Electronic Structure and Binding Characteristics of Ionic Liquid Ions on Li-Metal Surfaces Through a DFT Approach
Abstract
1. Introduction
2. Methodology
2.1. DFT
2.2. Binding Energy
2.3. Electron Charge Density
2.4. Bader Charge Analysis
2.5. Electron Localization Function
2.6. Work-Function Change
3. Results
3.1. Hexafluorophosphate Anion ()
3.2. Tetrafluoroborate Anion ()
3.3. Bis(fluorosulfonyl)imide Anion (FSI)
3.4. Bis(trifluoromethanesulfonyl)imide Anion (TFSI)
3.5. Difluoro(oxalato)borate Anion (DFOB)
3.6. 1-Ethyl-3-methylimidazolium Cation (EMIM)
3.7. N-Butyl-N-methylpyrrolidinium (Pyr14)
3.8. Adsorption Metrics Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Galvez-Aranda, D.E.; Seminario, J.M. Simulations of a LiF solid electrolyte interphase cracking on silicon anodes using molecular dynamics. J. Electrochem. Soc. 2018, 165, A717. [Google Scholar] [CrossRef]
- Selis, L.A.; Seminario, J.M. Dendrite formation in silicon anodes of lithium-ion batteries. RSC Adv. 2018, 8, 5255–5267. [Google Scholar] [CrossRef]
- Wu, D.; He, J.; Liu, J.; Wu, M.; Qi, S.; Wang, H.; Huang, J.; Li, F.; Tang, D.; Ma, J. Li2CO3/LiF-rich heterostructured solid electrolyte interphase with superior lithiophilic and Li+-transferred characteristics via adjusting electrolyte additives. Adv. Energy Mater. 2022, 12, 2200337. [Google Scholar] [CrossRef]
- Selis, L.A.; Seminario, J.M. Dendrite formation in Li-metal anodes: An atomistic molecular dynamics study. RSC Adv. 2019, 9, 27835–27848. [Google Scholar] [CrossRef]
- Zou, W.; Zhang, J.; Liu, M.; Li, J.; Ren, Z.; Zhao, W.; Zhang, Y.; Shen, Y.; Tang, Y. Anion-reinforced solvating ionic liquid electrolytes enabling stable high-nickel cathode in lithium-metal batteries. Adv. Mater. 2024, 36, 2400537. [Google Scholar] [CrossRef]
- Das, S.; Manna, S.S.; Pathak, B. Recent trends in electrode and electrolyte design for aluminum batteries. ACS Omega 2020, 6, 1043–1053. [Google Scholar] [CrossRef] [PubMed]
- Manna, S.S.; Pathak, B. Screening of ionic liquid-based electrolytes for Al dual-ion batteries: Thermodynamic cycle and combined MD-DFT approaches. J. Phys. Chem. C 2023, 127, 8913–8924. [Google Scholar] [CrossRef]
- Lux, S.F.; Schmuck, M.; Jeong, S.; Passerini, S.; Winter, M.; Balducci, A. Li-ion anodes in air-stable and hydrophobic ionic liquid-based electrolyte for safer and greener batteries. Int. J. Energy Res. 2010, 34, 97–106. [Google Scholar] [CrossRef]
- Kim, G.T.; Jeong, S.S.; Xue, M.Z.; Balducci, A.; Winter, M.; Passerini, S.; Alessandrini, F.; Appetecchi, G.B. Development of ionic liquid-based lithium battery prototypes. J. Power Sources 2012, 199, 239–246. [Google Scholar] [CrossRef]
- Appetecchi, G.B.; Kim, G.T.; Montanino, M.; Carewska, M.; Marcilla, R.; Mecerreyes, D.; De Meatza, I. Ternary polymer electrolytes containing pyrrolidinium-based polymeric ionic liquids for lithium batteries. J. Power Sources 2010, 195, 3668–3675. [Google Scholar] [CrossRef]
- Kim, H.; Ding, Y.; Kohl, P.A. LiSICON—Ionic liquid electrolyte for lithium ion battery. J. Power Sources 2012, 198, 281–286. [Google Scholar] [CrossRef]
