Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = Bader charge analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2502 KB  
Article
A First-Principles Study of Lithium Adsorption and Diffusion on Graphene and Defective-Graphene as Anodes of Li-Ion Batteries
by Lina Si, Yijian Yang, Yuhao Wang, Qifeng Wu, Rong Huang, Hongjuan Yan, Mulan Mu, Fengbin Liu and Shuting Zhang
Coatings 2026, 16(1), 52; https://doi.org/10.3390/coatings16010052 - 3 Jan 2026
Viewed by 293
Abstract
Defective graphene has emerged as a promising strategy to enhance electrochemical performance of pristine graphene (p-Gr) as anodes in lithium-ion batteries (LIBs). Herein, we perform a comprehensive first-principles study based on density functional theory (DFT) to systematically investigate the Li adsorption, charge transfer, [...] Read more.
Defective graphene has emerged as a promising strategy to enhance electrochemical performance of pristine graphene (p-Gr) as anodes in lithium-ion batteries (LIBs). Herein, we perform a comprehensive first-principles study based on density functional theory (DFT) to systematically investigate the Li adsorption, charge transfer, and diffusion behaviors of p-Gr and defective graphene (d-Gr) with single vacancy (SV Gr) and double vacancy (DV5-8-5 Gr) defects, aiming to clarify the mechanism by which defects modulate Li storage performance. Structural optimization reveals that SV Gr undergoes notable out-of-plane distortion after Li adsorption, while DV5-8-5 Gr retains planar geometry but exhibits more significant C-C bond length variations compared to p-Gr. Binding energy results confirm that defects enhance Li adsorption stability, with DV5-8-5 Gr showing the strongest Li–graphene interaction, followed by SV Gr and p-Gr. Bader charge analysis and charge density difference plots further validate that defects enhance charge transfer from Li ions to graphene. Using the nudged elastic band (NEB) method, we find that defects reduce Li diffusion barriers: DV5-8-5 Gr exhibits a lower barrier than p-Gr. Our findings demonstrate that DV5-8-5 Gr exhibits the most favorable Li storage performance, providing a robust theoretical basis for designing high-performance graphene anodes for next-generation LIBs. Full article
Show Figures

Figure 1

19 pages, 4235 KB  
Article
First-Principles Study on Desolvation and Capacitive Performance of Bispyrrolidinium Cations in Pristine/Oxygen-Functionalized Bilayer Graphene Flat Pores
by Fudong Liu, Yi Cao, Sinan Li, Xin Qi and Bing Liu
Coatings 2025, 15(11), 1299; https://doi.org/10.3390/coatings15111299 - 6 Nov 2025
Viewed by 326
Abstract
Supercapacitors are limited by electrolyte cation desolvation, which directly impacts ion storage efficiency and capacitance. This study uses density functional tight-binding (DFTB+) first-principles calculations to investigate the desolvation of bispyrrolidinium cation complexes ([SBP(AN)]+, acetonitrile as solvent) in pristine (FP) and oxygen-functionalized [...] Read more.
Supercapacitors are limited by electrolyte cation desolvation, which directly impacts ion storage efficiency and capacitance. This study uses density functional tight-binding (DFTB+) first-principles calculations to investigate the desolvation of bispyrrolidinium cation complexes ([SBP(AN)]+, acetonitrile as solvent) in pristine (FP) and oxygen-functionalized (OFP: hydroxyl-HFP, carbonyl-CFP, aldehyde-AFP) bilayer graphene flat pores with AA/AB stacking. Critical desolvation diameters were determined: 5.0 Å (FP), 5.2 Å (HFP), 5.0 Å (AFP), and 4.6 Å (CFP). Hydroxyl functionalization expanded the critical diameter, reduced SBP+ intercalation energy, and increased relative capacitance by 1.02~1.03 times; carbonyl groups had the opposite effect, while aldehyde groups showed no significant impact. Density of States (DOS) analysis revealed enhanced conductivity for HFP and AFP after SBP+ embedding, but reduced conductivity for CFP. Charge density difference and Bader charge analysis confirmed electron transfer primarily between SBP+ (electron donor) and oxygen atoms in functional groups (electron acceptor), with SBP+ interacting mainly with functional groups rather than the carbon basal plane. This work provides theoretical guidance for optimizing graphene-based supercapacitor electrodes via pore structure and surface functionalization. Full article
Show Figures

