine (−20%). The persistence of the ν(Al–N) band at ~615 cm−1, along with a >30% decrease in the Al–C/Ti–C bands between 500 and 900 cm−1, the downward shift of the N–H stretch from ~3300 to 3200 cm−1, and the +15 cm−1 increase in ν(C–N) confirm Al←N coordination and blockage of alkyl transfer, establishing the TEAL·DMA → ZN pathway as the dominant catalytic poisoning mechanism. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

22 pages, 6072 KiB  
Article
Understanding the Effect of IM-5 Zeolite Treated with Hexafluorosilicic Acid for the Methanol Alkylation of Pseudocumene
by Shumin Hao, Yongrui Wang, Enhui Xing and Xuhong Mu
Materials 2025, 18(10), 2252; https://doi.org/10.3390/ma18102252 - 13 May 2025
Cited by 1 | Viewed by 459
Abstract
A study systematically investigating the structural modifications and catalytic performance of IM-5 zeolite treated with hexafluorosilicic acid in pseudocumene alkylation with methanol was carried out. Characterization techniques revealed significant alterations in crystal structure, morphology, textural properties, coordination environment, and acidity induced by the [...] Read more.
A study systematically investigating the structural modifications and catalytic performance of IM-5 zeolite treated with hexafluorosilicic acid in pseudocumene alkylation with methanol was carried out. Characterization techniques revealed significant alterations in crystal structure, morphology, textural properties, coordination environment, and acidity induced by the modifications. Catalytic evaluations demonstrated altered pseudocumene conversion, durene selectivity, and products distribution for optimized samples, with IM-5-0.01 (treated with 0.01 M modifier) showing superior activity stability. The improved performance was attributed to two key factors: a stable framework with high-density medium-strength Brønsted acid sites facilitating complete alkylation and expanded mesoporous volume promoting efficient product diffusion to mitigate deactivation. Conversely, reduced durene selectivity in modified samples stem from intensified isomerization reactions driven by increased external surface area, resulting in higher C9 product fractions. In contrast, the parent IM-5 zeolite exhibited rapid deactivation, with durene selectivity peaking at 40 h before declining. Mechanistic insights revealed dynamic processes including dealumination, defect formation, silicon repair, and aluminum redistribution during treatment, providing a theoretical foundation for rational catalyst design in alkylation reactions. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

12 pages, 920 KiB  
Article
Nitrone or Oxaziridine? Further Insights into the Selectivity of Imine Oxidation Catalyzed by Methyltrioxorhenium
by Camilla Matassini, Marco Bonanni, Francesca Cardona and Andrea Goti
Catalysts 2025, 15(4), 344; https://doi.org/10.3390/catal15040344 - 1 Apr 2025
Viewed by 605
Abstract
The oxidation of imines may give several products, such as oxaziridines, nitrones, amides, and other rearranged compounds. Therefore, its selectivity is a challenge that various methods have to face. The controversial selectivity of the oxidation of imines using urea hydrogen peroxide (UHP) catalyzed [...] Read more.
The oxidation of imines may give several products, such as oxaziridines, nitrones, amides, and other rearranged compounds. Therefore, its selectivity is a challenge that various methods have to face. The controversial selectivity of the oxidation of imines using urea hydrogen peroxide (UHP) catalyzed by methyltrioxorhenium (MTO) is addressed by varying the solvent, temperature, reaction time, amount of oxidant, and catalyst used. The reactivity and selectivity of the oxidation of imines proved to be particularly sensitive to the type of solvent. The use of methanol furnished the corresponding nitrones as the exclusive products, except for very hindered N-tert-alkyl substituted substrates. Using the ionic liquid [bmim]BF4 as a solvent resulted in a complete switch in reactivity and selectivity. N-methyl substituted imines gave the corresponding amides, while imines with bulkier substituents at nitrogen did not show any reactivity. An exception was the C-phenyl,N-tert-butyl imine—the only substrate that was oxidized to the corresponding oxaziridine, albeit with low conversion. The results reported herein reaffirm the oxidation of imines with UHP/MTO in MeOH as the method of choice for their interconversion to nitrones. Full article
(This article belongs to the Section Catalysis in Organic and Polymer Chemistry)
Show Figures