- Stoffel, T.D.; Haskins, J.B.; Lawson, J.W.; Markutsya, S. Coarse-grained dynamically accurate simulations of ionic liquids: [pyr14][TFSI] and [EMIM][BF4]. J. Phys. Chem. B 2022, 126, 1819–1829. [Google Scholar] [CrossRef]
- Khalid, M.; Zafar, M.; Hussain, S.; Asghar, M.A.; Khera, R.A.; Imran, M.; Abookleesh, F.L.; Akram, M.Y.; Ullah, A. Influence of End-Capped Modifications in the Nonlinear Optical Amplitude of Nonfullerene-Based Chromophores with a D−π–A Architecture: A DFT/TDDFT Study. ACS Omega 2022, 7, 23532–23548. [Google Scholar]
- Mehboob, M.Y.; Khan, M.U.; Hussain, R.; Khalid, M.; Yaqoob, J.; Rehman, R.; Siddique, M.B.A.; Alam, M.M.; Imran, M.; Ayub, K. First example of vinylbenzene based small photovoltaic molecules: Towards the development of efficient D-π-A configured optoelectronic materials for bulk heterojunction solar cells. Phys. B Condens. Matter 2022, 633, 413769. [Google Scholar] [CrossRef]
- Khalid, M.; Shafiq, I.; Umm-e-Hani; Mahmood, K.; Hussain, R.; Rehman, M.F.U.; Assiri, M.A.; Imran, M.; Akram, M.S. Effect of different end-capped donor moieties on non-fullerenes based non-covalently fused-ring derivatives for achieving high-performance NLO properties. Sci. Rep. 2023, 13, 1395. [Google Scholar] [CrossRef] [PubMed]
- Valencia, H.; Kohyama, M.; Tanaka, S.; Matsumoto, H. Ab initio study of EMIM-BF4 molecule adsorption on Li surfaces as a model for ionic liquid/Li interfaces in Li-ion batteries. Phys. Rev. B 2008, 78, 205402. [Google Scholar] [CrossRef]
- Bouder, G.; Bouhani, H.; Martinez, H.; Carbonniere, P. Atomistic Insights into the Decomposition of Solid Polymer Electrolyte Molecules on Lithium Metal Anode: A Combined DFT and AIMD Study. J. Phys. Chem. C 2025, 129, 8602–8613. [Google Scholar] [CrossRef]
- Horstmann, B.; Shi, J.; Amine, R.; Werres, M.; He, X.; Jia, H.; Hausen, F.; Cekic-Laskovic, I.; Wiemers-Meyer, S.; Lopez, J.; et al. Strategies towards enabling lithium metal in batteries: Interphases and electrodes. Energy Environ. Sci. 2021, 14, 5289–5314. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, H.; Zhou, J.; Li, R.; Jiang, C.; Wan, Y.; Wang, X.; Chen, Z.; Wang, X.; Liu, Y. Binding FSI− to Construct a Self-Healing SEI Film for Li-Metal Batteries by In situ Crosslinking Vinyl Ionic Liquid. Angew. Chem. 2024, 136, e202402456. [Google Scholar] [CrossRef]
- Galvez-Aranda, D.E.; Seminario, J.M. Li-metal anode in dilute electrolyte LiFSI/TMP: Electrochemical stability using ab initio molecular dynamics. J. Phys. Chem. C 2020, 124, 21919–21934. [Google Scholar] [CrossRef]
- Kerner, M.; Plylahan, N.; Scheers, J.; Johansson, P. Ionic liquid based lithium battery electrolytes: Fundamental benefits of utilising both TFSI and FSI anions? Phys. Chem. Chem. Phys. 2015, 17, 19569–19581. [Google Scholar] [CrossRef]
- Plylahan, N.; Kerner, M.; Lim, D.-H.; Matic, A.; Johansson, P. Ionic liquid and hybrid ionic liquid/organic electrolytes for high temperature lithium-ion battery application. Electrochim. Acta 2016, 216, 24–34. [Google Scholar] [CrossRef]
- Yuan, L.; Raza, A.; Kyritsis, D.; Zeng, H.; Zhang, T. Counterintuitive Isomerization of TFSI− and TFSI−—Cation Correlated Isomerization: Insights into the Low Melting Points of TFSI−-Based Ionic Liquids. J. Phys. Chem. B 2024, 128, 10492–10505. [Google Scholar] [CrossRef] [PubMed]