Figure 1

24 pages, 10390 KB  
Article
Electronic Structure and Binding Characteristics of Ionic Liquid Ions on Li-Metal Surfaces Through a DFT Approach
by Luis A. Selis, Dinau Velazco-Lorenzo, Juan Quillas and Diego E. Galvez-Aranda
Crystals 2025, 15(11), 928; https://doi.org/10.3390/cryst15110928 - 28 Oct 2025
Viewed by 1034
Abstract
Understanding the interactions between ionic liquid ions and lithium-metal surfaces is critical for designing safer and more efficient lithium metal batteries. In this work, we use density functional theory to investigate the electronic structure, binding energies, work-function shifts and interfacial charge redistribution of [...] Read more.
Understanding the interactions between ionic liquid ions and lithium-metal surfaces is critical for designing safer and more efficient lithium metal batteries. In this work, we use density functional theory to investigate the electronic structure, binding energies, work-function shifts and interfacial charge redistribution of several ionic liquid ions, including FSI, TFSI, PF6, BF4, DFOB, Pyr14+, and EMIM+, on a Li-metal anode (Lim). Absorption orientation-dependent effects are examined for each molecule. Specifically, differences in charge density and electron localization function analyses revealed unique patterns of electron accumulation and delocalization that highlighted specific atomic roles in interfacial bonding. Interfacial charge transfer is analyzed through Bader charges, revealing a moderate charge redistribution for the cations (EMIM+, Pyr14+), and a more significant charge uptake for the reactive anions (FSI, TFSI, DFOB). Among cations, EMIM+ was determined to have the most interfacial stability, while Pyr14+ displayed mid-level reactivity. For the anions, varying tendencies for bond formation with lithium metal and potential fragmentation could be determined. Overall, these discoveries detail an atomistic analysis of ionic liquid to Lim interactions providing additional pathways for molecular design techniques to stabilize electrolytes performing not high-cost computational calculations. Full article
(This article belongs to the Special Issue Analysis of Halogen and Other σ-Hole Bonds in Crystals (2nd Edition))
Show Figures

Figure 1

17 pages, 5598 KB  
Article
Passivation Mechanism of (18-Crown-6) Potassium on Complex Defects in SnO2 Electron Transport Layer of Solar Cells
by Shiyan Yang, Qiuli Zhang, Qiaogang Song, Yu Zhuang, Shurong Wang, Youbo Dou, Jianjun Wang, Xintong Zhao, Longxian Zhang, Hongwen Zhang, Wenjing Lu, Xihua Zhang, Yuan Wu and Xianfeng Jiang
Molecules 2025, 30(20), 4081; https://doi.org/10.3390/molecules30204081 - 14 Oct 2025
Viewed by 600
Abstract
In this study, first-principles calculations were employed to systematically investigate the interaction mechanisms between (18-crown-6) potassium (18C6-K+) and six typical defect sites on the SnO2 (110) surface, including Sni + SnO, Oi + OSn, [...] Read more.
In this study, first-principles calculations were employed to systematically investigate the interaction mechanisms between (18-crown-6) potassium (18C6-K+) and six typical defect sites on the SnO2 (110) surface, including Sni + SnO, Oi + OSn, VO + Sni, VSn + SnO, VSn + Sni, and Sni. Six intrinsic or complex defects universally coexist on the SnO2 surface, and the defect states they introduced allow for precise tuning of material performance. The results demonstrated that the 18C6-K+ molecule can stably adsorb on all six defect sites and significantly increase defect formation energies, indicating its thermodynamic capability to suppress defect generation. A subsequent density of states (DOS) analysis revealed that the 18C6-K+ molecule exhibits strong defect passivation effects at Sni + SnO, VO + Sni, VSn + Sni, and Sni sites, and partially mitigated the electronic disturbances induced by Oi + OSn and VSn + SnO defects. Furthermore, the incorporation of 18C6-K+ has been shown to reduce the electronic effective mass of defective systems, thereby enhancing surface carrier transport. A subsequent charge density difference (CDD) analysis revealed that the 18C6-K+ molecule forms Sn-ether and O-ether interactions through its ether bonds (C-O-C) with surface Sn and O atoms, inducing interfacial electronic reconstruction and charge transfer. The Bader charge analysis revealed that the H, C, and O atoms in 18C6-K+ lose electrons, whereas the Sn or O atoms at the surface defect sites gain electrons. This outcome is consistent with the CDD analysis and quantitatively confirms the extent of electron transfer from 18C6-K+ to the SnO2 defect regions. These interactions effectively passivate defect states, thereby enhancing interfacial stability. The present study offers theoretical guidance and design insights for the development of molecular passivation strategies in SnO2-based optoelectronic devices. Full article
Show Figures