Graphical abstract

11 pages, 2447 KiB  
Article
Synthesis, Characterization and Application of NNN Pincer Manganese Complexes with Pyrazole Framework in α-Alkylation Reaction
by Tao Wang, Yongli Xu, Mengxin Du, Zhiyuan Hu and Lantao Liu
Molecules 2025, 30(7), 1465; https://doi.org/10.3390/molecules30071465 - 26 Mar 2025
Viewed by 622
Abstract
A series of novel NNN pincer manganese complexes based on pyrazole skeleton 4 were efficiently synthesized in a two-step process. All of the new complexes were fully characterized by 1H, 13C NMR spectra. Furthermore, the molecular structures of complexes 4a and [...] Read more.
A series of novel NNN pincer manganese complexes based on pyrazole skeleton 4 were efficiently synthesized in a two-step process. All of the new complexes were fully characterized by 1H, 13C NMR spectra. Furthermore, the molecular structures of complexes 4a and 4c were also determined by X-ray single-crystal diffraction. The manganese(I) catalysts obtained showed efficient catalytic activity in the α-alkylation reaction of ketones with alcohols. Under optimal reaction conditions, the expected products were procured with moderate to high yields. Full article
(This article belongs to the Special Issue New Horizons in Heterogeneous Catalysts: From Design to Applications)
Show Figures

Figure 1

11 pages, 2637 KiB  
Communication
Depolymerization of PET with n-Hexylamine, n-Octylamine, and 3-Amino-1-Propanol, Affording Terephthalamides
by Sumiho Hiruba, Yohei Ogiwara and Kotohiro Nomura
Catalysts 2025, 15(2), 129; https://doi.org/10.3390/catal15020129 - 29 Jan 2025
Cited by 1 | Viewed by 1895
Abstract
The chemical conversion of plastic waste has been considered an important subject in terms of the circular economy, and the chemical recycling and upcycling of poly(ethylene terephthalate) (PET) has been considered one of the most important subjects. In this study, the depolymerization of [...] Read more.
The chemical conversion of plastic waste has been considered an important subject in terms of the circular economy, and the chemical recycling and upcycling of poly(ethylene terephthalate) (PET) has been considered one of the most important subjects. In this study, the depolymerization of PET with n-hexylamine, n-octylamine, and 3-amino-1-propanol has been explored in the presence of Cp*TiCl3 (Cp* = C5Me5). The reactions of PET with n-hexylamine and n-octylamine at 130 °C afforded the corresponding N,N′-di(n-alkyl) terephthalamides in high yields (>90%), and Cp*TiCl3 plays a role as the catalyst to facilitate the conversion in exclusive selectivity. The reaction of PET with 3-amino-1-propanol proceeded at 100 °C even in the absence of the Ti catalyst, affording N,N′-bis(3-hydroxy) terephthalamides in high yields. A unique contrast has been demonstrated between the depolymerization of PET by transesterification with alcohol and by aminolysis; the depolymerizations with these amines proceeded without the aid of a catalyst. Full article
(This article belongs to the Special Issue State-of-the-Art Polymerization Catalysis)
Show Figures

Graphical abstract

11 pages, 898 KiB  
Article
Environmentally Friendly Green O-Alkylation Reaction for Ethenzamide Synthesis
by Paulina Niedziejko-Ćwiertnia, Anna Karolina Drabczyk, Damian Kułaga, Patrycja Podobińska, Wojciech Bachowski, Kamila Zeńczak-Tomera, Piotr Michorczyk, Ruilong Sheng and Jolanta Jaśkowska
Appl. Sci. 2025, 15(3), 1342; https://doi.org/10.3390/app15031342 - 27 Jan 2025
Viewed by 1421
Abstract
Ethenzamide (2-ethoxybenzamide), besides acetylsalicylic acid, is one of the mostly used salicylic acid derivatives in pharmaceuticals. It has analgesic and anti-inflammatory effects that originate from the inhibition of cyclooxygenase (COX-1) activity, thus blocking prostaglandin synthesis. In this work, efficient and eco-friendly methods were [...] Read more.
Ethenzamide (2-ethoxybenzamide), besides acetylsalicylic acid, is one of the mostly used salicylic acid derivatives in pharmaceuticals. It has analgesic and anti-inflammatory effects that originate from the inhibition of cyclooxygenase (COX-1) activity, thus blocking prostaglandin synthesis. In this work, efficient and eco-friendly methods were developed for the synthesis of ethenzamide via the O-alkylation reaction of salicylamide. The reactions were carried out under conventional conditions in a solvent-free system using variant solvents and different phase transfer catalysts (PTC) in the presence of microwave radiation or ultrasonic conditions. It was shown that in solvent-free conditions using TBAB as a catalyst, ethenzamide can be obtained within 15 min at 80 °C with 79% yield. Meanwhile, using microwave radiation under the same conditions, the reaction time can be shortened to 90 s with 92% yield. Notably, high yields can be achieved under PTC in water (or organic solvent-free) conditions using microwave radiation (2 min, 94%) or ultrasound (10 min, 95% efficiency). The studies prove that the PTC synthesis process of ethenzamide can be conducted under mild conditions, with a shorter reaction time and remarkably lower energy consumption in comparison to conventional processes, thus actualizing “green chemistry” for practical ethenzamide preparation. Full article
(This article belongs to the Special Issue Advances in Organic Synthetic Chemistry)
Show Figures

