Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (265)

Search Parameters:
Keywords = Bayes risk

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1718 KiB  
Review
A Review on Risk and Reliability Analysis in Photovoltaic Power Generation
by Ahmad Zaki Abdul Karim, Mohamad Shaiful Osman and Mohd. Khairil Rahmat
Energies 2025, 18(14), 3790; https://doi.org/10.3390/en18143790 - 17 Jul 2025
Viewed by 292
Abstract
Precise evaluation of risk and reliability is crucial for decision making and predicting the outcome of investment in a photovoltaic power system (PVPS) due to its intermittent source. This paper explores different methodologies for risk evaluation and reliability assessment, which can be categorized [...] Read more.
Precise evaluation of risk and reliability is crucial for decision making and predicting the outcome of investment in a photovoltaic power system (PVPS) due to its intermittent source. This paper explores different methodologies for risk evaluation and reliability assessment, which can be categorized into qualitative, quantitative, and hybrid qualitative and quantitative (HQQ) approaches. Qualitative methods include failure mode analysis, graphical analysis, and hazard analysis, while quantitative methods include analytical methods, stochastic methods, Bayes’ theorem, reliability optimization, multi-criteria analysis, and data utilization. HQQ methodology combines table-based and visual analysis methods. Currently, reliability assessment techniques such as mean time between failures (MTBF), system average interruption frequency index (SAIFI), and system average interruption duration index (SAIDI) are commonly used to predict PVPS performance. However, alternative methods such as economical metrics like the levelized cost of energy (LCOE) and net present value (NPV) can also be used. Therefore, a risk and reliability approach should be applied together to improve the accuracy of predicting significant aspects in the photovoltaic industry. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