Graphical abstract

14 pages, 2149 KB  
Article
Interface Catalysts of In Situ-Grown TiO2/MXenes for High-Faraday-Efficiency CO2 Reduction
by Shaun Debow, Zichen Shen, Arjun Sathyan Kulathuvayal, Fuzhan Song, Tong Zhang, Haley Fisher, Jesse B. Brown, Yuqin Qian, Zhi-Chao Huang-Fu, Hui Wang, Zachary Zander, Mark S. Mirotznik, Robert L. Opila, Yanqing Su and Yi Rao
Molecules 2025, 30(19), 4025; https://doi.org/10.3390/molecules30194025 - 9 Oct 2025
Viewed by 868
Abstract
Climate change and the global energy crisis have led to an increasing need for greenhouse gas remediation and clean energy sources. The electrochemical CO2 reduction reaction (CO2RR) is a promising solution for both issues as it harvests waste CO2 [...] Read more.
Climate change and the global energy crisis have led to an increasing need for greenhouse gas remediation and clean energy sources. The electrochemical CO2 reduction reaction (CO2RR) is a promising solution for both issues as it harvests waste CO2 and chemically reduces it to more useful forms. However, the high overpotential required for the reaction makes it electrochemically unfavorable. Here, we fabricate a novel electrode composed of TiO2 nanoparticles grown in situ on MXene charge acceptor 2D sheets with excellent CO2RR characteristics. A straightforward solvothermal method was used to grow the nanoparticles on the Ti3C2Tx MXene flakes. The electrochemical performance of the TiO2/MXene electrodes was analyzed. The Faradaic efficiencies of the TiO2/MXene electrodes were determined, with a value of 99.41% at −1.9 V (vs. Ag/AgCl). Density functional theory mechanistic analysis was used to reveal the most likely mechanism resulting in the production of one CO molecule along with a carbonate anion through ∗CO, ∗O, and activated CO22− intermediates. Bader charge analysis corroborated this pathway, showing that CO2 gains a greater negative charge when TiO2/MXene serves as a catalyst compared to MXene or TiO2 alone. These results show that TiO2/MXene nanocomposite electrodes may be very useful in the conversion of CO2 while still being efficient in both time and cost. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Physical Chemistry, 3rd Edition)
Show Figures

