Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (1,209)

Search Parameters:
Keywords = Beijing city

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 62899 KiB  
Essay
Monitoring and Historical Spatio-Temporal Analysis of Arable Land Non-Agriculturalization in Dachang County, Eastern China Based on Time-Series Remote Sensing Imagery
by Boyuan Li, Na Lin, Xian Zhang, Chun Wang, Kai Yang, Kai Ding and Bin Wang
Earth 2025, 6(3), 91; https://doi.org/10.3390/earth6030091 (registering DOI) - 6 Aug 2025
Abstract
The phenomenon of arable land non-agriculturalization has become increasingly severe, posing significant threats to the security of arable land resources and ecological sustainability. This study focuses on Dachang Hui Autonomous County in Langfang City, Hebei Province, a region located at the edge of [...] Read more.
The phenomenon of arable land non-agriculturalization has become increasingly severe, posing significant threats to the security of arable land resources and ecological sustainability. This study focuses on Dachang Hui Autonomous County in Langfang City, Hebei Province, a region located at the edge of the Beijing–Tianjin–Hebei metropolitan cluster. In recent years, the area has undergone accelerated urbanization and industrial transfer, resulting in drastic land use changes and a pronounced contradiction between arable land protection and the expansion of construction land. The study period is 2016–2023, which covers the key period of the Beijing–Tianjin–Hebei synergistic development strategy and the strengthening of the national arable land protection policy, and is able to comprehensively reflect the dynamic changes of arable land non-agriculturalization under the policy and urbanization process. Multi-temporal Sentinel-2 imagery was utilized to construct a multi-dimensional feature set, and machine learning classifiers were applied to identify arable land non-agriculturalization with optimized performance. GIS-based analysis and the geographic detector model were employed to reveal the spatio-temporal dynamics and driving mechanisms. The results demonstrate that the XGBoost model, optimized using Bayesian parameter tuning, achieved the highest classification accuracy (overall accuracy = 0.94) among the four classifiers, indicating its superior suitability for identifying arable land non-agriculturalization using multi-temporal remote sensing imagery. Spatio-temporal analysis revealed that non-agriculturalization expanded rapidly between 2016 and 2020, followed by a deceleration after 2020, exhibiting a pattern of “rapid growth–slowing down–partial regression”. Further analysis using the geographic detector revealed that socioeconomic factors are the primary drivers of arable land non-agriculturalization in Dachang Hui Autonomous County, while natural factors exerted relatively weaker effects. These findings provide technical support and scientific evidence for dynamic monitoring and policy formulation regarding arable land under urbanization, offering significant theoretical and practical implications. Full article
Show Figures

Figure 1

14 pages, 3099 KiB  
Article
Identification of Keystone Plant Species for Avian Foraging and Nesting in Beijing’s Forest Ecosystems: Implications for Urban Forest Bird Conservation
by Lele Lin, Yongjian Zhao, Chao Yuan, Yushu Zhang, Siyu Qiu and Jixin Cao
Animals 2025, 15(15), 2271; https://doi.org/10.3390/ani15152271 - 4 Aug 2025
Viewed by 191
Abstract
Urban wildlife conservation is emerging as a critical component of sustainable city ecosystems. Rather than simply increasing tree abundance or species richness, conservation management should focus on key species. In this research, Xishan Forest Park in Beijing was chosen as a case study. [...] Read more.
Urban wildlife conservation is emerging as a critical component of sustainable city ecosystems. Rather than simply increasing tree abundance or species richness, conservation management should focus on key species. In this research, Xishan Forest Park in Beijing was chosen as a case study. Our aim was to identify keystone taxa critical for avian foraging and nesting during the breeding season. We performed a network analysis linking bird species, their diets, and nest plants. Dietary components were detected using DNA metabarcoding conducted with avian fecal samples. Nest plants were identified via transect surveys. Two indices of the network, degree and weighted mean degree, were calculated to evaluate the importance of the dietary and nest plant species. We identified 13 bird host species from 107 fecal samples and 14 bird species from 107 nest observations. Based on the degree indices, fruit trees Morus and Prunus were detected as key food sources, exhibiting both the highest degree (degree = 9, 9) and weighted mean degree (lnwMD = 5.21, 4.63). Robinia pseudoacacia provided predominant nesting sites, with a predominant degree of 7. A few taxa, such as Styphnolobium japonicum and Rhamnus parvifolia, served dual ecological significance as both essential food sources and nesting substrates. Scrublands, as a unique habitat type, provided nesting sites and food for small-bodied birds. Therefore, targeted management interventions are recommended to sustain or enhance these keystone resource species and to maintain the multi-layered vertical vegetation structure to preserve the diverse habitats of birds. Full article
(This article belongs to the Section Wildlife)
Show Figures