15 pages, 3145 KiB  
Article
Probabilistic Prediction of Spudcan Bearing Capacity in Stiff-over-Soft Clay Based on Bayes’ Theorem
by Zhaoyu Sun, Pan Gao, Yanling Gao, Jianze Bi and Qiang Gao
J. Mar. Sci. Eng. 2025, 13(7), 1344; https://doi.org/10.3390/jmse13071344 - 14 Jul 2025
Viewed by 221
Abstract
During offshore operations of jack-up platforms, the spudcan may experience sudden punch-through failure when penetrating from an overlying stiff clay layer into the underlying soft clay, posing significant risks to platform safety. Conventional punch-through prediction methods, which rely on predetermined soil parameters, exhibit [...] Read more.
During offshore operations of jack-up platforms, the spudcan may experience sudden punch-through failure when penetrating from an overlying stiff clay layer into the underlying soft clay, posing significant risks to platform safety. Conventional punch-through prediction methods, which rely on predetermined soil parameters, exhibit limited accuracy as they fail to account for uncertainties in seabed stratigraphy and soil properties. To address this limitation, based on a database of centrifuge model tests, a probabilistic prediction framework for the peak resistance and corresponding depth is developed by integrating empirical prediction formulas based on Bayes’ theorem. The proposed Bayesian methodology effectively refines prediction accuracy by quantifying uncertainties in soil parameters, spudcan geometry, and computational models. Specifically, it establishes prior probability distributions of peak resistance and depth through Monte Carlo simulations, then updates these distributions in real time using field monitoring data during spudcan penetration. The results demonstrate that both the recommended method specified in ISO 19905-1 and an existing deterministic model tend to yield conservative estimates. This approach can significantly improve the predicted accuracy of the peak resistance compared with deterministic methods. Additionally, it shows that the most probable failure zone converges toward the actual punch-through point as more monitoring data is incorporated. The enhanced prediction capability provides critical decision support for mitigating punch-through potential during offshore jack-up operations, thereby advancing the safety and reliability of marine engineering practices. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 1760 KiB  
Article
Integrating 68Ga-PSMA-11 PET/CT with Clinical Risk Factors for Enhanced Prostate Cancer Progression Prediction
by Joanna M. Wybranska, Lorenz Pieper, Christian Wybranski, Philipp Genseke, Jan Wuestemann, Julian Varghese, Michael C. Kreissl and Jakub Mitura
Cancers 2025, 17(14), 2285; https://doi.org/10.3390/cancers17142285 - 9 Jul 2025
Viewed by 441
Abstract
Background/Objectives: This study evaluates whether combining 68Ga-PSMA-11-PET/CT derived imaging biomarkers with clinical risk factors improves the prediction of early biochemical recurrence (eBCR) or clinical progress in patients with high-risk prostate cancer (PCa) after primary treatment, using machine learning (ML) models. Methods: We [...] Read more.
Background/Objectives: This study evaluates whether combining 68Ga-PSMA-11-PET/CT derived imaging biomarkers with clinical risk factors improves the prediction of early biochemical recurrence (eBCR) or clinical progress in patients with high-risk prostate cancer (PCa) after primary treatment, using machine learning (ML) models. Methods: We analyzed data from 93 high-risk PCa patients who underwent 68Ga-PSMA-11 PET/CT and received primary treatment at a single center. Two predictive models were developed: a logistic regression (LR) model and an ML derived probabilistic graphical model (PGM) based on a naïve Bayes framework. Both models were compared against each other and against the CAPRA risk score. The models’ input variables were selected based on statistical analysis and domain expertise including a literature review and expert input. A decision tree was derived from the PGM to translate its probabilistic reasoning into a transparent classifier. Results: The five key input variables were as follows: binarized CAPRA score, maximal intraprostatic PSMA uptake intensity (SUVmax), presence of bone metastases, nodal involvement at common iliac bifurcation, and seminal vesicle infiltration. The PGM achieved superior predictive performance with a balanced accuracy of 0.73, sensitivity of 0.60, and specificity of 0.86, substantially outperforming both the LR (balanced accuracy: 0.50, sensitivity: 0.00, specificity: 1.00) and CAPRA (balanced accuracy: 0.59, sensitivity: 0.20, specificity: 0.99). The decision tree provided an explainable classifier with CAPRA as a primary branch node, followed by SUVmax and specific PET-detected tumor sites. Conclusions: Integrating 68Ga-PSMA-11 imaging biomarkers with clinical parameters, such as CAPRA, significantly improves models to predict progression in patients with high-risk PCa undergoing primary treatment. The PGM offers superior balanced accuracy and enables risk stratification that may guide personalized treatment decisions. Full article
Show Figures

Figure 1

18 pages, 359 KiB  
Article
On the Decision-Theoretic Foundations and the Asymptotic Bayes Risk of the Region of Practical Equivalence for Testing Interval Hypotheses
by Riko Kelter
Stats 2025, 8(3), 56; https://doi.org/10.3390/stats8030056 - 8 Jul 2025
Viewed by 158
Abstract
Testing interval hypotheses is of huge relevance in the biomedical and cognitive sciences; for example, in clinical trials. Frequentist approaches include the proposal of equivalence tests, which have been used to study if there is a predetermined meaningful treatment effect. In the Bayesian [...] Read more.
Testing interval hypotheses is of huge relevance in the biomedical and cognitive sciences; for example, in clinical trials. Frequentist approaches include the proposal of equivalence tests, which have been used to study if there is a predetermined meaningful treatment effect. In the Bayesian paradigm, two popular approaches exist: The first is the region of practical equivalence (ROPE), which has become increasingly popular in the cognitive sciences. The second is the Bayes factor for interval null hypotheses, which was proposed by Morey et al. One advantage of the ROPE procedure is that, in contrast to the Bayes factor, it is quite robust to the prior specification. However, while the ROPE is conceptually appealing, it lacks a clear decision-theoretic foundation like the Bayes factor. In this paper, a decision-theoretic justification for the ROPE procedure is derived for the first time, which shows that the Bayes risk of a decision rule based on the highest-posterior density interval (HPD) and the ROPE is asymptotically minimized for increasing sample size. To show this, a specific loss function is introduced. This result provides an important decision-theoretic justification for testing the interval hypothesis in the Bayesian approach based on the ROPE and HPD, in particular, when sample size is large. Full article
(This article belongs to the Section Bayesian Methods)
Show Figures

