Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = C1q/TNF-related protein-3

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2994 KiB  
Article
Altered Expression of Cell Cycle Regulators and Factors Released by Aged Cells in Skeletal Muscle of Patients with Bone Fragility: A Pilot Study on the Potential Role of SIRT1 in Muscle Atrophy
by Angela Falvino, Roberto Bonanni, Beatrice Gasperini, Ida Cariati, Angela Chiavoghilefu, Amarildo Smakaj, Virginia Veronica Visconti, Annalisa Botta, Riccardo Iundusi, Elena Gasbarra, Virginia Tancredi and Umberto Tarantino
Biomedicines 2025, 13(6), 1350; https://doi.org/10.3390/biomedicines13061350 - 31 May 2025
Viewed by 884
Abstract
Background/Objectives: Cellular aging represents a crucial element in the progression of musculoskeletal diseases, contributing to muscle atrophy, functional decline, and alterations in bone turnover, which promote fragility fractures. However, knowledge about expression patterns of factors potentially involved in aging and senescence at [...] Read more.
Background/Objectives: Cellular aging represents a crucial element in the progression of musculoskeletal diseases, contributing to muscle atrophy, functional decline, and alterations in bone turnover, which promote fragility fractures. However, knowledge about expression patterns of factors potentially involved in aging and senescence at the tissue level remains limited. Our pilot study aimed to characterize the expression profile of cell cycle regulators, factors released by aged cells, and sirtuin 1 (SIRT1) in the muscle tissue of 26 elderly patients undergoing hip arthroplasty, including 13 with low-energy fracture and 13 with osteoarthritis (OA). Methods: The mRNA expression levels of cyclin-dependent kinase inhibitor 1A (CDKN1A), cyclin-dependent kinase inhibitor 1B (CDKN1B), cyclin-dependent kinase inhibitor 2A (CDKN2A), p53, tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), interleukin-15 (IL-15), chemokine (C-C motif) ligand 2 (CCL2), chemokine (C-C motif) ligand 3 (CCL3), growth differentiation factor 15 (GDF15), and SIRT1 were evaluated in muscle tissue by qRT-PCR. In addition, immunohistochemistry and Western blotting analysis were conducted to measure the protein levels of SIRT1. Results: A marked muscle atrophy was observed in fractured patients compared to the OA group, in association with an up-regulation of cell cycle regulators and factors released by the aged cells. The expression of matrix metallopeptidase 3 (MMP3), plasminogen activator inhibitor 1 (PAI-1), and fas cell surface death receptor (FAS) was also investigated, although no significant differences were observed between the two experimental groups. Notably, SIRT1 expression was significantly higher in OA patients, confirming its role in maintaining muscle health during aging. Conclusions: Further studies will be needed to clarify the role of SIRT1 in the senescence characteristic of age-related musculoskeletal disorders, counteracting the muscle atrophy that predisposes to fragility fractures. Full article
Show Figures

Figure 1

19 pages, 4793 KiB  
Article
Evaluating the Components, Nutrients, and Antioxidant and Anti-Inflammatory Properties of Centranthera grandiflora Benth Extracts
by Wenjuan Yuan, Xinlan Liu, Xinting Wang, Zejin Nian, Xiaoyun Wu, Chengting Zi, Sha Xu, Xiaojing Shen and Xuanjun Wang
Nutrients 2025, 17(5), 925; https://doi.org/10.3390/nu17050925 - 6 Mar 2025
Viewed by 1019
Abstract
Background: Centranthera grandiflora Benth is commonly utilized in China to take advantage of its purported health benefits. Methods: Here, the chemical composition, nutritional value, and bioactivity of C. grandiflora Benth extract (CGE) are characterized, and the mechanisms through which it functions were explored. [...] Read more.
Background: Centranthera grandiflora Benth is commonly utilized in China to take advantage of its purported health benefits. Methods: Here, the chemical composition, nutritional value, and bioactivity of C. grandiflora Benth extract (CGE) are characterized, and the mechanisms through which it functions were explored. Results: CGE was found to exhibit a favorable nutritional and biosafety profile, especially due to its high amino acid and mineral contents. A UPLC-ESI-Q-TOF/MS approach identified 20 compounds. Through network pharmacology analyses, the antioxidant activity of CGE was found to be mediated through the PI3K/Akt pathway, with molecular docking results providing support for mussaenoside and azafrin as important bioactive compounds. At the cellular level, antioxidant activity of key protective antioxidants including GSH-Px and SOD while suppressing ROS accumulation, levels of damage-related factors (MDA, NO, TNF-α, IL-1β, and IL-6), and iNOS and COX-2 in RAW264.7 cells treated with LPS. These findings offer potential evidence for using CGE to lower oxidative stress and inflammation. Further analyses demonstrated the ability of CGE to promote Nrf2 and HO-1 upregulation, whereas Keap1 levels were suppressed, as were PI3K/Akt/NF-κB proteins. In light of these results, CGE appears to be able to act via simultaneously enhancing Nrf2/HO-1 activity and reducing that of PI3K/Akt/NF-κB. Conclusions: CGE, as a rich source of iridoid glycosides and other nutrients, may thus be a valuable dietary supplement for use in food applications. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