Figure 1

13 pages, 2384 KiB  
Article
Legacy and Luxury Effects: Dual Drivers of Tree Diversity Dynamics in Beijing’s Urbanizing Residential Areas (2006–2021)
by Xi Li, Jicun Bao, Yue Li, Jijie Wang, Wenchao Yan and Wen Zhang
Forests 2025, 16(8), 1269; https://doi.org/10.3390/f16081269 - 3 Aug 2025
Viewed by 169
Abstract
Numerous studies have demonstrated that in residential areas of Western cities, both luxury and legacy effects significantly shape tree species diversity dynamics. However, the specific mechanisms driving these diversity patterns in China, where urbanization has progressed at an unprecedented pace, remain poorly understood. [...] Read more.
Numerous studies have demonstrated that in residential areas of Western cities, both luxury and legacy effects significantly shape tree species diversity dynamics. However, the specific mechanisms driving these diversity patterns in China, where urbanization has progressed at an unprecedented pace, remain poorly understood. In this study we selected 20 residential settlements and 7 key socio-economic properties to investigate the change trend of tree diversity (2006–2021) and its socio-economic driving factors in Beijing. Our results demonstrate significant increases in total, native, and exotic tree species richness between 2006 and 2021 (p < 0.05), with average increases of 36%, 26%, and 55%, respectively. Total and exotic tree Shannon-Wiener indices, as well as exotic tree Simpson’s index, were also significantly higher in 2021 (p < 0.05). Housing prices was the dominant driver shaping total and exotic tree diversity, showing significant positive correlations with both metrics. In contrast, native tree diversity exhibited a strong positive association with neighborhood age. Our findings highlight two dominant mechanisms: legacy effect, where older neighborhoods preserve native diversity through historical planting practices, and luxury effect, where affluent communities drive exotic species proliferation through ornamental landscaping initiatives. These findings elucidate the dual dynamics of legacy conservation and luxury-driven cultivation in urban forest development, revealing how historical contingencies and contemporary socioeconomic forces jointly shape tree diversity patterns in urban ecosystems. Full article
(This article belongs to the Section Urban Forestry)
Show Figures