Figure 1

16 pages, 4323 KB  
Article
Atomic-Scale Insights into CO2 and H2O Co-Adsorption on Sr2Fe1.5Mo0.5O6 Surfaces: Role of Electronic Structure and Dual-Site Interactions
by Junbo Wang, Qiankai Zhang, Zixuan Zhang, Sijie He, Nianbo Liang, Yuan Gao, Ke Deng, Yang Wang, Jun Zhou and Kai Wu
Catalysts 2025, 15(9), 884; https://doi.org/10.3390/catal15090884 - 15 Sep 2025
Viewed by 899
Abstract
Co-electrolysis of CO2 and H2O offers a promising route for efficient and controllable syngas production from greenhouse gases and water. However, the atomic-scale reaction mechanism remains elusive, especially on complex oxide surfaces. In this study, we employ density functional theory [...] Read more.
Co-electrolysis of CO2 and H2O offers a promising route for efficient and controllable syngas production from greenhouse gases and water. However, the atomic-scale reaction mechanism remains elusive, especially on complex oxide surfaces. In this study, we employ density functional theory (DFT) to investigate the adsorption and activation of CO2 and H2O on the FeMoO-terminated (001) surface of Sr2Fe1.5Mo0.5O6 (SFM), a double perovskite of growing interest for solid oxide electrolysis. Our results show that CO2 strongly interacts with surface lattice oxygen, adopting a bent configuration with substantial charge transfer. In contrast, H2O binds more weakly at Mo sites through predominantly electrostatic interactions. Co-adsorption analyses reveal a bidirectional interplay: pre-adsorbed H2O enhances CO2 binding by altering its adsorption geometry, whereas pre-adsorbed CO2 weakens H2O adsorption due to competitive site occupation. This balance suggests that moderate co-adsorption may facilitate proton–electron coupling, while excessive coverage of either species suppresses activation of the other. Bader charge analysis, charge density differences, and projected density of states highlight the key role of Fe/Mo–O hybridized states near the Fermi level in mediating surface reactivity. These results, obtained for a perfect defect-free surface, provide a theoretical benchmark for disentangling intrinsic molecule–surface and molecule–molecule interactions, and offer guidance for designing high-performance perovskite electrocatalysts for CO2 + H2O co-electrolysis. Full article
(This article belongs to the Special Issue Catalytic Conversion of CO2 or CO)
Show Figures

Graphical abstract

16 pages, 3710 KB  
Article
Janus Ga2SSe-Based van der Waals Heterojunctions as a Class of Promising Candidates for Photocatalytic Water Splitting: A DFT Investigation
by Fan Yang, Marie-Christine Record and Pascal Boulet
Crystals 2025, 15(8), 728; https://doi.org/10.3390/cryst15080728 - 16 Aug 2025
Cited by 1 | Viewed by 1387
Abstract
Addressing global energy and environmental issues calls for the development of effective photocatalysts capable of enabling solar-driven water splitting, a key route toward sustainable hydrogen generation. In this work, we conducted a detailed density functional theory (DFT) study on three bilayer van der [...] Read more.
Addressing global energy and environmental issues calls for the development of effective photocatalysts capable of enabling solar-driven water splitting, a key route toward sustainable hydrogen generation. In this work, we conducted a detailed density functional theory (DFT) study on three bilayer van der Waals (vdW) heterojunctions, Ga2SSe/GaP, Ga2SSe/PtSSe, and Ga2SSe/SnSSe, each explored in four distinct stacking configurations, with Ga2SSe serving as the base monolayer. We assessed their structural stability, electronic properties, and optical responses to determine their suitability for photocatalytic water splitting. The analysis showed that Ga2SSe/GaP and Ga2SSe/SnSSe exhibit type-II band alignment, while Ga2SSe/PtSSe displays a type-I alignment. Electrostatic potential profiles and Bader charge calculations identified SeGa2S/SSnSe and SeGa2S/SeSnS as direct Z-scheme systems, offering efficient charge carrier separation and robust redox potential. For effective water splitting, the band edges must straddle the water redox potentials. Our results indicate that configurations A and B in Ga2SSe/GaP, along with C and D in Ga2SSe/SnSSe, fulfill this requirement. These four configurations also exhibit strong absorption in both the visible and ultraviolet spectral ranges. Notably, configurations C and D of Ga2SSe/SnSSe achieve high solar-to-hydrogen (STH) efficiencies, reaching 38.44% and 21.75%, respectively. Overall, our findings suggest that these direct Z-scheme heterostructures are promising candidates for water splitting photocatalysis. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