12 pages, 2968 KiB  
Article
Tea Polyphenol Protects the Immune Barrier and Inhibits TLR2/NF-κB/MLCK Signal Activation to Prevent Inflammatory Injury in the Intestines of Common Carp (Cyprinus carpio L.)
by Man Qian, Jie Yang, Yao Xue, Jiawei Wu, Ziyi Li, Jilong Luo, Bing Zhao and Xuejiao Gao
Animals 2025, 15(3), 387; https://doi.org/10.3390/ani15030387 - 30 Jan 2025
Viewed by 1363
Abstract
Tea polyphenol (TP) is a kind of natural macromolecular compound present in tea extract with rich biological potential. The purpose of this study was to explore the protective effect of TP on the intestinal immune barrier and the related mechanisms of TP alleviating [...] Read more.
Tea polyphenol (TP) is a kind of natural macromolecular compound present in tea extract with rich biological potential. The purpose of this study was to explore the protective effect of TP on the intestinal immune barrier and the related mechanisms of TP alleviating intestinal injury. Models of common carp (Cyprinus carpio L.) and primary intestinal epithelial cells treated with TP and lipopolysaccharide (LPS) were established. The qPCR and ELISA results showed that TP increased the levels of lysozyme (LZ), alkaline phosphatase (ALP), complement component 3 (C3), complement component 4 (C4), immunoglobulin T (IgT), immunoglobulin D (IgD), and immunoglobulin M (IgM) to activate intestinal immune ability. Molecular docking indicated that TP had a strong interaction with TLR2. Meanwhile, TP alleviated LPS-induced intestinal inflammatory damage as evidenced by reducing the mRNA levels of TNF-α, IL-6, IL-1β, TLR2, MyD88, P65, and IκBα, which were consistent with those of ELISA and Western blotting results. Moreover, the qPCR and Western blotting results revealed TP promoted the levels of tight junction-related proteins (claudins, occludin, and ZOs) and inhibited the phosphorylation of MLC, which showed the opposite trend after LPS treatment. In summary, the present study indicated that TP improved immune ability and inhibited the activation of the TLR2/NF-κB/MLCK pathway to attenuate LPS-induced inflammatory injury in the intestines of common carp. Full article
Show Figures

Graphical abstract

22 pages, 9142 KiB  
Article
Ethyl Acetate Extract of Cichorium glandulosum Activates the P21/Nrf2/HO-1 Pathway to Alleviate Oxidative Stress in a Mouse Model of Alcoholic Liver Disease
by Shuwen Qi, Chunzi Zhang, Junlin Yan, Xiaoyan Ma, Yewei Zhong, Wenhui Hou, Juan Zhang, Tuxia Pang and Xiaoli Ma
Metabolites 2025, 15(1), 41; https://doi.org/10.3390/metabo15010041 - 10 Jan 2025
Viewed by 1385
Abstract
Background: Alcoholic liver disease (ALD) is a significant global health concern, primarily resulting from chronic alcohol consumption, with oxidative stress as a key driver. The ethyl acetate extract of Cichorium glandulosum (CGE) exhibits antioxidant and hepatoprotective properties, but its detailed mechanism of action [...] Read more.
Background: Alcoholic liver disease (ALD) is a significant global health concern, primarily resulting from chronic alcohol consumption, with oxidative stress as a key driver. The ethyl acetate extract of Cichorium glandulosum (CGE) exhibits antioxidant and hepatoprotective properties, but its detailed mechanism of action against ALD remains unclear. This study investigates the effects and mechanisms of CGE in alleviating alcohol-induced oxidative stress and liver injury. Methods: Ultra-Performance Liquid Chromatography coupled with Quadrupole-Orbitrap Mass Spectrometry (UPLC-Q-Orbitrap-MS) was used to identify CGE components. A C57BL/6J mouse model of ALD was established via daily oral ethanol (56%) for six weeks, with CGE treatment at low (100 mg/kg) and high doses (200 mg/kg). Silibinin (100 mg/kg) served as a positive control. Liver function markers, oxidative stress indicators, and inflammatory markers were assessed. Transcriptomic and network pharmacology analyses identified key genes and pathways, validated by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting. Results: UPLC-Q-Orbitrap-MS identified 81 CGE compounds, mainly including terpenoids, flavonoids, and phenylpropanoids. CGE significantly ameliorated liver injury by reducing alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) levels and enhancing antioxidative markers such as total antioxidant capacity (T-AOC) and total superoxide dismutase (T-SOD) while lowering hepatic malondialdehyde (MDA) levels. Inflammation was mitigated through reduced levels of Tumor Necrosis Factor Alpha (TNF-α), Interleukin-1 Beta (IL-1β), and C-X-C Motif Chemokine Ligand 10 (CXCL-10). Transcriptomic and network pharmacology analysis revealed seven key antioxidant-related genes, including HMOX1, RSAD2, BCL6, CDKN1A, THBD, SLC2A4, and TGFβ3, validated by RT-qPCR. CGE activated the P21/Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2)/Heme Oxygenase-1 (HO-1) signaling axis, increasing P21, Nrf2, and HO-1 protein levels while suppressing Kelch-like ECH-associated Protein 1 (Keap1) expression. Conclusions: CGE mitigates oxidative stress and liver injury by activating the P21/Nrf2/HO-1 pathway and regulating antioxidant genes. Its hepatoprotective effects and multi-target mechanisms highlight CGE’s potential as a promising therapeutic candidate for ALD treatment. Full article
(This article belongs to the Special Issue Plants and Plant-Based Foods for Metabolic Disease Prevention)
Show Figures