Figure 1

39 pages, 9517 KiB  
Article
Multidimensional Evaluation Framework and Classification Strategy for Low-Carbon Technologies in Office Buildings
by Hongjiang Liu, Yuan Song, Yawei Du, Tao Feng and Zhihou Yang
Buildings 2025, 15(15), 2689; https://doi.org/10.3390/buildings15152689 - 30 Jul 2025
Viewed by 179
Abstract
The global climate crisis has driven unprecedented agreements among nations on carbon mitigation. With China’s commitment to carbon peaking and carbon neutrality targets, the building sector has emerged as a critical focus for emission reduction, particularly because office buildings account for over 30% [...] Read more.
The global climate crisis has driven unprecedented agreements among nations on carbon mitigation. With China’s commitment to carbon peaking and carbon neutrality targets, the building sector has emerged as a critical focus for emission reduction, particularly because office buildings account for over 30% of building energy consumption. However, a systematic and regionally adaptive low-carbon technology evaluation framework is lacking. To address this gap, this study develops a multidimensional decision-making system to quantify and rank low-carbon technologies for office buildings in Beijing. The method includes four core components: (1) establishing three archetypal models—low-rise (H ≤ 24 m), mid-rise (24 m < H ≤ 50 m), and high-rise (50 m < H ≤ 100 m) office buildings—based on 99 office buildings in Beijing; (2) classifying 19 key technologies into three clusters—Envelope Structure Optimization, Equipment Efficiency Enhancement, and Renewable Energy Utilization—using bibliometric analysis and policy norm screening; (3) developing a four-dimensional evaluation framework encompassing Carbon Reduction Degree (CRD), Economic Viability Degree (EVD), Technical Applicability Degree (TAD), and Carbon Intensity Degree (CID); and (4) conducting a comprehensive quantitative evaluation using the AHP-entropy-TOPSIS algorithm. The results indicate distinct priority patterns across the building types: low-rise buildings prioritize roof-mounted photovoltaic (PV) systems, LED lighting, and thermal-break aluminum frames with low-E double-glazed laminated glass. Mid- and high-rise buildings emphasize integrated PV-LED-T8 lighting solutions and optimized building envelope structures. Ranking analysis further highlights LED lighting, T8 high-efficiency fluorescent lamps, and rooftop PV systems as the top-recommended technologies for Beijing. Additionally, four policy recommendations are proposed to facilitate the large-scale implementation of the program. This study presents a holistic technical integration strategy that simultaneously enhances the technological performance, economic viability, and carbon reduction outcomes of architectural design and renovation. It also establishes a replicable decision-support framework for decarbonizing office and public buildings in cities, thereby supporting China’s “dual carbon” goals and contributing to global carbon mitigation efforts in the building sector. Full article
Show Figures

Figure 1

26 pages, 7277 KiB  
Article
Characteristics and Driving Factors of the Spatial and Temporal Evolution of County Urban–Rural Integration—Evidence from the Beijing–Tianjin–Hebei Region, China
by Jian Tian, Junqi Ma, Suiping Zeng and Yu Bai
Land 2025, 14(8), 1563; https://doi.org/10.3390/land14081563 - 30 Jul 2025
Viewed by 381
Abstract
Urban–rural integration realises the coordinated development and prosperity of urban and rural areas as a whole by optimising the allocation of resources and the flow of factors, and its connotations have been extended from a single dimension to multiple dimensions such as people, [...] Read more.
Urban–rural integration realises the coordinated development and prosperity of urban and rural areas as a whole by optimising the allocation of resources and the flow of factors, and its connotations have been extended from a single dimension to multiple dimensions such as people, land and industry. The Beijing–Tianjin–Hebei Region has a typical “Core–Periphery Structure”, and this paper took the 187 county units within the region as the research object, taking into account indicators of development and coordination to construct an evaluation index system of urban–rural integration of the Beijing–Tianjin–Hebei region counties in the dimensions of “people–land–industry”. Global principal component analysis was used to measure the evolutionary pattern of the urban–rural integration level between 2005 and 2020, and its spatiotemporal drivers were analysed by using the Geographical and Temporal Weighted Regression model (GTWR). The results of the study show that (1) the level of urban–rural integration in the Beijing–Tianjin–Hebei region showed an increasing trend during the 15-year study period, the high-value areas of urban–rural integration were mainly distributed in Beijing and the Bohai Rim region in the eastern part of the Tianjin–Hebei region, and the level of urban–rural integration of the peri-urban county units of the city was better than that of the remote counties and cities as a whole. (2) In terms of spatial agglomeration, all dimensions were characterised by significant spatial agglomeration. The degree of agglomeration was categorised as urban–rural comprehensive integration (U-RCI) > urban–rural industry integration (U-RII) > urban–rural land integration (U-RLI) > urban–rural people integration (U-RPI). (3) In terms of spatial and temporal driving factors for urban–rural integration, the driving role of U-RPI, U-RLI and U-RII for U-RCI has gradually weakened during the past 15 years, and urban–rural integration in the counties shifted from a single role to a more central coordinated and multidimensional driving role. Full article
Show Figures