16 pages, 2229 KB  
Article
Investigation of the Effect of Molecules Containing Sulfonamide Moiety Adsorbed on the FAPbI3 Perovskite Surface: A First-Principles Study
by Shiyan Yang, Yu Zhuang, Youbo Dou, Jianjun Wang, Hongwen Zhang, Wenjing Lu, Qiuli Zhang, Xihua Zhang, Yuan Wu and Xianfeng Jiang
Molecules 2025, 30(11), 2463; https://doi.org/10.3390/molecules30112463 - 4 Jun 2025
Viewed by 1033
Abstract
First-principles calculations were conducted to examine the impact of three sulfonamide-containing molecules (H4N2O2S, CH8N4O3S, and C2H2N6O4S) adsorbed on the FAPbI3(001) perovskite [...] Read more.
First-principles calculations were conducted to examine the impact of three sulfonamide-containing molecules (H4N2O2S, CH8N4O3S, and C2H2N6O4S) adsorbed on the FAPbI3(001) perovskite surface, aiming to establish a significant positive correlation between the molecular structures and their regulatory effects on the perovskite surface. A systematic comparison was conducted to evaluate the adsorption stability of the three molecules on the two distinct surface terminations. The results show that all three molecules exhibit strong adsorption on the FAPbI3(001) surface, with C2H12N6O4S demonstrating the most favorable binding stability due to its extended frameworks and multiple electron-donating/withdrawing groups. Simpler molecules lacking carbon skeletons exhibit weaker adsorption and less dependence on surface termination. Ab initio molecular dynamics simulations (AIMD) further corroborated the thermal stability of the stable adsorption configurations at elevated temperatures. Electronic structure analysis reveals that molecular adsorption significantly reconstructs the density of states (DOS) on the PbI2-terminated surface, inducing shifts in band-edge states and enhancing energy-level coupling between molecular orbitals and surface states. In contrast, the FAI-terminated surface shows weaker interactions. Charge density difference (CDD) analysis indicates that the molecules form multiple coordination bonds (e.g., Pb–O, Pb–S, and Pb–N) with uncoordinated Pb atoms, facilitated by –SO2–NH2 groups. Bader charge and work function analyses indicate that the PbI2-terminated surface exhibits more pronounced electronic coupling and interfacial charge transfer. The C2H12N6O4S adsorption system demonstrates the most substantial reduction in work function. Optical property calculations show a distinct red-shift in the absorption edge along both the XX and YY directions for all adsorption systems, accompanied by enhanced absorption intensity and broadened spectral range. These findings suggest that sulfonamide-containing molecules, particularly C2H12N6O4S with extended carbon skeletons, can effectively stabilize the perovskite interface, optimize charge transport pathways, and enhance light-harvesting performance. Full article
Show Figures

Figure 1

18 pages, 9400 KB  
Article
Influence of Alloying Elements on the Phase Structure, Stress–Strain Behavior, and Fracture Toughness of Ni3Sn: A First-Principles Study
by Haotian Zhang, Jiaoyan Dai, Yinwen Cao, Yanjie Zhang, Mingdong Bao and Yanping Yin
Materials 2025, 18(8), 1792; https://doi.org/10.3390/ma18081792 - 14 Apr 2025
Viewed by 839
Abstract
Transient liquid-phase bonding (TLPB) enables the low-temperature fabrication of encapsulated solder joints with high-temperature resistance and electromigration resilience; yet, Ni-Sn TLPB joints suffer from brittle fracture due to intermetallic compounds (IMCs). This study investigates the Co, Cu, and Pt alloying effects on Ni [...] Read more.
Transient liquid-phase bonding (TLPB) enables the low-temperature fabrication of encapsulated solder joints with high-temperature resistance and electromigration resilience; yet, Ni-Sn TLPB joints suffer from brittle fracture due to intermetallic compounds (IMCs). This study investigates the Co, Cu, and Pt alloying effects on Ni3Sn via formation energy, molecular dynamics, and first-principles calculations. Occupancy models of Ni6−xMxSn2 (M = Co, Cu, and Pt) were established, with the lattice parameters, B/G ratios, fracture toughness (KIC), and stress–strain behaviors analyzed. The results reveal that Co enhances fracture toughness and reduces Ni3Sn anisotropy, mitigating microcrack risks, while Cu/Pt introduce antibonding interactions (Cu–Sn and Pt–Sn), weakening the bonding strength. The classical B/G brittleness criterion proves inapplicable in Ni–M–Sn systems due to mixed bonding (metallic/covalent) and the hexagonal structure’s limited slip systems. The Ni6−xCoxSn2 formation improves toughness with a low Co content, supported by an electronic structure analysis (density of states and Bader charges). The thermodynamic stability and reduced molar shrinkage (Ni + Sn → Ni3Sn) confirm Co’s efficacy in optimizing Ni–Sn solder joints. Full article
Show Figures