Figure 1

16 pages, 848 KiB  
Article
Coal Tar Naphtha Refining: Phenol Alkylation with 1-Hexene and the Impact of Pyridine
by Yuhan Xia and Arno de Klerk
Processes 2025, 13(1), 194; https://doi.org/10.3390/pr13010194 - 12 Jan 2025
Viewed by 1048
Abstract
Coal tar naphtha is produced from coal carbonization, moving bed coal gasification, and thermal liquefaction of coal. The naphtha can contain up to 60% aromatics and 15% olefins, as well as nitrogen-, oxygen-, and sulfur-containing compounds. Usually only hydrotreating is considered, but when [...] Read more.
Coal tar naphtha is produced from coal carbonization, moving bed coal gasification, and thermal liquefaction of coal. The naphtha can contain up to 60% aromatics and 15% olefins, as well as nitrogen-, oxygen-, and sulfur-containing compounds. Usually only hydrotreating is considered, but when producing motor gasoline, olefin–aromatic alkylation could reduce the associated octane number loss due to olefin hydrogenation by converting olefins to alkylated phenols and aromatics. The plausibility of using acid-catalyzed alkylation with coal tar naphtha, which contains nitrogen bases, was investigated by studying a model system comprising phenol and 1-hexene in the absence and presence of pyridine. It was found that pyridine only inhibited conversion over a range of amorphous silica–alumina catalysts. The most effective catalyst was Siral 30 (30% silica, 70% alumina) and at 315 °C, 0.05 wt% pyridine caused a 35% inhibition of phenol conversion compared to conversion in the absence of pyridine. Catalyst activity could be restored by rejuvenating the catalyst with clean feed at a higher temperature. The results supported a description of phenol alkylation with olefins that took place by at least two pathways, one involving protonation of the olefin (typical for Friedel–Crafts alkylation) and one where the olefin is the nucleophile. Full article
(This article belongs to the Special Issue Synthesis, Catalysis and Applications of Organic Chemistry)
Show Figures

Figure 1

26 pages, 4650 KiB  
Article
Hydrodeoxygenation of Phenolic Compounds and Lignin Bio-Oil Surrogate Mixture over Ni/BEA Zeolite Catalyst and Investigation of Its Deactivation
by Antigoni G. Margellou, Foteini F. Zormpa, Dimitrios Karfaridis, Stamatia A. Karakoulia and Konstantinos S. Triantafyllidis
Catalysts 2025, 15(1), 48; https://doi.org/10.3390/catal15010048 - 7 Jan 2025
Cited by 2 | Viewed by 1777
Abstract
Lignin is one of the main structural components of lignocellulosic biomass and can be utilized to produce phenolic compounds that can be converted downstream to cycloalkanes and aromatics, which are useful as drop-in road or aviation biofuels. Within this study, the hydrodeoxygenation of [...] Read more.
Lignin is one of the main structural components of lignocellulosic biomass and can be utilized to produce phenolic compounds that can be converted downstream to cycloalkanes and aromatics, which are useful as drop-in road or aviation biofuels. Within this study, the hydrodeoxygenation of model phenolic/aromatic compounds and surrogate mixture simulating the light fraction of lignin fast-pyrolysis bio-oil was performed under mild reaction conditions. Ni/BEA zeolite was selected as a catalyst to investigate the conversion and the product selectivity of alkyl phenols (phenol, catechol, cresols), methoxy-phenols (guaiacol, syringol, creosol), aromatics (anisole, 1,2,3-trimethoxybenzene) and dimer (2-phenoxy-1-phenyl ethanol) compounds towards (alkyl)cycloalkanes. The hydrodeoxygenation of a surrogate mixture of eleven phenolic and aromatic compounds was then studied by investigating the effect of reaction conditions (temperature, time, H2 pressure, surrogate mixture concentration, and catalyst-to-feed ratio). The conversion of model compounds was in the range of 80–100%, towards a 37–81% (alkyl)cycloalkane yield, being strongly dependent on the complexity/side-chain group of the phenolic/aromatic ring. Regarding the hydrodeoxygenation of the surrogate mixture, 59–100% conversion was achieved, with up to a 72% yield of C6–C9 cycloalkanes. Characterization of spent catalysts showed that the hydrodeoxygenation of surrogate mixture led to carbonaceous depositions on the catalyst, which can be limited under lower temperatures and longer reaction conditions, while after regeneration, the physicochemical properties of catalysts can be partially recovered. Full article
Show Figures