Graphical abstract

14 pages, 3697 KiB  
Article
Efficacy and Potential Mechanisms of Naringin in Atopic Dermatitis
by Seung-Ah Yoo, Ki-Chan Kim and Ji-Hyun Lee
Int. J. Mol. Sci. 2024, 25(20), 11064; https://doi.org/10.3390/ijms252011064 - 15 Oct 2024
Cited by 4 | Viewed by 2098
Abstract
Atopic dermatitis (AD) is one of the most prevalent chronic inflammatory skin diseases. Topical treatments are recommended for all patients regardless of severity, making it essential to develop an effective topical AD treatment with minimal side effects; We investigated the efficacy of topical [...] Read more.
Atopic dermatitis (AD) is one of the most prevalent chronic inflammatory skin diseases. Topical treatments are recommended for all patients regardless of severity, making it essential to develop an effective topical AD treatment with minimal side effects; We investigated the efficacy of topical application of naringin in AD and explored the possible mechanisms using an AD mouse model induced by 1-chloro-2,4-dinitrobenzene (DNCB). Clinical, histological, and immunological changes related to AD and Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling proteins in the skin tissues were measured as outcomes; Naringin treatment resulted in a significant improvement in dermatitis severity score and reduced epidermal thickness and mast cell count in the skin (p < 0.05). Naringin also demonstrated the ability to inhibit DNCB-induced changes in interleukin (IL) 4, chemokine (C-C motif) ligand (CCL) 17, CCL22, IL1β, interferon-gamma (IFN-γ), and tumor necrosis factor-alpha (TNF-α) levels by quantitative real-time polymerase chain reaction (qRT-PCR) and IL13 by enzyme-linked immunosorbent assay (ELISA) (p < 0.05). Western blot results exhibited the decreased JAK1, JAK2, STAT1, STAT3, phospho-STAT3, and STAT6 expression in the naringin-treated groups (p < 0.05); The findings of this study suggest that topical naringin may effectively improve the symptoms of AD and could be used as a therapeutic agent for AD. Full article
Show Figures

Figure 1

22 pages, 27479 KiB  
Article
CTRP13-Mediated Effects on Endothelial Cell Function and Their Potential Role in Obesity
by Muhammad Aslam, Ling Li, Sina Nürnberger, Bernd Niemann and Susanne Rohrbach
Cells 2024, 13(15), 1291; https://doi.org/10.3390/cells13151291 - 31 Jul 2024
Viewed by 1403
Abstract
Background: Obesity, a major component of cardiometabolic syndrome, contributes to the imbalance between pro- and anti-atherosclerotic factors via dysregulation of adipocytokine secretion. Among these adipocytokines, the C1q/TNF-related proteins (CTRPs) play a role in the modulation of atherosclerosis development and progression. Here, we investigated [...] Read more.
Background: Obesity, a major component of cardiometabolic syndrome, contributes to the imbalance between pro- and anti-atherosclerotic factors via dysregulation of adipocytokine secretion. Among these adipocytokines, the C1q/TNF-related proteins (CTRPs) play a role in the modulation of atherosclerosis development and progression. Here, we investigated the vascular effects of CTRP13. Results: CTRP13 is not only expressed in adipose tissue but also in vessels/endothelial cells (ECs) of mice, rats, and humans. Obese individuals (mice, rats, and humans) showed higher vascular CTRP13 expression. Human Umbilical Vein Endothelial Cells (HUVECs), cultured in the presence of serum from obese mice, mimicked this obesity-associated effect on CTRP13 protein expression. Similarly, high glucose conditions and TNF-alpha, but not insulin, resulted in a strong increase in CTRP13 in these cells. Recombinant CTRP13 induced a reduction in EC proliferation via AMPK. In addition, CTRP13 reduced cell cycle progression and increased p53 phosphorylation and p21 protein expression, but reduced Rb phosphorylation, with the effects largely depending on alpha-2 AMPK as suggested by adenoviral overexpression of dominant-negative (DN) or wild-type (WT) alpha 1/alpha 2 AMPK. Conclusion: The present study demonstrates that CTRP13 expression is induced in ECs under diabetic conditions and that CTRP13 possesses significant vaso-modulatory properties which may have an impact on vascular disease progression in patients. Full article
Show Figures