Figure 1

15 pages, 3182 KB  
Article
Ab Initio Investigation of the Stability, Electronic, Mechanical, and Transport Properties of New Double Half Heusler Alloys Ti2Pt2ZSb (Z = Al, Ga, In)
by Nurgul S. Soltanbek, Nurpeiis A. Merali, Nursultan E. Sagatov, Fatima U. Abuova, Edgars Elsts, Aisulu U. Abuova, Vladimir V. Khovaylo, Talgat M. Inerbaev, Marina Konuhova and Anatoli I. Popov
Metals 2025, 15(3), 329; https://doi.org/10.3390/met15030329 - 18 Mar 2025
Cited by 5 | Viewed by 1403
Abstract
This research aimed to explore the structural, electronic, mechanical, and vibrational properties of double half Heusler compounds with the generic formula Ti2Pt2ZSb (Z = Al, Ga, and In), using density functional theory calculations. The generalized gradient approximation within the [...] Read more.
This research aimed to explore the structural, electronic, mechanical, and vibrational properties of double half Heusler compounds with the generic formula Ti2Pt2ZSb (Z = Al, Ga, and In), using density functional theory calculations. The generalized gradient approximation within the PBE functional was employed for structural relaxation and for calculations of vibrational and mechanical properties and thermal conductivity, while the hybrid HSE06 functional was employed for calculations of the electronic properties. Our results demonstrate that these compounds are energetically favorable and dynamically and mechanically stable. Our electronic structure calculations revealed that the Ti2Pt2AlSb double half Heusler compound is a non-magnetic semiconductor with an indirect band gap of 1.49 eV, while Ti2Pt2GaSb and Ti2Pt2InSb are non-magnetic semiconductors with direct band gaps of 1.40 eV. Further analysis, including phonon dispersion curves, the electron localization function (ELF), and Bader charge analysis, provided insights into the bonding character and vibrational properties of these materials. These findings suggest that double half Heusler compounds are promising candidates for thermoelectric device applications and energy-conversion devices, due to their favorable properties. Full article
Show Figures

Figure 1

11 pages, 15006 KB  
Article
Rational Design of Novel Single-Atom Catalysts of Transition-Metal-Doped 2D AlN Monolayer as Highly Effective Electrocatalysts for Nitrogen Reduction Reaction
by Xiaopeng Shen and Qinfang Zhang
Molecules 2024, 29(23), 5768; https://doi.org/10.3390/molecules29235768 - 6 Dec 2024
Cited by 3 | Viewed by 1918
Abstract
The single-atom catalysts (SACs) for the electrocatalytic nitrogen reduction reaction (NRR) have garnered significant attention in recent years. The NRR is regarded as a milder and greener approach to ammonia synthesis. The pursuit of highly efficient and selective electrocatalysts for the NRR continues [...] Read more.
The single-atom catalysts (SACs) for the electrocatalytic nitrogen reduction reaction (NRR) have garnered significant attention in recent years. The NRR is regarded as a milder and greener approach to ammonia synthesis. The pursuit of highly efficient and selective electrocatalysts for the NRR continues to garner substantial interest, yet it poses a significant challenge. In this study, we employed density functional theory calculations to investigate the stability and catalytic activity of 29 transition metal atoms loaded on the two-dimensional (2D) AlN monolayer with Al monovacancy (TM@AlN) for the conversion of N2 to NH3. After screening the activity and selectivity of NRR, it was found that Os@AlN exhibited the highest activity for NRR with a very low limiting potential of −0.46 V along the distal pathway. The analysis of the related electronic structure, Bader charge, electron localization function, and PDOS revealed the origin of NRR activity from the perspective of energy and electronic properties. The high activity and selectivity towards the NRR of SACs are closely associated with the Os-3N coordination. Our findings have expanded the scope of designing innovative high-efficiency SACs for NRR. Full article
(This article belongs to the Special Issue Advances in 2D Materials for Electrochemical Applications)
Show Figures