Figure 1

30 pages, 16041 KiB  
Article
Estimation of Inverted Weibull Competing Risks Model Using Improved Adaptive Progressive Type-II Censoring Plan with Application to Radiobiology Data
by Refah Alotaibi, Mazen Nassar and Ahmed Elshahhat
Symmetry 2025, 17(7), 1044; https://doi.org/10.3390/sym17071044 - 2 Jul 2025
Viewed by 334
Abstract
This study focuses on estimating the unknown parameters and the reliability function of the inverted-Weibull distribution, using an improved adaptive progressive Type-II censoring scheme under a competing risks model. Both classical and Bayesian estimation approaches are explored to offer a thorough analysis. Under [...] Read more.
This study focuses on estimating the unknown parameters and the reliability function of the inverted-Weibull distribution, using an improved adaptive progressive Type-II censoring scheme under a competing risks model. Both classical and Bayesian estimation approaches are explored to offer a thorough analysis. Under the classical approach, maximum likelihood estimators are obtained for the unknown parameters and the reliability function. Approximate confidence intervals are also constructed to assess the uncertainty in the estimates. From a Bayesian standpoint, symmetric Bayes estimates and highest posterior density credible intervals are computed using Markov Chain Monte Carlo sampling, assuming a symmetric squared error loss function. An extensive simulation study is carried out to assess how well the proposed methods perform under different experimental conditions, showing promising accuracy. To demonstrate the practical use of these methods, a real dataset is analyzed, consisting of the survival times of male mice aged 35 to 42 days after being exposed to 300 roentgens of X-ray radiation. The analysis demonstrated that the inverted Weibull distribution is well-suited for modeling the given dataset. Furthermore, the Bayesian estimation method, considering both point estimates and interval estimates, was found to be more effective than the classical approach in estimating the model parameters as well as the reliability function. Full article
Show Figures

Figure 1

26 pages, 707 KiB  
Article
Predicting ICU Delirium in Critically Ill COVID-19 Patients Using Demographic, Clinical, and Laboratory Admission Data: A Machine Learning Approach
by Ana Viegas, Cristiana P. Von Rekowski, Rúben Araújo, Miguel Viana-Baptista, Maria Paula Macedo and Luís Bento
Life 2025, 15(7), 1045; https://doi.org/10.3390/life15071045 - 30 Jun 2025
Viewed by 571
Abstract
Delirium is a common and underrecognized complication among critically ill patients, associated with prolonged ICU stays, cognitive dysfunction, and increased mortality. Its multifactorial causes and fluctuating course hinder early prediction, limiting timely management. Predictive models based on data available at ICU admission may [...] Read more.
Delirium is a common and underrecognized complication among critically ill patients, associated with prolonged ICU stays, cognitive dysfunction, and increased mortality. Its multifactorial causes and fluctuating course hinder early prediction, limiting timely management. Predictive models based on data available at ICU admission may help to identify high-risk patients and guide early interventions. This study evaluated machine learning models used to predict delirium in critically ill patients with SARS-CoV-2 infections using a prospective cohort of 426 patients. The dataset included demographic characteristics, clinical data (e.g., comorbidities, medication, reason for ICU admission, interventions), and routine lab test results. Five models—Logistic Regression, Support Vector Machine, Decision Tree, Random Forest, and Naïve Bayes—were developed using 112 features. Feature selection relied on Information Gain, and model performance was assessed via 10-fold cross-validation. The Naïve Bayes model showed moderate predictive performance and high interpretability, achieving an AUC of 0.717, accuracy of 65.3%, sensitivity of 62.4%, specificity of 68.1%, and precision of 66.2%. Key predictors included invasive mechanical ventilation, deep sedation with benzodiazepines, SARS-CoV-2 as the reason for ICU admission, ECMO use, constipation, and male sex. These findings support the use of interpretable models for early delirium risk stratification using routinely available ICU data. Full article
(This article belongs to the Special Issue Advances in Anesthesia and Critical Care)
Show Figures