Figure 1

14 pages, 3508 KiB  
Article
Characterizing the Dynamic Expression of C1q/TNF-α-Related Protein 6 (CTRP6) during Pregnancy in Humans and Mice with Gestational Diabetes Mellitus
by Jianan Jiang, Shuangyu Wei, Miao Chen, Yutian Tan, Zhao Yang, Guiying Yang, Weijie Feng, Zhen Han, Xiaojing Wei and Xiao Luo
Biomedicines 2024, 12(5), 1128; https://doi.org/10.3390/biomedicines12051128 - 19 May 2024
Cited by 1 | Viewed by 1679
Abstract
Aim: C1q/TNF-related protein 6 (CTRP6) is a novel adipokine involved in insulin resistance. Thus, we aim to investigate the expression profile of CTRP6 in the plasma, adipose tissue and placenta of GDM patients and mice. Methods: Chinese Han pregnant women (GDM n = [...] Read more.
Aim: C1q/TNF-related protein 6 (CTRP6) is a novel adipokine involved in insulin resistance. Thus, we aim to investigate the expression profile of CTRP6 in the plasma, adipose tissue and placenta of GDM patients and mice. Methods: Chinese Han pregnant women (GDM n = 9, control n = 10) with a scheduled caesarean section delivery were recruited. A number of high-fat diet (HFD) induced-pregnancy C57BL/6 mice were chosen as an animal model of GDM. Circulating levels of CTRP6 and adiponectin were examined by ELISA. CTRP6 expression in adipose tissue and placenta were detected by real-time qPCR and WB. Result: Plasma CTRP6 levels were decreased during the first and second trimesters in mice, as well as the second and third trimesters in patients, while they were increased at delivery in GDM patients and mice. Plasma CTRP6 levels were significantly correlated with WBC, systolic pressure, diastolic pressure and fasting blood glucose. Moreover, CTRP6 mRNA expression in the subcutaneous (sWAT) and omental white adipose tissue (oWAT), as well as in the placenta, was significantly higher in GDM human patients at cesarean delivery. Furthermore, the mRNA expression of Ctrp6 was increased in the sWAT and visceral WAT (vWAT), whilst decreased in the interscapular brown adipose tissue (iBAT), of GDM mice at cesarean delivery. Conclusion: Dynamically expressed CTRP6 may be served as a candidate target for treatment of GDM. Full article
(This article belongs to the Section Endocrinology and Metabolism Research)
Show Figures

Figure 1

16 pages, 4561 KiB  
Article
Activation of Cannabinoid Type 2 Receptor in Microglia Reduces Neuroinflammation through Inhibiting Aerobic Glycolysis to Relieve Hypertension
by Ruohan Shan, Yuxiang Zhang, Yiping Shi, Xiaowen Wang, Xueke Wang, Guanying Ma and Qian Li
Biomolecules 2024, 14(3), 333; https://doi.org/10.3390/biom14030333 - 11 Mar 2024
Cited by 7 | Viewed by 2883
Abstract
Background: Studies have shown that the chronic use of cannabis is associated with a decrease in blood pressure. Our previous studies prove that activating the cannabinoid type 2 (CB2) receptor in the brain can effectively reduce blood pressure in spontaneously hypertensive rats; however, [...] Read more.
Background: Studies have shown that the chronic use of cannabis is associated with a decrease in blood pressure. Our previous studies prove that activating the cannabinoid type 2 (CB2) receptor in the brain can effectively reduce blood pressure in spontaneously hypertensive rats; however, the exact mechanism has not been clarified. The objective of this study is to demonstrate that activation of microglial CB2 receptors can effectively reduce the levels of TNF-α, IL-1β, and IL-6 in the paraventricular nucleus (PVN) through inhibiting aerobic glycolysis, thereby relieving hypertension. Methods: AngiotensinII (AngII) was administered to BV2 cells and C57 mice to induce hypertension and the release of proinflammatory cytokines. The mRNA and protein expression of the CB2 receptor, TNF-α, IL-1β, IL-6, and the PFK and LDHa enzymes were detected using RT-qPCR and Western blotting. The Seahorse XF Energy Metabolism Analyzer was used to measure the oxidative phosphorylation and aerobic glycolysis metabolic pathways in BV2 cells. The long-term effects of injecting JWH133, a selective CB2 receptor agonist, intraperitoneally on blood pressure were ascertained. ELISA was used to measure norepinephrine and lactic acid levels while immunofluorescence labeling was used to locate the CB2 receptor and c-Fos. By injecting pAAV-F4/80-GFP-mir30shRNA (AAV2-r-CB2shRNA) into the lateral cerebral ventricle, the CB2 receptor in microglia was specifically knocked down. Results: Activation of CB2 receptors by the agonist JWH133 suppressed TNF-α, IL-1β, and IL-6 by inhibiting PFK and LDHa enzymes involved in glycolysis, as well as lactic acid accumulation, along with a reduction in glycoPER levels (marks of aerobic glycolysis) in AngII-treated BV2 cells. In AngII-treated mice, the administration of JWH133 specifically activated CB2 receptors on microglia, resulting in decreased expression levels of PFK, LDHa, TNF-α, IL-1β, and IL-6, subsequently leading to a decrease in c-Fos protein expression within PVN neurons as well as reduced norepinephrine levels in plasma, ultimately contributing to blood pressure reduction. Conclusion: The results suggest that activation of the microglia CB2 receptor decreases the neuroinflammation to relieve hypertension; the underlying mechanism is related to inhibiting aerobic glycolysis of microglia. Full article
(This article belongs to the Special Issue Molecular Aspect of Cardiovascular Risk Factors)
Show Figures