- Galvez-Aranda, D.E.; Seminario, J.M. Solid Electrolyte Interphase Formation at the Ionic Liquid Electrolyte—Lithium-Metal Interface Using an Ab Initio Molecular Dynamics Approach. J. Electrochem. Soc. 2024, 171, 030521. [Google Scholar] [CrossRef]
- Wood, K.N.; Kazyak, E.; Chadwick, A.F.; Chen, K.-H.; Zhang, J.-G.; Thornton, K.; Dasgupta, N.P. Dendrites and pits: Untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Cent. Sci. 2016, 2, 790–801. [Google Scholar] [CrossRef]
- Galvez-Aranda, D.E.; Seminario, J.M. Li-metal anode in a conventional Li-ion battery electrolyte: Solid electrolyte interphase formation using ab initio molecular dynamics. J. Electrochem. Soc. 2022, 169, 030502. [Google Scholar] [CrossRef]
- Pan, Y.; Yu, H.; Zhang, Y.; Wang, Z.; Wang, S.; Li, C.; Ma, Y.; Shi, X.; Zhang, H.; Song, D. In-depth exploration of the effect mechanisms of various lithium salt anions in solid-state and liquid lithium metal batteries. J. Mater. Chem. A 2024, 12, 16447–16456. [Google Scholar] [CrossRef]
- Meierl, J.; Krossing, I. Conductivity Improvement of LiBF4 Containing Electrolyte for Enhanced Application in Lithium-Ion Batteries. In Proceedings of the Electrochemical Society Meeting Abstracts 244, Gothenburg, Sweden, 8–12 October 2023; The Electrochemical Society, Inc.: Pennington, NJ, USA, 2023; p. 3081. [Google Scholar]
- Liu, X.; Zhao, J.; Dong, H.; Zhang, L.; Zhang, H.; Gao, Y.; Zhou, X.; Zhang, L.; Li, L.; Liu, Y. Sodium Difluoro (oxalato) borate Additive-Induced Robust SEI and CEI Layers Enable Dendrite-Free and Long-Cycling Sodium-Ion Batteries. Adv. Funct. Mater. 2024, 34, 2402310. [Google Scholar] [CrossRef]
- Kang, Z.; Chang, H.; Zhang, S.; Zhong, J.; Costa, C.M.; Lanceros-Mendez, S.; Liu, Y.; Zhang, L.; Wang, J.-Q. Lithium difluoro (oxalato) borate additive stabilizes interfaces and boosts performance in poly (ionic liquid) s solid-state lithium-metal batteries. Chem. Eng. J. 2025, 520, 165761. [Google Scholar] [CrossRef]
- Zhu, C.; Ning, Y.; Jiang, Y.; Li, G.; Pan, Q. Double-network polymer electrolytes with ionic liquids for lithium metal batteries. Polymers 2022, 14, 3435. [Google Scholar] [CrossRef]
- Ai, C.; Shu, Y.; Zhao, Z.; Guo, H.; Chen, S.; Yi, Q. Advances in the Application of Ionic Liquids in PEO-based Lithium Ion Solid-State Electrolytes: From A View of Fillers. J. Mater. Chem. A 2025, 13, 13632–13656. [Google Scholar] [CrossRef]
- Sun, H.; Zhu, G.; Zhu, Y.; Lin, M.C.; Chen, H.; Li, Y.Y.; Hung, W.H.; Zhou, B.; Wang, X.; Bai, Y. High-safety and high-energy-density lithium metal batteries in a novel ionic-liquid electrolyte. Adv. Mater. 2020, 32, 2001741. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baseggio, O.; Bonfà, P.; Brunato, D.; Car, R.; Carnimeo, I.; Cavazzoni, C.; De Gironcoli, S.; Delugas, P.; Ruffino, F.F. Quantum ESPRESSO toward the exascale. J. Chem. Phys. 2020, 152, 154105. [Google Scholar] [CrossRef]
- Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Nardelli, M.B.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 2017, 29, 465901. [Google Scholar] [CrossRef] [PubMed]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I. QUANTUM ESPRESSO: A modular and open-source software project for quantumsimulations of materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef] [PubMed]