Figure 1

20 pages, 5851 KB  
Article
The Effect of Solute Elements Co-Segregation on Grain Boundary Energy and the Mechanical Properties of Aluminum by First-Principles Calculation
by Xuan Zhang, Yuxuan Wan, Cuifan Chen and Liang Zhang
Nanomaterials 2024, 14(22), 1803; https://doi.org/10.3390/nano14221803 - 11 Nov 2024
Cited by 6 | Viewed by 2308
Abstract
The segregation of solute atoms at grain boundary (GB) has an important effect on the GB characteristics and the properties of materials. The study of multielement co-segregation in GBs is still in progress and deserves further research at the atomic scale. In this [...] Read more.
The segregation of solute atoms at grain boundary (GB) has an important effect on the GB characteristics and the properties of materials. The study of multielement co-segregation in GBs is still in progress and deserves further research at the atomic scale. In this work, first-principles calculations were carried out to investigate the effect of Mg and Cu co-segregation on the energetic and mechanical properties of the Al Σ5(210) GB. The segregation tendency of Mg at the GB in the presence of Cu is characterized, indicating a preference for substitutional segregation far away from Cu atoms. Cu segregation can facilitate the segregation of Mg due to their mutual attractive energy. The GB energy results show that Mg and Cu co-segregation significantly decreases GB energy and thus enhances the stability of the Al Σ5(210) GB. First-principles tensile test calculations indicate that Cu effectively counteracts the weakening effect of Mg segregation in the GB, particularly with the high concentration of Cu segregation. The phenomenon of Cu compensating the strength of the GB is attributed to an increase of charge density and the formation of newly formed Cu-Al bonds. Conversely, Mg segregation weakens the strengthening effect of Cu on the GB, but it can increase the strength of the GB when high concentrations of Cu atoms are present in the GB. The ICOHP and Bader charge analysis exhibits that the strengthening effect of Mg is attributed to charge transfer with surrounding Al and Cu, which enhances the Cu-Al and Al-Al bonds. The results provide a further understanding of the interplay between co-segregated elements and its influence on the energetic and mechanical properties of grain boundary. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

11 pages, 5100 KB  
Article
Density Functional Theory Provides Insights into β-SnSe Monolayers as a Highly Sensitive and Recoverable Ozone Sensing Material
by Jiayin Wu, Zongbao Li, Tongle Liang, Qiuyan Mo, Jingting Wei, Bin Li and Xiaobo Xing
Micromachines 2024, 15(8), 960; https://doi.org/10.3390/mi15080960 - 27 Jul 2024
Cited by 2 | Viewed by 1541
Abstract
This study explores the potential of β-SnSe monolayers as a promising material for ozone (O3) sensing using density functional theory (DFT) combined with the non-equilibrium Green’s function (NEGF) method. The adsorption characteristics of O3 molecules on the β-SnSe monolayer surface [...] Read more.
This study explores the potential of β-SnSe monolayers as a promising material for ozone (O3) sensing using density functional theory (DFT) combined with the non-equilibrium Green’s function (NEGF) method. The adsorption characteristics of O3 molecules on the β-SnSe monolayer surface were thoroughly investigated, including adsorption energy, band structure, density of states (DOSs), differential charge density, and Bader charge analysis. Post-adsorption, hybridization energy levels were introduced into the system, leading to a reduced band gap and increased electrical conductivity. A robust charge exchange between O3 and the β-SnSe monolayer was observed, indicative of chemisorption. Recovery time calculations also revealed that the β-SnSe monolayer could be reused after O3 adsorption. The sensitivity of the β-SnSe monolayer to O3 was quantitatively evaluated through current-voltage characteristic simulations, revealing an extraordinary sensitivity of 1817.57% at a bias voltage of 1.2 V. This sensitivity surpasses that of other two-dimensional materials such as graphene oxide. This comprehensive investigation demonstrates the exceptional potential of β-SnSe monolayers as a highly sensitive, recoverable, and environmentally friendly O3 sensing material. Full article
(This article belongs to the Special Issue Gas Sensors: From Fundamental Research to Applications)
Show Figures