Figure 1

19 pages, 3106 KiB  
Article
Increased Expression of Proinflammatory Genes in Peripheral Blood Cells Is Associated with Cardiac Cachexia in Patients with Heart Failure with Reduced Ejection Fraction
by Anja Sandek, Christoph Gertler, Miroslava Valentova, Nadja Jauert, Manuel Wallbach, Wolfram Doehner, Stephan von Haehling, Stefan D. Anker, Jens Fielitz and Hans-Dieter Volk
J. Clin. Med. 2024, 13(3), 733; https://doi.org/10.3390/jcm13030733 - 27 Jan 2024
Cited by 2 | Viewed by 2129
Abstract
Background: Cardiac cachexia (CC) in chronic heart failure with reduced ejection fraction (HFrEF) is characterized by catabolism and inflammation predicting poor prognosis. Levels of responsible transcription factors like signal transducer and activator of transcription (STAT)1, STAT3, suppressor of cytokine signaling (SOCS)1 and [...] Read more.
Background: Cardiac cachexia (CC) in chronic heart failure with reduced ejection fraction (HFrEF) is characterized by catabolism and inflammation predicting poor prognosis. Levels of responsible transcription factors like signal transducer and activator of transcription (STAT)1, STAT3, suppressor of cytokine signaling (SOCS)1 and SOCS3 in peripheral blood cells (PBC) are underinvestigated in CC. Expression of mediators was related to patients’ functional status, body composition (BC) and metabolic gene expression in skeletal muscle (SM). Methods: Gene expression was quantified by qRT-PCR in three cohorts: non-cachectic patients (ncCHF, n = 19, LVEF 31 ± 7%, BMI 30.2 ± 5.0 kg/m2), cachectic patients (cCHF; n = 18, LVEF 27 ± 7%, BMI 24.3 ± 2.5 kg/m2) and controls (n = 17, LVEF 70 ± 7%, BMI 27.6 ± 4.6 kg/m2). BC was assessed by dual-energy X-ray absorptiometry. Blood inflammatory markers were measured. We quantified solute carrier family 2 member 4 (SLC2A4) and protein degradation by expressions of proteasome 20S subunit beta 2 and calpain-1 catalytic subunit in SM biopsies. Results: TNF and IL-10 expression was higher in cCHF than in ncCHF and controls (all p < 0.004). cCHF had a lower fat mass index (FMI) and lower fat-free mass index (FFMI) compared to ncCHF and controls (p < 0.05). STAT1 and STAT3 expression was higher in cCHF vs. ncCHF or controls (1.1 [1.6] vs. 0.8 [0.9] vs. 0.9 [1.1] RU and 4.6 [5.5] vs. 2.5 [4.8] vs. 3.0 [4.2] RU, all ANOVA-p < 0.05). The same applied for SOCS1 and SOCS3 expression (1.1 [1.5] vs. 0.4 [0.4] vs. 0.4 [0.5] and 0.9 [3.3] vs. 0.4 [1.1] vs. 0.8 [0.9] RU, all ANOVA-p < 0.04). In cCHF, higher TNF and STAT1 expression was associated with lower FMI (r = 0.5, p = 0.053 and p < 0.05) but not with lower FFMI (p > 0.4). In ncCHF, neither cytokine nor STAT/SOCS expression was associated with BC (all p > 0.3). SLC2A4 was upregulated in SM of cCHF vs. ncCHF (p < 0.03). Conclusions: Increased STAT1, STAT3, SOCS1 and SOCS3 expression suggests their involvement in CC. In cCHF, higher TNF and STAT-1 expression in PBC were associated with lower FMI. Increased SLC2A4 in cachectic SM biopsies indicates altered glucose metabolism. Full article
(This article belongs to the Section Cardiology)
Show Figures