Figure 1

18 pages, 352 KiB  
Article
Kristofer Schipper (1934–2021) and Grotto Heavens: Daoist Ecology, Mountain Politics, and Local Identity
by Peiwei Wang
Religions 2025, 16(8), 977; https://doi.org/10.3390/rel16080977 - 28 Jul 2025
Viewed by 374
Abstract
This article explores Schipper’s scholarly contributions to the study of dongtian fudi (grotto heavens and blessed lands) and specifically situates this project in its broader intellectual context and Schipper’s own research. While Schipper was not the first to open discussions on this topic, [...] Read more.
This article explores Schipper’s scholarly contributions to the study of dongtian fudi (grotto heavens and blessed lands) and specifically situates this project in its broader intellectual context and Schipper’s own research. While Schipper was not the first to open discussions on this topic, his research in this direction still offers profound insights, such as the coinage of the concept of “Daoist Ecology” and his views on mountain politics. This article argues that Schipper’s work on dongtian fudi is a response to the school of Deep Ecology and its critics, and also a result of critical reflection on the modern dichotomy between nature and culture. In Schipper’s enquiry of dongtian fudi, the “mountain” stands as the central concept: it is not only the essential component of Daoist sacred geography, but a holistic site in which nature and society are interwoven, endowed with both material and sacred significance. Through his analysis of the Daoist practice of abstinence from grain (duangu), Schipper reveals how mountains serve as spaces for retreat from agrarian society and state control, and how they embody “shatter zones” where the reach of centralized power is relatively attenuated. The article also further links Schipper’s project of Beijing as a Holy City to his study of dongtian fudi. For Schipper, the former affirms the universality of the locality (i.e., the unofficial China, the country of people), while the latter envisages the vision of rewriting China from plural localities. Taken together, these efforts point toward a theoretical framework that moves beyond conventional sociological paradigms, one that embraces a total worldly perspective, in which the livelihoods of local societies and their daily lives are truly appreciated as a totality that encompasses both nature and culture. Schipper’s works related to dongtian fudi, though they are rather concise, still significantly broaden the scope of Daoist studies and, moreover, provide novel insights into the complexity of Chinese religion and society. Full article
(This article belongs to the Special Issue Heavens and Grottos: New Explorations in Daoist Cosmography)
19 pages, 13565 KiB  
Article
Estimation of Ultrahigh Resolution PM2.5 in Urban Areas by Using 30 m Landsat-8 and Sentinel-2 AOD Retrievals
by Hao Lin, Siwei Li, Jiqiang Niu, Jie Yang, Qingxin Wang, Wenqiao Li and Shengpeng Liu
Remote Sens. 2025, 17(15), 2609; https://doi.org/10.3390/rs17152609 - 27 Jul 2025
Viewed by 266
Abstract
Ultrahigh resolution fine particulate matter (PM2.5) mass concentration remote sensing products are crucial for atmospheric environmental monitoring, pollution source verification, health exposure risk assessment, and other fine-scale applications in urban environments. This study developed an ultrahigh resolution retrieval algorithm to estimate [...] Read more.
Ultrahigh resolution fine particulate matter (PM2.5) mass concentration remote sensing products are crucial for atmospheric environmental monitoring, pollution source verification, health exposure risk assessment, and other fine-scale applications in urban environments. This study developed an ultrahigh resolution retrieval algorithm to estimate 30 m resolution PM2.5 mass concentrations over urban areas from Landsat-8 and Sentinel-2A/B satellite measurements. The algorithm utilized aerosol optical depth (AOD) products retrieved from the Landsat-8 OLI and Sentinel-2 MSI measurements from 2017 to 2020, combined with multi-source auxiliary data to establish a PM2.5-AOD relationship model across China. The results showed an overall high coefficient of determination (R2) of 0.82 and 0.76 for the model training accuracy based on samples and stations, respectively. The model prediction accuracy in Beijing and Wuhan reached R2 values of 0.86 and 0.85. Applications in both cities demonstrated that ultrahigh resolution PM2.5 has significant advantages in resolving fine-scale spatial patterns of urban air pollution and pinpointing pollution hotspots. Furthermore, an analysis of point source pollution at a typical heavy pollution emission enterprise confirmed that ultrahigh spatial resolution PM2.5 can accurately identify the diffusion trend of point source pollution, providing fundamental data support for refined monitoring of urban air pollution and air pollution prevention and control. Full article
Show Figures