Figure 1

18 pages, 5564 KiB  
Article
Flood Exposure Patterns Induced by Sea Level Rise in Coastal Urban Areas of Europe and North Africa
by Wiktor Halecki and Dawid Bedla
Water 2025, 17(13), 1889; https://doi.org/10.3390/w17131889 - 25 Jun 2025
Viewed by 506
Abstract
Coastal cities and low-lying areas are increasingly vulnerable, and accurate data is needed to identify where interventions are most required. We compared 53 cities affected by a 1 m increase in land levels and a 2 m rise in sea levels. The geographical [...] Read more.
Coastal cities and low-lying areas are increasingly vulnerable, and accurate data is needed to identify where interventions are most required. We compared 53 cities affected by a 1 m increase in land levels and a 2 m rise in sea levels. The geographical scope of this study covered selected coastal cities in Europe and northern Africa. Data were sourced from the European Environment Agency (EEA) in the form of prepared datasets, which were further processed for analysis. Statistical methods were applied to compare the extent of urban flooding under two sea level rise scenarios—1 m and 2 m—by calculating the percentage of affected urban areas. To assess social vulnerability, the analysis included several variables: MAPF65 (Mean Area Potentially Flooded for people aged 65 and older, indicating elderly exposure), Age (the percentage of the population aged 65+ in each city), MAPF (Mean Area Potentially Flooded, representing the average share of urban area at risk of flooding), and Unemployment Ratio (the percentage of unemployed individuals living in the areas potentially affected by sea level rise). We utilized t-tests to analyze the means of two datasets, yielding a mean difference of 2.9536. Both parametric and bootstrap confidence intervals included zero, and the p-values from the t-tests (0.289 and 0.289) indicated no statistically significant difference between the means. The Bayes factor (0.178) provided substantial evidence supporting equal means, while Cohen’s D (0.099) indicated a very small effect size. Ceuta’s flooding value (502.8) was identified as a significant outlier (p < 0.05), indicating high flood risk. A Grubbs’ test confirmed Ceuta as a significant outlier. A Wilcoxon test highlighted significant deviations between the medians, with a p << 0.001, demonstrating systematic discrepancies tied to flood frequency and sea level anomalies. These findings illuminated critical disparities in flooding trends across specific locations, offering essential insights for urban planning and mitigation strategies in cities vulnerable to rising sea levels and extreme weather patterns. Information on coastal flooding provides awareness of how rising sea levels affect at-risk areas. Examining factors such as MAPF and population data enables the detection of the most threatened zones and supports targeted action. These perceptions are essential for strengthening climate resilience, improving emergency planning, and directing resources where they are needed most. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Graphical abstract

25 pages, 4031 KiB  
Article
Highway Rest Area Truck Parking Occupancy Prediction Using Machine Learning: A Case Study from Poland
by Artur Budzyński and Maria Cieśla
Infrastructures 2025, 10(7), 151; https://doi.org/10.3390/infrastructures10070151 - 22 Jun 2025
Viewed by 723
Abstract
Highway rest areas are relevant components of road infrastructure, providing drivers with essential opportunities to rest and mitigate fatigue-related crash risks. Despite their acknowledged importance, little is known about the factors that influence their actual utilization. This study addresses this gap by applying [...] Read more.
Highway rest areas are relevant components of road infrastructure, providing drivers with essential opportunities to rest and mitigate fatigue-related crash risks. Despite their acknowledged importance, little is known about the factors that influence their actual utilization. This study addresses this gap by applying supervised machine learning algorithms to predict hourly occupancy levels of truck parking lots at highway rest areas using a dataset collected from digital monitoring systems in Poland. The dataset includes 10,740 observations and 33 features describing infrastructural, administrative, and locational characteristics of selected rest areas in Poland. Eight classification models—Gradient Boosting, XGBoost, Random Forest, k-NN, Decision Tree, Logistic Regression, SVM, and Naive Bayes—were implemented and compared using standard performance metrics. Gradient Boosting emerged as the best-performing model, achieving the highest prediction accuracy and identifying key features such as the presence of fuel stations, rest area category, and facility amenities as significant predictors of occupancy. The findings highlight the potential of interpretable machine learning methods for supporting infrastructure planning, particularly in identifying underutilized or overburdened facilities. This research demonstrates a data-driven approach for analyzing rest area usage and provides practical insights for optimizing facility distribution, enhancing road safety, and informing future investments in transport infrastructure. Full article
(This article belongs to the Special Issue Smart Mobility and Transportation Infrastructure)
Show Figures