Figure 1

12 pages, 6768 KB  
Article
Theoretical Study on the Structures and Stabilities of CunZn3O3 (n = 1–4) Clusters: Sequential Doping of Zn3O3 Cluster with Cu Atoms
by Zhi-Wei Tao, Han-Yi Zou, Hong-Hui Li, Bin Wang and Wen-Jie Chen
Inorganics 2024, 12(2), 56; https://doi.org/10.3390/inorganics12020056 - 9 Feb 2024
Cited by 2 | Viewed by 2353
Abstract
Density functional theory (DFT) and coupled cluster theory (CCSD(T)) calculations are performed to investigate the geometric and electronic structures and chemical bonding of a series of Cu-doped zinc oxide clusters: CunZn3O3 (n = 1–4). The structural evolution [...] Read more.
Density functional theory (DFT) and coupled cluster theory (CCSD(T)) calculations are performed to investigate the geometric and electronic structures and chemical bonding of a series of Cu-doped zinc oxide clusters: CunZn3O3 (n = 1–4). The structural evolution of CunZn3O3 (n = 1–4) clusters may reveal the aggregation behavior of Cu atoms on the Zn3O3 cluster. The planar seven-membered ring of the CuZn3O3 cluster plays an important role in the structural evolution; that is, the Cu atom, Cu dimer (Cu2) and Cu trimer (Cu3) anchor on the CuZn3O3 cluster. Additionally, it is found that CunZn3O3 clusters become more stable as the Cu content (n) increases. Bader charge analysis points out that with the doping of Cu atoms, the reducibility of Cu aggregation (Cun−1) on the CuZn3O3 cluster increases. Combined with the d-band centers and the surface electrostatic potential (ESP), the reactivity and the possible reaction sites of CunZn3O3 (n = 1–4) clusters are also illustrated. Full article
Show Figures

Graphical abstract

14 pages, 4156 KB  
Article
Experimental and Theoretical Investigation of Gadolinium Oxyhydride (GdHO) Thin Films: Optical, Photocatalytic, and Electronic Properties
by Kasi Vinoth Kumar, Luminita Andronic, Elbruz Murat Baba, Dargie Deribew, Jeyanthinath Mayandi, Ellen Moons and Smagul Zh. Karazhanov
Nanomaterials 2023, 13(24), 3093; https://doi.org/10.3390/nano13243093 - 7 Dec 2023
Cited by 2 | Viewed by 2180
Abstract
Oxyhydrides of rare-earth metals (REMOHs) exhibit notable photochromic behaviors. Among these, yttrium oxyhydride (YHO) stands out for its impressive transparency and swift UV-responsive color change, positioning it as an optimal material for self-cleaning window applications. Although semiconductor photocatalysis holds potential solutions for critical [...] Read more.
Oxyhydrides of rare-earth metals (REMOHs) exhibit notable photochromic behaviors. Among these, yttrium oxyhydride (YHO) stands out for its impressive transparency and swift UV-responsive color change, positioning it as an optimal material for self-cleaning window applications. Although semiconductor photocatalysis holds potential solutions for critical environmental issues, optimizing the photocatalytic efficacy of photochromic substances has not been adequately addressed. This research advances the study of REMOHs, focusing on the properties of gadolinium oxyhydride (GdHO) both theoretically and experimentally. The electronic and structural characteristics of GdHO, vital for ceramic technology, are thoroughly examined. Explicitly determined work functions for GdH2, GdHO, and Gd2O3 stand at 3.4 eV, 3.0 eV, and 4.3 eV, respectively. Bader charge analysis showcases GdHO’s intricate bonding attributes, whereas its electron localization function majorly presents an ionic nature. The charge neutrality level is situated about 0.33 eV below the top valence band, highlighting these materials’ inclination for acceptor-dominant electrical conductivity. Remarkably, this research unveils GdHO films’ photocatalytic capabilities for the first time. Even with their restricted surface due to thinness, these films follow the Langmuir–Hinshelwood degradation kinetics, ensuring total degradation of methylene blue in a day. It was observed that GdHO’s work function diminishes with reduced deposition pressure, and UV exposure further decreases it by 0.2 eV—a change that reverts post-UV exposure. The persistent stability of GdHO films, hinting at feasible recyclability, enhances their potential efficiency, underlining their viability in practical applications. Overall, this study accentuates GdHO’s pivotal role in electronics and photocatalysis, representing a landmark advancement in the domain. Full article
Show Figures

Figure 1

Back to TopTop