Figure 1

24 pages, 9848 KiB  
Article
Toluene Alkylation Reactions over Y-Type Zeolite Catalysts: An Experimental and Kinetic Study
by Samaa H. Al-Sultani, Ali Al-Shathr and Bashir Y. Al-Zaidi
Reactions 2024, 5(4), 1042-1065; https://doi.org/10.3390/reactions5040055 - 6 Dec 2024
Viewed by 1440
Abstract
The present study demonstrated an improvement in both 1-heptene conversion and mono-heptyltoluene selectivity. It simultaneously depicted the isomerization reactions of 1-heptene and toluene alkylation over Y zeolite catalysts having a Si/Al of 3.5 and a surface area of 817 m2/g. The [...] Read more.
The present study demonstrated an improvement in both 1-heptene conversion and mono-heptyltoluene selectivity. It simultaneously depicted the isomerization reactions of 1-heptene and toluene alkylation over Y zeolite catalysts having a Si/Al of 3.5 and a surface area of 817 m2/g. The physical properties of the fresh zeolite catalyst were characterized using XRD, FTIR, XRF, TPD, and N2 adsorption–desorption spectroscopy. The experimental part was carried out in a 100 mL glass flask connected to a reflux condenser at different reaction temperatures ranging from 70 to 90 °C, toluene:1-heptene ratios of 3–8, and catalyst weights of 0.25–0.4 g. The highest conversion of ~96% was obtained at the highest toluene:1-heptene ratio (i.e., 8:1), 0.25 g of zeolite Y, at 180 min of reaction time and under a reaction temperature of 90 °C. However, the selectivity of 2-heptyltoluene reached its highest value of ~25% under these conditions. Likewise, the kinetic modeling developed in this study helped describe the proposed reaction mechanism by linking the experimental results with the predicted results. The kinetic parameters were determined by nonlinear regression analysis using the MATLAB® package genetic algorithm. The ordinary differential equations were integrated with respect to time using the fourth-order Runge–Kutta method, and the resulting mole fractions were fitted against the experimental data. The mean relative error (MRE) values were calculated from the experimental and predicted results, which showed a reasonable agreement with the average MRE being ~11.7%. The calculated activation energies showed that the reaction rate follows the following order: coking (55.9–362.7 kJ/mol) > alkylation (73.1–332.1 kJ/mol) > isomerization (69.3–120.2 kJ/mol), indicating that isomerization reactions are the fastest compared to other reactions. A residual activity deactivation model was developed to measure the deactivation kinetic parameters, and the deactivation energy value obtained was about 48.2 kJ/mol. Full article
Show Figures

Figure 1

21 pages, 7077 KiB  
Review
Transition-Metal-Catalyzed C(sp3)–H Alkylation of Methyl Heteroarenes with Alcohols
by Bin Guo, Jing Zhang, Lin He, Xin-Yuan Zhou, Kai-Wen Xing, David J. Young and Hong-Xi Li
Catalysts 2024, 14(12), 881; https://doi.org/10.3390/catal14120881 - 3 Dec 2024
Cited by 1 | Viewed by 1588
Abstract
Transition-metal-catalyzed C(sp3)-H bond functionalization is a useful transformation for the construction of C–C bonds. A versatile and easy-to-perform protocol in this respect is the C-alkylation of methyl heteroarenes with alcohols using auto-transfer hydrogenative (ATH) reactions. Various transition metal catalysts based on [...] Read more.
Transition-metal-catalyzed C(sp3)-H bond functionalization is a useful transformation for the construction of C–C bonds. A versatile and easy-to-perform protocol in this respect is the C-alkylation of methyl heteroarenes with alcohols using auto-transfer hydrogenative (ATH) reactions. Various transition metal catalysts based on Ir, Pt, Ru, Ni, Co, Fe and Mn have been employed for the construction of chain-elongated alkyl-substituted heterocyclic compounds using this chemistry. Water is the only byproduct and the starting alcohols are less toxic, readily available, more easily handled and more atom-economical substrates than their halogen counterparts. This review details recent advances in this synthetic methodology, describing the scope, reaction mechanism, chemo-selectivity and applications. Full article
(This article belongs to the Special Issue Catalysis in Heterocyclic and Organometallic Synthesis, 3rd Edition)
Show Figures