Figure 1

15 pages, 1701 KiB  
Article
Machine Learning Approaches for the Prediction of Displaced Abomasum in Dairy Cows Using a Highly Imbalanced Dataset
by Zeinab Asgari, Ali Sadeghi-Sefidmazgi, Abbas Pakdel and Saleh Shahinfar
Animals 2025, 15(13), 1833; https://doi.org/10.3390/ani15131833 - 20 Jun 2025
Viewed by 335
Abstract
Displaced abomasum (DA) is a digestive disorder that causes severe economic losses through the reduction in milk yield and early culling of cows. The predictive potential of DA-susceptible cases is of great importance to reduce economic losses. This study aimed for early prediction [...] Read more.
Displaced abomasum (DA) is a digestive disorder that causes severe economic losses through the reduction in milk yield and early culling of cows. The predictive potential of DA-susceptible cases is of great importance to reduce economic losses. This study aimed for early prediction of DA. However, identifying cows at risk of DA can be difficult because DA is a complex trait and its incidence is low. For this purpose, in this study, the ability of five machine learning algorithms, namely Logistic Regression (LR), Naïve Bayes (NB), Decision Tree, Random Forest (RF) and Gradient Boosting Machines (GBM), to predict cases of DA was investigated. For these predictions, 20 herd–cow-specific features and sire genetic information from 7 Holstein dairy herds that calved between 2010 and 2020 were available. Model performance metrics indicated that GBM and RF algorithms outperformed the others in predicting DA with F2 measures of 0.32. The true positive rate in the RF was the highest compared to other methods at 0.75, followed by GBM at 0.70. Given the highly imbalanced data, this study showed the potential in forecasting cases susceptible to DA. This prediction tool can aid dairy farmers in making preventative management decisions by identifying cows susceptible to DA. Full article
Show Figures

Figure 1

22 pages, 979 KiB  
Article
Machine Learning Applications for Predicting High-Cost Claims Using Insurance Data
by Esmeralda Brati, Alma Braimllari and Ardit Gjeçi
Data 2025, 10(6), 90; https://doi.org/10.3390/data10060090 - 17 Jun 2025
Viewed by 1533
Abstract
Insurance is essential for financial risk protection, but claim management is complex and requires accurate classification and forecasting strategies. This study aimed to empirically evaluate the performance of classification algorithms, including Logistic Regression, Decision Tree, Random Forest, XGBoost, K-Nearest Neighbors, Support Vector Machine, [...] Read more.
Insurance is essential for financial risk protection, but claim management is complex and requires accurate classification and forecasting strategies. This study aimed to empirically evaluate the performance of classification algorithms, including Logistic Regression, Decision Tree, Random Forest, XGBoost, K-Nearest Neighbors, Support Vector Machine, and Naïve Bayes to predict high insurance claims. The research analyses the variables of claims, vehicles, and insured parties that influence the classification of high-cost claims. This investigation utilizes a dataset comprising 802 observations of bodily injury claims from the motor liability portfolio of a private insurance company in Albania, covering the period from 2018 to 2024. In order to evaluate and compare the performance of the models, we employed evaluation criteria, including classification accuracy (CA), area under the curve (AUC), confusion matrix, and error rates. We found that Random Forest performs better, achieving the highest classification accuracy (CA = 0.8867, AUC = 0.9437) with the lowest error rates, followed by the XGBoost model. At the same time, logistic regression demonstrated the weakest performance. Key predictive factors in high claim classification include claim type, deferred period, vehicle brand and age of driver. These findings highlight the potential of machine learning models in improving claim classification and risk assessment and refine underwriting policy. Full article
Show Figures