Figure 1

31 pages, 28883 KiB  
Article
Exploring Precipitable Water Vapor (PWV) Variability and Subregional Declines in Eastern China
by Taixin Zhang, Jiayu Xiong, Shunqiang Hu, Wenjie Zhao, Min Huang, Li Zhang and Yu Xia
Sustainability 2025, 17(15), 6699; https://doi.org/10.3390/su17156699 - 23 Jul 2025
Viewed by 327
Abstract
In recent years, China has experienced growing impacts from extreme weather events, emphasizing the importance of understanding regional atmospheric moisture dynamics, particularly Precipitable Water Vapor (PWV), to support sustainable environmental and urban planning. This study utilizes ten years (2013–2022) of Global Navigation Satellite [...] Read more.
In recent years, China has experienced growing impacts from extreme weather events, emphasizing the importance of understanding regional atmospheric moisture dynamics, particularly Precipitable Water Vapor (PWV), to support sustainable environmental and urban planning. This study utilizes ten years (2013–2022) of Global Navigation Satellite System (GNSS) observations in typical cities in eastern China and proposes a comprehensive multiscale frequency-domain analysis framework that integrates the Fourier transform, Bayesian spectral estimation, and wavelet decomposition to extract the dominant PWV periodicities. Time-series analysis reveals an overall increasing trend in PWV across most regions, with notably declining trends in Beijing, Wuhan, and southern Taiwan, primarily attributed to groundwater depletion, rapid urban expansion, and ENSO-related anomalies, respectively. Frequency-domain results indicate distinct latitudinal and coastal–inland differences in the PWV periodicities. Inland stations (Beijing, Changchun, and Wuhan) display annual signals alongside weaker semi-annual components, while coastal stations (Shanghai, Kinmen County, Hong Kong, and Taiwan) mainly exhibit annual cycles. High-latitude stations show stronger seasonal and monthly fluctuations, mid-latitude stations present moderate-scale changes, and low-latitude regions display more diverse medium- and short-term fluctuations. In the short-term frequency domain, GNSS stations in most regions demonstrate significant PWV periodic variations over 0.5 days, 1 day, or both timescales, except for Changchun, where weak diurnal patterns are attributed to local topography and reduced solar radiation. Furthermore, ERA5-derived vertical temperature profiles are incorporated to reveal the thermodynamic mechanisms driving these variations, underscoring region-specific controls on surface evaporation and atmospheric moisture capacity. These findings offer novel insights into how human-induced environmental changes modulate the behavior of atmospheric water vapor. Full article
(This article belongs to the Section Sustainability in Geographic Science)
Show Figures

Figure 1

20 pages, 4420 KiB  
Article
Perception of Light Environment in University Classrooms Based on Parametric Optical Simulation and Virtual Reality Technology
by Zhenhua Xu, Jiaying Chang, Cong Han and Hao Wu
Buildings 2025, 15(15), 2585; https://doi.org/10.3390/buildings15152585 - 22 Jul 2025
Viewed by 305
Abstract
University classrooms, core to higher education, have indoor light environments that directly affect students’ learning efficiency, visual health, and psychological states. This study integrates parametric optical simulation and virtual reality (VR) to explore light environment perception in ordinary university classrooms. Forty college students [...] Read more.
University classrooms, core to higher education, have indoor light environments that directly affect students’ learning efficiency, visual health, and psychological states. This study integrates parametric optical simulation and virtual reality (VR) to explore light environment perception in ordinary university classrooms. Forty college students (18–25 years, ~1:1 gender ratio) participated in real virtual comparative experiments. VR scenarios were optimized via real-time rendering and physical calibration. The results showed no significant differences in subjects’ perception evaluations between environments (p > 0.05), verifying virtual environments as effective experimental carriers. The analysis of eight virtual conditions (varying window-to-wall ratios and lighting methods) revealed that mixed lighting performed best in light perception, spatial perception, and overall evaluation. Light perception had the greatest influence on overall evaluation (0.905), with glare as the core factor (0.68); closure sense contributed most to spatial perception (0.45). Structural equation modeling showed that window-to-wall ratio and lighting power density positively correlated with subjective evaluations. Window-to-wall ratio had a 0.412 direct effect on spatial perception and a 0.84 total mediating effect (67.1% of total effect), exceeding the lighting power density’s 0.57 mediating effect sum. This study confirms mixed lighting and window-to-wall ratio optimization as keys to improving classroom light quality, providing an experimental paradigm and parameter basis for user-perception-oriented design. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