Figure 1

18 pages, 7800 KiB  
Article
Demonstrating the Efficacy of Core-Shell Silica Catalyst in Depolymerizing Polycarbonate
by Onofrio Losito, Pasquale Pisani, Alessia De Cataldo, Cosimo Annese, Marina Clausi, Roberto Comparelli, Daniela Pinto and Lucia D’Accolti
Polymers 2024, 16(22), 3209; https://doi.org/10.3390/polym16223209 - 19 Nov 2024
Cited by 1 | Viewed by 1543
Abstract
Polycarbonate (PC) is a highly versatile plastic material that is extensively utilized across various industries due to its superior properties, including high impact strength and heat resistance. However, its durability presents significant challenges for recycling and waste management. Polycarbonate is a thermoplastic polymer [...] Read more.
Polycarbonate (PC) is a highly versatile plastic material that is extensively utilized across various industries due to its superior properties, including high impact strength and heat resistance. However, its durability presents significant challenges for recycling and waste management. Polycarbonate is a thermoplastic polymer representative of the class of condensation reaction polymers obtained from the reaction of bisphenol A (BPA) and a carbonyl source, such as phosgene or alkyl and aryl carbonate. The recycling processes for PC waste include mechanical recycling, blending with other materials, pyrolysis, and chemical recycling. The latter is based on the cleavage of carbonate units to their corresponding monomers or derivatives through alcoholysis and/or hydrolysis and ammonolysis, normally under basic conditions and without catalysts. This study investigates the efficacy of the use of several heterogeneous catalysts based on silica gel as a robust support, including Sc(III)silicate (thortveitite), which has been previously reported for the preparation of polyesters, core-shell Si-ILs, and core-shell Si-ILs-ZnO, which has never been used before in the depolymerization of polycarbonate, proposing a sustainable and efficient method for recycling this valuable polymer. We chose to explore core-shell catalysts because these catalysts are robust and recyclable, and have been used in very harsh industrial processes. The core-shell silica catalysts used in this study were characterized by XRD; SEM_EDX, FT-IR, and ICP-OES analysis. In our experimental protocol, polycarbonate samples were exposed to the catalyst under controlled conditions (60–150 °C, for 12–24 h) using both oxygen and nitrogen nucleophiles. The depolymerization process was systematically monitored using advanced analytical techniques (GC/MS and GPC chromatography). The experimental results indicated that core-shell silica catalyst exhibits high efficacy, with up to 75% yield for the ammonolysis reaction, producing monomers of high purity. These monomers can be reused for the synthesis of new polycarbonate materials, contributing to a more sustainable approach to polycarbonate recycling. Full article
(This article belongs to the Special Issue Chemical Recycling of Polymers)
Show Figures