Figure 1

14 pages, 1112 KiB  
Systematic Review
Association Between Hypertensive Disorders of Pregnancy and Patent Ductus Arteriosus in Very Preterm Infants: A Bayesian Model-Averaged Meta-Analysis
by Moreyba Borges-Luján, Gloria Galán-Henríquez, Rosa I. Rodríguez-Viera, František Bartoš, Gema E. González-Luis and Eduardo Villamor
Children 2025, 12(6), 762; https://doi.org/10.3390/children12060762 - 12 Jun 2025
Viewed by 347
Abstract
Background/Objectives: Prenatal adverse events may influence the development of complications of prematurity, including patent ductus arteriosus (PDA). We conducted a systematic review and Bayesian model-averaged (BMA) meta-analysis of observational studies exploring the association between hypertensive disorders of pregnancy (HDP) and the risk [...] Read more.
Background/Objectives: Prenatal adverse events may influence the development of complications of prematurity, including patent ductus arteriosus (PDA). We conducted a systematic review and Bayesian model-averaged (BMA) meta-analysis of observational studies exploring the association between hypertensive disorders of pregnancy (HDP) and the risk of PDA in preterm infants. Methods: PubMed/Medline and Embase databases were searched. We used BMA analysis to calculate Bayes factors (BFs). The BF10 is the ratio of the probability of the data under the alternative hypothesis (H1, presence of association) over the probability of the data under the null hypothesis (H0, absence of association). Results: We included 41 studies (58,004 infants). BMA analysis showed moderate evidence in favour of H0 for the association between HDP and any PDA (BF10 = 0.20) as well as for the association between HDP and hemodynamically significant PDA (BF10 = 0.27). Subgroup analyses based on the subtype of HDP showed that the moderate evidence in favour of H0 was only conclusive (i.e., BF10 < 0.33) for the associations of any PDA with preeclampsia (BF10 = 0.30) and hemodynamically significant PDA with preeclampsia (BF10 = 0.17). Conclusions: The currently available evidence suggests a lack of association between HDP and the risk of developing PDA. Full article
Show Figures

Figure 1

23 pages, 3830 KiB  
Article
A Hybrid Artificial Intelligence Approach for Down Syndrome Risk Prediction in First Trimester Screening
by Emre Yalçın, Serpil Aslan, Mesut Toğaçar and Süleyman Cansun Demir
Diagnostics 2025, 15(12), 1444; https://doi.org/10.3390/diagnostics15121444 - 6 Jun 2025
Viewed by 873
Abstract
Background/Objectives: The aim of this study is to develop a hybrid artificial intelligence (AI) approach to improve the accuracy, efficiency, and reliability of Down Syndrome (DS) risk prediction during first trimester prenatal screening. The proposed method transforms one-dimensional (1D) patient data—including features such [...] Read more.
Background/Objectives: The aim of this study is to develop a hybrid artificial intelligence (AI) approach to improve the accuracy, efficiency, and reliability of Down Syndrome (DS) risk prediction during first trimester prenatal screening. The proposed method transforms one-dimensional (1D) patient data—including features such as nuchal translucency (NT), human chorionic gonadotropin (hCG), and pregnancy-associated plasma protein A (PAPP-A)—into two-dimensional (2D) Aztec barcode images, enabling advanced feature extraction using transformer-based deep learning models. Methods: The dataset consists of 958 anonymous patient records. Each record includes four first trimester screening markers, hCG, PAPP-A, and NT, expressed as multiples of the median. The DS risk outcome was categorized into three classes: high, medium, and low. Three transformer architectures—DeiT3, MaxViT, and Swin—are employed to extract high-level features from the generated barcodes. The extracted features are combined into a unified set, and dimensionality reduction is performed using two feature selection techniques: minimum Redundancy Maximum Relevance (mRMR) and RelieF. Intersecting features from both selectors are retained to form a compact and informative feature subset. The final features are classified using machine learning algorithms, including Bagged Trees and Naive Bayes. Results: The proposed approach achieved up to 100% classification accuracy using the Naive Bayes classifier with 1250 features selected by RelieF and 527 intersecting features from mRMR. By selecting a smaller but more informative subset of features, the system significantly reduced hardware and processing demands while maintaining strong predictive performance. Conclusions: The results suggest that the proposed hybrid AI method offers a promising and resource-efficient solution for DS risk assessment in first trimester screening. However, further comparative studies are recommended to validate its performance in broader clinical contexts. Full article
(This article belongs to the Special Issue Artificial Intelligence for Health and Medicine)
Show Figures