16 pages, 26966 KiB  
Article
Nonlinear Heat Effects of Building Material Stock in Chinese Megacities
by Leizhen Liu, Yi Zhou, Liqing Tan and Rukun Jiang
Smart Cities 2025, 8(4), 119; https://doi.org/10.3390/smartcities8040119 - 17 Jul 2025
Viewed by 300
Abstract
Urbanization is accompanied by an increased use of building materials. However, the lack of high-resolution building material stock (BMS) maps limits our understanding of the relationship between BMS and urban heat. To address this, we estimated BMS across eight typical Chinese megacities using [...] Read more.
Urbanization is accompanied by an increased use of building materials. However, the lack of high-resolution building material stock (BMS) maps limits our understanding of the relationship between BMS and urban heat. To address this, we estimated BMS across eight typical Chinese megacities using multi-source geographic data and investigated the relationship between BMS and land surface temperature (LST). The results showed that (1) the total BMS for the eight megacities was 9175.07 Mt, with Beijing and Shanghai having the largest shares. While BMS correlated significantly with population, growth patterns varied across cities. (2) Spatial autocorrelation between BMS and LST was evident. Around 16% of urban areas exhibited High–High clustering between BMS and LST, decreasing to 10% during the daytime. The relationship between BMS and LST is nonlinear, and also prominent at night, especially in Beijing. (3) Diverse building forms, especially building height, contribute to a nonlinear relationship between BMS and LST. Full article
Show Figures

Figure 1

26 pages, 6762 KiB  
Article
Temporal-Spatial Thermal Comfort Across Urban Blocks with Distinct Morphologies in a Hot Summer and Cold Winter Climate: On-Site Investigations in Beijing
by Tengfei Zhao and Tong Ma
Atmosphere 2025, 16(7), 855; https://doi.org/10.3390/atmos16070855 - 14 Jul 2025
Viewed by 293
Abstract
Urban outdoor thermal comfort (OTC) has become an increasingly critical issue under the pressures of urbanization and climate change. Comparative analyses of urban blocks with distinct spatial morphologies are essential for identifying OTC issues and proposing targeted optimization strategies. However, existing studies predominantly [...] Read more.
Urban outdoor thermal comfort (OTC) has become an increasingly critical issue under the pressures of urbanization and climate change. Comparative analyses of urban blocks with distinct spatial morphologies are essential for identifying OTC issues and proposing targeted optimization strategies. However, existing studies predominantly rely on microclimate numerical simulations, while comparative assessments of OTC from the human thermal perception perspective remain limited. This study employs the thermal walk method, integrating microclimatic measurements with thermal perception questionnaires, to conduct on-site OTC investigations across three urban blocks with contrasting spatial morphologies—a business district (BD), a residential area (RA), and a historical neighborhood (HN)—in Beijing, a hot summer and cold winter climate city. The results reveal substantial OTC differences among the blocks. However, these differences demonstrated great seasonal and temporal variations. In summer, BD exhibited the best OTC (mTSV = 1.21), while HN performed the worst (mTSV = 1.72). In contrast, BD showed the poorest OTC in winter (mTSV = −1.57), significantly lower than HN (−1.11) and RA (−1.05). This discrepancy was caused by the unique morphology of different blocks. The sky view factor emerged as a more influential factor affecting OTC over building coverage ratio and building height, particularly in RA (r = 0.689, p < 0.01), but its impact varied by block, season, and sunlight conditions. North–South streets generally perform better OTC than East–West streets, being 0.26 units cooler in summer and 0.20 units warmer in winter on the TSV scale. The study highlights the importance of incorporating more applicable physical parameters to optimize OTC in complex urban contexts and offering theoretical support for designing climate adaptive urban spaces. Full article
(This article belongs to the Section Biometeorology and Bioclimatology)
Show Figures