Graphical abstract

14 pages, 3441 KiB  
Article
Metal-Exchanged Phosphomolybdic Acid Salts-Catalyzed Esterification of Levulinic Acid
by Márcio José da Silva, Alana Alves Rodrigues and Wilton Keisuke Taba
Processes 2024, 12(11), 2574; https://doi.org/10.3390/pr12112574 - 17 Nov 2024
Cited by 1 | Viewed by 934
Abstract
We examined the effectiveness of metal-exchanged phosphomolybdic acid salts in converting levulinic acid, derived from biomass, into valuable products (alkyl levulinate). We prepared salts of phosphomolybdic acid using different metals (Fe3+, Al3+, Zn2+, Cu2+, Mn [...] Read more.
We examined the effectiveness of metal-exchanged phosphomolybdic acid salts in converting levulinic acid, derived from biomass, into valuable products (alkyl levulinate). We prepared salts of phosphomolybdic acid using different metals (Fe3+, Al3+, Zn2+, Cu2+, Mn2+, Ni2+, and Co2+). The influence of metal cations on the conversion and selectivity of the reactions was assessed. We found that the salts prepared with iron and aluminum phosphomolybdate were the most effective catalysts for the esterification of levulinic acid with methanol, with the conversion and selectivity tending towards 100% after 6 h of reaction at a temperature of 323 K. The effect of catalyst loading and its recovery and reuse was evaluated; the results from the reaction using aluminum phosphomolybdate remained similar for four cycles of use. The influence of temperature on conversion and selectivity was investigated between 298 and 353 K. The reactivity of different alcohols with a carbon chain size of C1-C4 was assessed and conversions above 65% were obtained for all alcohols tested under the conditions evaluated, except for tert-butyl alcohol. These catalysts are a promising alternative to the traditional soluble and corrosive Brønsted acid catalysts. The superior performance of these catalysts was ascribed to the higher pH decline triggered by the hydrolysis of these metal cations. Full article
Show Figures

Figure 1

14 pages, 4623 KiB  
Article
Synergic Effects of Ordered Mesoporous Bifunctional Ionic Liquid: A Recyclable Catalyst to Access Chemoselective N-Protected Indoline-2,3-dione Analogous
by Gouthaman Siddan and Viswas Raja Solomon
Catalysts 2024, 14(9), 629; https://doi.org/10.3390/catal14090629 - 17 Sep 2024
Viewed by 1175
Abstract
SBA-15 and organic ionic liquid were incorporated in a post-grafting technique for generating a bifunctional ionic liquid embedded mesoporous SBA-15. The prepared heterogeneous catalyst was employed for the first time to synthesize N-alkylated indoline-2,3-dione at mild conditions to afford excellent yields in [...] Read more.
SBA-15 and organic ionic liquid were incorporated in a post-grafting technique for generating a bifunctional ionic liquid embedded mesoporous SBA-15. The prepared heterogeneous catalyst was employed for the first time to synthesize N-alkylated indoline-2,3-dione at mild conditions to afford excellent yields in a short reaction time. The synthesized DABCOIL@SBA-15 catalyst was meticulously characterized by various techniques, such as FT-IR, solid-state 13C NMR, solid-state 29Si NMR, small-angle X-ray diffraction (XRD), and N2 adsorption–desorption. Further, the morphological behavior of the catalyst was studied by SEM and TEM. The thermal stability and number of active sites were determined by thermogravimetric analysis (TGA). The Hammett equation was used to analyze the synergetic effect of the catalyst and substituent effects on the N-alkylated products of 5-substituted isatin derivatives, which resulted in a negative slope. This negative slope indicates a positive charge in the transition state. Notably, the DABCOIL@SBA-15 catalyst demonstrated its practicality by being reused for seven cycles with consistently high catalytic activity. Full article
(This article belongs to the Special Issue Mesoporous Nanostructured Materials for Heterogeneous Catalysis)
Show Figures

Figure 1

8 pages, 11091 KiB  
Communication
Novel Brønsted Acid Catalyzed C-C Bond Activation and α-Alkylation of Ketones
by Wenjuan Li, Huihang Cheng, Huabo Han, Lu Li, Xinming Liu, Xianxu Chu and Xiaopei Li
Molecules 2024, 29(17), 4266; https://doi.org/10.3390/molecules29174266 - 9 Sep 2024
Cited by 2 | Viewed by 1310
Abstract
A novel approach for the α-alkylation of ketones was developed using Brønsted acid-catalyzed C-C bond cleavage. Both aromatic and aliphatic ketones reacted smoothly with 2-substituted 1,3-diphenylpropane-1,3-diones to afford α-alkylation products with high yields and with excellent regioselectivity, in which the 1,3-dicarbonyl [...] Read more.
A novel approach for the α-alkylation of ketones was developed using Brønsted acid-catalyzed C-C bond cleavage. Both aromatic and aliphatic ketones reacted smoothly with 2-substituted 1,3-diphenylpropane-1,3-diones to afford α-alkylation products with high yields and with excellent regioselectivity, in which the 1,3-dicarbonyl group acted as a leaving group in the presence of the catalyst TfOH. Mechanism experiments showed that the β-C-C bond cleavage of diketone and the shift of the equilibrium towards the enol formation from ketone are driving forces that induce the desired products. Full article
Show Figures

Scheme 1

Back to TopTop