Graphical abstract

14 pages, 2953 KiB  
Article
Impact of a High-Fat Diet at a Young Age on Wound Healing in Mice
by Kevin Arnke, Pablo Pfister, Gregory Reid, Mauro Vasella, Tim Ruhl, Ann-Kathrin Seitz, Nicole Lindenblatt, Paolo Cinelli and Bong-Sung Kim
Int. J. Mol. Sci. 2023, 24(24), 17299; https://doi.org/10.3390/ijms242417299 - 9 Dec 2023
Cited by 5 | Viewed by 2651
Abstract
As the prevalence of juvenile-onset obesity rises globally, the multitude of related health consequences gain significant importance. In this context, obesity is associated with impaired cutaneous wound healing. In experimental settings, mice are the most frequently used model for investigating the effect of [...] Read more.
As the prevalence of juvenile-onset obesity rises globally, the multitude of related health consequences gain significant importance. In this context, obesity is associated with impaired cutaneous wound healing. In experimental settings, mice are the most frequently used model for investigating the effect of high-fat diet (HFD) chow on wound healing in wild-type or genetically manipulated animals, e.g., diabetic ob/ob and db/db mice. However, these studies have mainly been performed on adult animals. Thus, in the present study, we introduced a mouse model for a juvenile onset of obesity. We exposed 4-week-old mice to an investigational feeding period of 9 weeks with an HFD compared to a regular diet (RD). At a mouse age of 13 weeks, we performed excisional and incisional wounding and measured the healing rate. Wound healing was examined by serial photographs with daily wound size measurements of the excisional wounds. Histology from incisional wounds was performed to quantify granulation tissue (thickness, quality) and angiogenesis (number of blood vessels per mm2). The expression of extracellular matrix proteins (collagen types I/III/IV, fibronectin 1, elastin), inflammatory cytokines (MIF, MIF-2, IL-6, TNF-α), myofibroblast differentiation (α-SMA) and macrophage polarization (CD11c, CD301b) in the incisional wounds were evaluated by RT-qPCR and by immunohistochemistry. There was a marked delay of wound closure in the HFD group with a decrease in granulation tissue quality and thickness. Additionally, inflammatory cytokines (MIF, IL-6, TNF-α) were significantly up-regulated in HFD- when compared to RD-fed mice measured at day 3. By contrast, MIF-2 and blood vessel expression were significantly reduced in the HFD animals, starting at day 1. No significant changes were observed in macrophage polarization, collagen expression, and levels of TGF-β1 and PDGF-A. Our findings support that an early exposition to HFD resulted in juvenile obesity in mice with impaired wound repair mechanisms, which may be used as a murine model for obesity-related studies in the future. Full article
Show Figures

Figure 1

26 pages, 5421 KiB  
Article
Endoplasmic Reticulum Stress Promotes the Expression of TNF-α in THP-1 Cells by Mechanisms Involving ROS/CHOP/HIF-1α and MAPK/NF-κB Pathways
by Nadeem Akhter, Ajit Wilson, Hossein Arefanian, Reeby Thomas, Shihab Kochumon, Fatema Al-Rashed, Mohamed Abu-Farha, Ashraf Al-Madhoun, Fahd Al-Mulla, Rasheed Ahmad and Sardar Sindhu
Int. J. Mol. Sci. 2023, 24(20), 15186; https://doi.org/10.3390/ijms242015186 - 14 Oct 2023
Cited by 34 | Viewed by 5799
Abstract
Obesity and metabolic syndrome involve chronic low-grade inflammation called metabolic inflammation as well as metabolic derangements from increased endotoxin and free fatty acids. It is debated whether the endoplasmic reticulum (ER) stress in monocytic cells can contribute to amplify metabolic inflammation; if so, [...] Read more.
Obesity and metabolic syndrome involve chronic low-grade inflammation called metabolic inflammation as well as metabolic derangements from increased endotoxin and free fatty acids. It is debated whether the endoplasmic reticulum (ER) stress in monocytic cells can contribute to amplify metabolic inflammation; if so, by which mechanism(s). To test this, metabolic stress was induced in THP-1 cells and primary human monocytes by treatments with lipopolysaccharide (LPS), palmitic acid (PA), or oleic acid (OA), in the presence or absence of the ER stressor thapsigargin (TG). Gene expression of tumor necrosis factor (TNF)-α and markers of ER/oxidative stress were determined by qRT-PCR, TNF-α protein by ELISA, reactive oxygen species (ROS) by DCFH-DA assay, hypoxia-inducible factor 1-alpha (HIF-1α), p38, extracellular signal-regulated kinase (ERK)-1,2, and nuclear factor kappa B (NF-κB) phosphorylation by immunoblotting, and insulin sensitivity by glucose-uptake assay. Regarding clinical analyses, adipose TNF-α was assessed using qRT-PCR/IHC and plasma TNF-α, high-sensitivity C-reactive protein (hs-CRP), malondialdehyde (MDA), and oxidized low-density lipoprotein (OX-LDL) via ELISA. We found that the cooperative interaction between metabolic and ER stresses promoted TNF-α, ROS, CCAAT-enhancer-binding protein homologous protein (CHOP), activating transcription factor 6 (ATF6), superoxide dismutase 2 (SOD2), and nuclear factor erythroid 2-related factor 2 (NRF2) expression (p ≤ 0.0183),. However, glucose uptake was not impaired. TNF-α amplification was dependent on HIF-1α stabilization and p38 MAPK/p65 NF-κB phosphorylation, while the MAPK/NF-κB pathway inhibitors and antioxidants/ROS scavengers such as curcumin, allopurinol, and apocynin attenuated the TNF-α production (p ≤ 0.05). Individuals with obesity displayed increased adipose TNF-α gene/protein expression as well as elevated plasma levels of TNF-α, CRP, MDA, and OX-LDL (p ≤ 0.05). Our findings support a metabolic–ER stress cooperativity model, favoring inflammation by triggering TNF-α production via the ROS/CHOP/HIF-1α and MAPK/NF-κB dependent mechanisms. This study also highlights the therapeutic potential of antioxidants in inflammatory conditions involving metabolic/ER stresses. Full article
Show Figures