Figure 1

27 pages, 7294 KiB  
Article
Enhancing Predictive Accuracy of Landslide Susceptibility via Machine Learning Optimization
by Chuanwei Zhang, Dingshuai Liu, Paraskevas Tsangaratos, Ioanna Ilia, Sijin Ma and Wei Chen
Appl. Sci. 2025, 15(11), 6325; https://doi.org/10.3390/app15116325 - 4 Jun 2025
Viewed by 738
Abstract
The present study examines the application of four machine learning models—Multi-Layer Perceptron, Naive Bayes, Credal Decision Trees, and Random Forests—to assess landslide susceptibility using Mei County, China, as a case study. Aerial photographs and field survey data were integrated into a GIS system [...] Read more.
The present study examines the application of four machine learning models—Multi-Layer Perceptron, Naive Bayes, Credal Decision Trees, and Random Forests—to assess landslide susceptibility using Mei County, China, as a case study. Aerial photographs and field survey data were integrated into a GIS system to develop a landslide inventory map. Additionally, 16 landslide conditioning factors were collected and processed, including elevation, Normalized Difference Vegetation Index, precipitation, terrain, land use, lithology, slope, aspect, stream power index, topographic wetness index, sediment transport index, plan curvature, profile curvature, and distance to roads. From the landslide inventory, 87 landslides were identified, along with an equal number of randomly selected non-landslide locations. These data points, combined with the conditioning factors, formed a spatial dataset for our landslide analysis. To implement the proposed methodological approach, the dataset was divided into two subsets: 70% formed the training subset and 30% formed the testing subset. A correlation analysis was conducted to examine the relationship between the conditioning factors and landslide occurrence, and the certainty factor method was applied to assess their influence. Beyond model comparison, the central focus of this research is the optimization of machine learning parameters to enhance prediction reliability and spatial accuracy. The results show that the Random Forests and Multi-Layer Perceptron models provided superior predictive capability, offering detailed and actionable landslide susceptibility maps. Specifically, the area under the receiver operating characteristic curve and other statistical indicators were calculated to assess the models’ predictive accuracy. By producing high-resolution susceptibility maps tailored to local geomorphological conditions, this work supports more informed land-use planning, infrastructure development, and early warning systems in landslide-prone areas. The findings also contribute to the growing body of research on artificial intelligence-driven natural hazard assessment, offering a replicable framework for integrating machine learning in geospatial risk analysis and environmental decision-making. Full article
(This article belongs to the Special Issue Novel Technology in Landslide Monitoring and Risk Assessment)
Show Figures