Figure 1

18 pages, 3695 KiB  
Article
Incorporating Electricity Consumption into Social Network Analysis to Evaluate the Coordinated Development Policy in the Beijing–Tianjin–Hebei Region
by Di Gao, Hao Yue, Haowen Guan, Bingqing Wu, Yuming Huang and Jian Zhang
Energies 2025, 18(14), 3691; https://doi.org/10.3390/en18143691 - 12 Jul 2025
Viewed by 279
Abstract
This study examines the impact of the Beijing–Tianjin–Hebei (BTH) coordinated development policy on the regional industrial network structure, with a focus on the significance of electricity consumption data in social network analysis (SNA). Utilizing a gravity model integrated with electricity consumption data, this [...] Read more.
This study examines the impact of the Beijing–Tianjin–Hebei (BTH) coordinated development policy on the regional industrial network structure, with a focus on the significance of electricity consumption data in social network analysis (SNA). Utilizing a gravity model integrated with electricity consumption data, this research employs centrality analysis and Lambda analysis to compare changes in the steel industry network before and after policy implementation. The findings reveal that traditional models relying solely on indicators such as population and Gross Domestic Product (GDP) fail to comprehensively capture regional economic linkages, whereas incorporating electricity consumption data enhances the model’s accuracy in identifying core nodes and latent connections. Post policy implementation, the centrality of Beijing and Tianjin increased significantly, reflecting their transition from production hubs to centers for research and development (R&D) and management, while Shijiazhuang’s pivotal role diminished. This study also uncovers a “core–periphery” structure in the BTH urban network, where core cities (Beijing, Tianjin, and Shijiazhuang) dominate resource allocation and information flow, while peripheral cities exhibit uneven development. These results provide a scientific basis for optimizing regional coordinated development policies and underscore the critical role of electricity consumption data in refining regional economic analysis. Incorporating electricity consumption data into the gravity model significantly enhances its explanatory power by capturing hidden economic ties and improving policy evaluation, offering a more accurate and dynamic assessment of regional industrial linkages. Full article
(This article belongs to the Special Issue Energy Markets and Energy Economy)
Show Figures

Figure 1

19 pages, 7589 KiB  
Article
Analysis of PM2.5 Transport Characteristics and Continuous Improvement in High-Emission-Load Areas of the Beijing–Tianjin–Hebei Region in Winter
by Yuyao Qiang, Chuanda Wang, Xiaoqi Wang and Shuiyuan Cheng
Sustainability 2025, 17(14), 6389; https://doi.org/10.3390/su17146389 - 11 Jul 2025
Viewed by 328
Abstract
The air quality in the Beijing–Tianjin–Hebei region of China has markedly improved in recent decades. Characterizing current PM2.5 transmission between cities in light of the continuous reduction in emissions from various sources is of great significance for the formulation of future regional [...] Read more.
The air quality in the Beijing–Tianjin–Hebei region of China has markedly improved in recent decades. Characterizing current PM2.5 transmission between cities in light of the continuous reduction in emissions from various sources is of great significance for the formulation of future regional joint prevention and control strategies. To address these issues, a WRF-CAMx modeling project was implemented to explore the pollution characteristics from the perspectives of transport flux, regional source apportionment, and the comprehensive impact of multiple pollutants from 2013 to 2020. It was found that the net PM2.5 transport flux among cities declined considerably during the study period and was positively affected by the continuous reduction in emission sources. The variations in local emissions and transport contributions in various cities from 2013 to 2020 revealed differences in emission control policies and efforts. It is worth noting that under polluted weather conditions, obvious interannual differences in PM2.5 transport fluxes in the BTH region were observed, emphasizing the need for more scientifically based regional collaborative control strategies. The change in the predominant precursor from SO2 to NOx has posed new challenges for emission reduction. NOx emission reductions will significantly decrease PM2.5 concentrations, while SO2 and NH3 reductions show limited effects. The reduction in NOx emissions might have a fluctuating impact on the generation of SOAs, possibly due to changes in atmospheric oxidation. However, the deep treatment of NOx has a positive effect on the synergistic improvement of multiple air pollutants. This emphasizes the need to enhance the reduction in NOx emissions in the future. The results of this study can serve as a reference for the development of effective PM2.5 precursor control strategies and regional differentiation optimization improvement policies in the BTH region. Full article
Show Figures