Figure 1

18 pages, 6029 KiB  
Article
In Silico Identification and Validation of Pyroptosis-Related Genes in Chlamydia Respiratory Infection
by Ruoyuan Sun, Wenjing Zheng, Shuaini Yang, Jiajia Zeng, Yuqing Tuo, Lu Tan, Hong Zhang and Hong Bai
Int. J. Mol. Sci. 2023, 24(17), 13570; https://doi.org/10.3390/ijms241713570 - 1 Sep 2023
Cited by 1 | Viewed by 1976
Abstract
The incidence of Chlamydia trachomatis respiratory infection is increasing, and its pathogenesis is still unclear. Pyroptosis, as a mode of inflammatory cell death, plays a vital role in the occurrence and development of Chlamydia trachomatis respiratory infection. In this study, the potential pyroptosis-related [...] Read more.
The incidence of Chlamydia trachomatis respiratory infection is increasing, and its pathogenesis is still unclear. Pyroptosis, as a mode of inflammatory cell death, plays a vital role in the occurrence and development of Chlamydia trachomatis respiratory infection. In this study, the potential pyroptosis-related genes involved in Chlamydia trachomatis respiratory infection were identified by constructing a mouse model of C. muridarum infection combined with bioinformatics analysis. Through in-depth analysis of the RNA sequencing data, 13 differentially expressed pyroptosis-related genes were screened, including 1 downregulated gene and 12 upregulated genes. Gene ontology (GO) analysis showed that these genes mainly regulate inflammatory responses and produce IL-1β. Protein–protein interaction network analysis identified eight hub genes of interest: Tnf, Tlr2, Il1b, Nlrp3, Tlr9, Mefv, Zbp1 and Tnfaip3. Through quantitative real-time PCR (qPCR) analysis, we found that the expression of these genes in the lungs of C. muridarum-infected mice was significantly reduced, consistent with the bioinformatics results. At the same time, we detected elevated levels of caspase-3, gasdermin D and gasdermin E proteins in the lungs of C. muridarum-infected mice, demonstrating that Chlamydia trachomatis infection does induce pyroptosis. We then predicted nine miRNAs targeting these hub genes and constructed a key competitive endogenous RNA (ceRNA) network. In summary, we identified six key pyroptosis-related genes involved in Chlamydia trachomatis respiratory infection and constructed a ceRNA network associated with these genes. These findings will improve understanding of the molecular mechanisms underlying pyroptosis in Chlamydia trachomatis respiratory infections. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Transcriptional Regulation in Bacteria)
Show Figures

Figure 1

20 pages, 8170 KiB  
Article
Holothurian Wall Hydrolysate Ameliorates Cyclophosphamide-Induced Immunocompromised Mice via Regulating Immune Response and Improving Gut Microbiota
by Chen Yan, Huiru Qu, Xinli Li and Bin Feng
Int. J. Mol. Sci. 2023, 24(16), 12583; https://doi.org/10.3390/ijms241612583 - 9 Aug 2023
Cited by 11 | Viewed by 2187
Abstract
Some biologically active compounds isolated from sea cucumbers stimulate the body’s immune response by activating immune cells. Immune function is closely related to the integrity intestinal barrier and balanced gut microbiota. However, it is unknown whether the daily administration of holothurian wall hydrolysate [...] Read more.
Some biologically active compounds isolated from sea cucumbers stimulate the body’s immune response by activating immune cells. Immune function is closely related to the integrity intestinal barrier and balanced gut microbiota. However, it is unknown whether the daily administration of holothurian wall hydrolysate (HWH) ameliorated intestinal dysbiosis and barrier injury induced by immunodeficiency. This study aimed to investigate the immunomodulatory effect and the underlying mechanism of HWH in cyclophosphamide (CTX)-induced immunocompromised mice. BALB/c mice received CTX (80 mg/kg, intraperitoneally) once a day for 3 days to induce immunodeficiency, and then they received the oral administration of HWH (80 or 240 mg/kg) or levamisole hydrochloride (LH, 40 mg/kg, positive control), respectively, once a day for 7 days. We utilized 16S rRNA sequencing for microbial composition alterations, histopathological analysis for splenic and colonic morphology, Western blotting for expressions of tight junction proteins (TJs), and quantitative real-time (qRT)-PCR for measurements of pro-inflammatory cytokines. HWH attenuated the immune organ damage induced by CTX, increased the secretions of interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α, and promoted the recovery of goblet cells and the production of TJs (claudin-1, occludin, and ZO-1) in the colon of the immunocompromised mice. Moreover, HWH promoted the growth of beneficial microorganisms such as Lactobacillus, Lachnospiraceae, Christensenellaceae, and Bifidobacterium, while it suppressed the populations of Ruminococcus, Staphylococcus, and Streptococcus. These results demonstrate that HWH elicits intestinal mucosal immunity, repairs the damage to intestinal mucosal integrity, and normalizes the imbalanced intestinal microbial profiles in immunocompromised mice. It may be helpful to identify the biological activities of HWH to support its potential use in new prebiotics, immunomodulatory agents, and medical additives for intestinal repair. Full article
Show Figures