Figure 1

18 pages, 466 KiB  
Article
A Novel Dataset for Early Cardiovascular Risk Detection in School Children Using Machine Learning
by Rafael Alejandro Olivera Solís, Emilio Francisco González Rodríguez, Roberto Castañeda Sheissa, Juan Valentín Lorenzo-Ginori and José García
Technologies 2025, 13(6), 222; https://doi.org/10.3390/technologies13060222 - 29 May 2025
Viewed by 676
Abstract
This study introduces the PROCDEC dataset, a novel collection of 1140 cases with 30 cardiovascular risk factors gathered over a 10-year period from school children in Santa Clara, Cuba. The dataset was curated with input from medical experts in pediatric cardiology, endocrinology, general [...] Read more.
This study introduces the PROCDEC dataset, a novel collection of 1140 cases with 30 cardiovascular risk factors gathered over a 10-year period from school children in Santa Clara, Cuba. The dataset was curated with input from medical experts in pediatric cardiology, endocrinology, general medicine, and clinical laboratory, ensuring its clinical relevance. We conducted a rigorous performance evaluation of 10 machine learning (ML) algorithms to classify cardiovascular risk into two categories: at risk and not at risk. The models were assessed using a stratified k-fold cross-validation approach to enhance the reliability of the findings. Among the evaluated models—Bayes Net, Naive Bayes, SMO, K-Nearest Neighbors (KNN), Logistic Regression, AdaBoost, Multilayer Perceptron (MLP), J48, Logistic Model Tree (LMT), and Random Forest (RF)—the best-performing classifiers (MLP, LMT, J48 and Logistic Regression) achieved F1-score values exceeding 0.83, indicating strong predictive capability. To improve interpretability, we employed feature selection techniques to rank the most influential risk factors. Key contributors to classification performance included hypertension, hyperreactivity, body mass index (BMI), uric acid, cholesterol, parental hypertension, and sibling dyslipidemia. These findings align with established clinical knowledge and reinforce the potential of ML models for pediatric cardiovascular risk assessment. Unlike previous studies, our research not only evaluates multiple ML techniques but also emphasizes their clinical applicability and interpretability, which are critical for real-world implementation. Future work will focus on validating these models with external datasets and integrating them into decision-support systems for early risk detection. Full article
Show Figures

Figure 1

24 pages, 23057 KiB  
Article
On the Potential of Bayesian Neural Networks for Estimating Chlorophyll-a Concentration from Satellite Data
by Mohamad Abed El Rahman Hammoud, Nikolaos Papagiannopoulos, George Krokos, Robert J. W. Brewin, Dionysios E. Raitsos, Omar Knio and Ibrahim Hoteit
Remote Sens. 2025, 17(11), 1826; https://doi.org/10.3390/rs17111826 - 23 May 2025
Viewed by 555
Abstract
This work introduces the use of Bayesian Neural Networks (BNNs) for inferring chlorophyll-a concentration ([CHL-a]) from remotely sensed data. BNNs are probabilistic models that associate a probability distribution to the neural network parameters and rely on Bayes’ rule for training. The performance of [...] Read more.
This work introduces the use of Bayesian Neural Networks (BNNs) for inferring chlorophyll-a concentration ([CHL-a]) from remotely sensed data. BNNs are probabilistic models that associate a probability distribution to the neural network parameters and rely on Bayes’ rule for training. The performance of the proposed probabilistic model is compared to that of standard ocean color algorithms, namely ocean color 4 (OC4) and ocean color index (OCI). An extensive in situ bio-optical dataset was used to train and validate the ocean color models. In contrast to established methods, the BNN allows for enhanced modeling flexibility, where different variables that affect phytoplankton phenology or describe the state of the ocean can be used as additional input for enhanced performance. Our results suggest that BNNs perform at least as well as established methods, and they could achieve 20–40% lower mean squared errors when additional input variables are included, such as the sea surface temperature and its climatological mean alongside the coordinates of the prediction. The BNNs offer means for uncertainty quantification by estimating the probability distribution of [CHL-a], building confidence in the [CHL-a] predictions through the variance of the predictions. Furthermore, the output probability distribution can be used for risk assessment and decision making through analyzing the quantiles and shape of the predicted distribution. Full article
(This article belongs to the Special Issue Recent Advances in Water Quality Monitoring)
Show Figures

Figure 1

Back to TopTop