Figure 1

18 pages, 3565 KiB  
Article
Restoring Historical Watercourses to Cities: The Cases of Poznań, Milan, and Beijing
by Wojciech Skórzewski, Ling Qi, Mo Zhou and Agata Bonenberg
Sustainability 2025, 17(14), 6325; https://doi.org/10.3390/su17146325 - 10 Jul 2025
Viewed by 352
Abstract
The increasing frequency of extreme weather events, combined with the historic degradation of urban water systems, has prompted cities worldwide to reconsider the role of water in urban planning. This study examines the restoration and integration of historical watercourses into contemporary urban environments [...] Read more.
The increasing frequency of extreme weather events, combined with the historic degradation of urban water systems, has prompted cities worldwide to reconsider the role of water in urban planning. This study examines the restoration and integration of historical watercourses into contemporary urban environments through blue and green infrastructure (BGI). Focusing on three case study cities—Poznań (Poland), Milan (Italy), and Beijing (China)—this research explores both spatial and regulatory conditions for reintroducing surface water into cityscapes. Utilizing historical maps, contemporary land use data, and spatial planning documents, this study applies a GIS-based multi-criteria decision analysis (GIS-MCDA) to assess restoration potential. The selected case studies, including the redesign of Park Rataje in Poznań, canal daylighting projects in Milan, and the multifunctional design of Beijing’s Olympic Forest Park, illustrate diverse approaches to ecological revitalization. The findings emphasize that restoring or recreating urban water systems can enhance urban resilience, ecological connectivity, and the quality of public space. Full article
Show Figures

Figure 1

24 pages, 3167 KiB  
Article
Effects of Vegetation Heterogeneity on Butterfly Diversity in Urban Parks: Applying the Patch–Matrix Framework at Fine Scales
by Dan Han, Cheng Wang, Junying She, Zhenkai Sun and Luqin Yin
Sustainability 2025, 17(14), 6289; https://doi.org/10.3390/su17146289 - 9 Jul 2025
Viewed by 286
Abstract
(1) Background: Urban parks play a critical role in conserving biodiversity within city landscapes, yet the effects of fine-scale microhabitat heterogeneity remain poorly understood. This study examines how land cover and vegetation unit type within parks influence butterfly diversity. (2) Methods: From July [...] Read more.
(1) Background: Urban parks play a critical role in conserving biodiversity within city landscapes, yet the effects of fine-scale microhabitat heterogeneity remain poorly understood. This study examines how land cover and vegetation unit type within parks influence butterfly diversity. (2) Methods: From July to September 2019 and June to September 2020, adult butterflies were surveyed in 27 urban parks across Beijing. We classified vegetation into units based on vertical structure and management intensity, and then applied the patch–matrix framework and landscape metrics to quantify fine-scale heterogeneity in vegetation unit composition and configuration. Generalized linear models (GLM), generalized additive models (GAM), and random forest (RF) models were applied to identify factors influencing butterfly richness (Chao1 index) and abundance. (3) Results: In total, 10,462 individuals representing 37 species, 28 genera, and five families were recorded. Model results revealed that the proportion of park area covered by spontaneous herbaceous areas (SHA), wooded spontaneous meadows (WSM), and the Shannon diversity index (SHDI) of vegetation units were positively associated with butterfly species richness. In contrast, butterfly abundance was primarily influenced by the proportion of park area covered by cultivated meadows (CM) and overall green-space coverage. (4) Conclusions: Fine-scale vegetation patch composition within urban parks significantly influences butterfly diversity. Our findings support applying the patch–matrix framework at intra-park scales and suggest that integrating spontaneous herbaceous zones—especially wooded spontaneous meadows—with managed flower-rich meadows will enhance butterfly diversity in urban parks. Full article
Show Figures

Figure 1

Back to TopTop