Figure 1

20 pages, 12440 KiB  
Article
Immune Cell-Related Genes in Juvenile Idiopathic Arthritis Identified Using Transcriptomic and Single-Cell Sequencing Data
by Wenbo Zhang, Zhe Cai, Dandan Liang, Jiaochan Han, Ping Wu, Jiayi Shan, Guangxun Meng and Huasong Zeng
Int. J. Mol. Sci. 2023, 24(13), 10619; https://doi.org/10.3390/ijms241310619 - 25 Jun 2023
Cited by 11 | Viewed by 3062
Abstract
Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic disease in children. The heterogeneity of the disease can be investigated via single-cell RNA sequencing (scRNA-seq) for its gap in the literature. Firstly, five types of immune cells (plasma cells, naive CD4 T [...] Read more.
Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic disease in children. The heterogeneity of the disease can be investigated via single-cell RNA sequencing (scRNA-seq) for its gap in the literature. Firstly, five types of immune cells (plasma cells, naive CD4 T cells, memory-activated CD4 T cells, eosinophils, and neutrophils) were significantly different between normal control (NC) and JIA samples. WGCNA was performed to identify genes that exhibited the highest correlation to differential immune cells. Then, 168 differentially expressed immune cell-related genes (DE-ICRGs) were identified by overlapping 13,706 genes identified by WGCNA and 286 differentially expressed genes (DEGs) between JIA and NC specimens. Next, four key genes, namely SOCS3, JUN, CLEC4C, and NFKBIA, were identified by a protein–protein interaction (PPI) network and three machine learning algorithms. The results of functional enrichment revealed that SOCS3, JUN, and NFKBIA were all associated with hallmark TNF-α signaling via NF-κB. In addition, cells in JIA samples were clustered into four groups (B cell, monocyte, NK cell, and T cell groups) by single-cell data analysis. CLEC4C and JUN exhibited the highest level of expression in B cells; NFKBIA and SOCS3 exhibited the highest level of expression in monocytes. Finally, real-time quantitative PCR (RT-qPCR) revealed that the expression of three key genes was consistent with that determined by differential analysis. Our study revealed four key genes with prognostic value for JIA. Our findings could have potential implications for JIA treatment and investigation. Full article
(This article belongs to the Special Issue Machine Learning and Bioinformatics in Human Health and Disease)
Show Figures

Figure 1

19 pages, 1841 KiB  
Article
Growth Retardation, Oxidative Stress, Immunosuppression, and Inflammatory Disturbances Induced by Herbicide Exposure of Catfish, Clarias gariepinus, and the Alleviation Effect of Dietary Wormwood, Artemisia cina
by Walaa El-Houseiny, Reham G. A. Anter, Ahmed H. Arisha, Abdallah Tageldein Mansour, Fatmah Ahmed Safhi, Khairiah Mubarak Alwutayd, Gehad E. Elshopakey, Yasmina M. Abd El-Hakim and Engy M. M. Mohamed
Fishes 2023, 8(6), 297; https://doi.org/10.3390/fishes8060297 - 1 Jun 2023
Cited by 22 | Viewed by 3111
Abstract
The present study evaluated the impact of chronic herbicide (oxyfluorfen; OXY) exposure on catfish, Clarias gariepinus, in terms of growth, hematobiochemical parameters, immune response, antioxidant- and immune-related gene expression, and resistance to monogenean parasites, Quadriacanthus aegypticus. In addition, the protective role [...] Read more.
The present study evaluated the impact of chronic herbicide (oxyfluorfen; OXY) exposure on catfish, Clarias gariepinus, in terms of growth, hematobiochemical parameters, immune response, antioxidant- and immune-related gene expression, and resistance to monogenean parasites, Quadriacanthus aegypticus. In addition, the protective role of Wormwood, Artemisia cina (AC) against OXY exposure through diet inclusion was also analyzed. The catfish fingerlings were exposed to OXY (1.16 mg/L) for 60 days and fed diets without AC supplementation (control) and with 5% AC supplementation. The results demonstrated that exposure to OXY stunted growth; decreased survival, erythrograms and leukograms, serum protein, and acetylcholinesterase; and negatively altered the antioxidant status. On the contrary, AC supplementation significantly reduced OXY’s negative impacts on growth and hematological, biochemical, and antioxidant balance. In addition, exposure to OXY markedly increased levels of biomarkers of hepatorenal damage, stress indicators, and DNA damage, which were alleviated with AC supplementation. OXY exposure induced immunosuppression manifested by a decrease in lysozyme activities, complement c3, nitric oxide levels, and phagocytic activity. Furthermore, exposure to OXY negatively regulated the expression of immune-antioxidant genes (CAT, GPX1, SOD1, GST, and TGF-Β1). However, it upregulated the expression of CYP1a, IL-1β, and TNF-α in the liver, anterior kidney, and intestine of C. gariepinus. Meanwhile, the addition of AC to the OXY-exposed fish diets notably restored immune components and remedied the altered immune-related gene expressions. Likewise, the AC supplementation significantly alleviated the OXY-induced reduction in the fish survival rate after Q. aegypticus challenge. Accordingly, AC dietary supplementation in catfish diets could alleviate the negative impact of exposure to OXY on growth performance, physiological status, and some immune-antioxidant-related gene expression. Full article
(This article belongs to the Special Issue Immune Response in Fish)
Show Figures

Figure 1

Back to TopTop