- Combes, J.; Duclos, P.; Seiler, R. The Born-Oppenheimer Approximation; Rigorous, A., Molecular, P., Eds.; Wightman and Velo: Plenum, NY, USA, 1981. [Google Scholar]
- Ropo, M.; Kokko, K.; Vitos, L. Assessing the Perdew-Burke-Ernzerhof exchange-correlation density functional revised for metallic bulk and surface systems. Phys. Rev. B—Condens. Matter Mater. Phys. 2008, 77, 195445. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef]
- Barca, G.M.; Bertoni, C.; Carrington, L.; Datta, D.; De Silva, N.; Deustua, J.E.; Fedorov, D.G.; Gour, J.R.; Gunina, A.O.; Guidez, E. Recent developments in the general atomic and molecular electronic structure system. J. Chem. Phys. 2020, 152, 154102. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2009, 18, 015012. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA: A three-dimensional visualization system for electronic and structural analysis. Appl. Crystallogr. 2008, 41, 653–658. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 2009, 21, 084204. [Google Scholar] [CrossRef]
- Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354–360. [Google Scholar] [CrossRef]
- Parimalam, B.S.; MacIntosh, A.D.; Kadam, R.; Lucht, B.L. Decomposition reactions of anode solid electrolyte interphase (SEI) components with LiPF6. J. Phys. Chem. C 2017, 121, 22733–22738. [Google Scholar] [CrossRef]
- Parimalam, B.S.; Lucht, B.L. Reduction reactions of electrolyte salts for lithium ion batteries: LiPF6, LiBF4, LiDFOB, LiBOB, and LiTFSI. J. Electrochem. Soc. 2018, 165, A251. [Google Scholar] [CrossRef]











| Atom | 3F Attack | Isolated |
|---|---|---|
| P1 | 4.899 | 4.898 |
| F1 | −1.020 | −0.995 |
| F2 | −1.027 | −0.987 |
| F3 | −1.073 | −0.987 |
| F4 | −1.049 | −0.933 |
| F5 | −1.054 | −1.000 |
| F6 | −1.048 | −0.996 |
| Total | −1.371 | −1.000 |
| Atom | 3F Attack | Isolated |
|---|---|---|
| B1 | 2.872 | 2.873 |
| F1 | −1.064 | −1.006 |
| F2 | −1.014 | −0.956 |
| F3 | −1.045 | −0.992 |
| F4 | −1.030 | −0.919 |
| Total | −1.282 | −1.000 |
| Atom | 3O Attack | 2O–F Attack | 2F Attack | |||
|---|---|---|---|---|---|---|
| Slab | Iso | Slab | Iso | Slab | Iso | |
| N | −2.991 | −2.956 | −3.000 | −3.016 | −3.049 | −2.997 |
| S1 | 5.894 | 5.896 | 5.879 | 5.880 | 5.894 | 5.886 |
| S2 | 5.880 | 5.882 | 5.580 | 5.583 | 5.550 | 5.534 |
| O1 | −1.960 | −1.910 | −2.037 | −1.978 | −2.006 | −1.961 |
| O2 | −1.979 | −1.936 | −2.020 | −1.945 | −2.002 | −1.980 |
| O3 | −2.016 | −1.969 | −1.919 | −1.910 | −1.992 | −1.939 |
| O4 | −1.987 | −1.935 | −2.005 | −1.953 | −1.994 | −1.953 |
| F1 | −1.085 | −1.033 | −0.736 | −0.631 | −0.747 | −0.607 |
| F2 | −1.064 | −1.039 | −1.053 | −1.031 | −1.052 | −0.984 |
| Total | −1.308 | −1.000 | −1.312 | −1.000 | −1.398 | −1.000 |
| Atom | FO Attack | 3O Attack | 2F Attack | F-2O Attack | 2O Attack | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| Slab | Iso | Slab | Iso | Slab | Iso | Slab | Iso | Slab | Iso | |
| N | −2.924 | −2.948 | −2.934 | −2.931 | −2.948 | −2.950 | −2.934 | −2.929 | −2.918 | −2.937 |
| S1 | 4.970 | 4.986 | 4.929 | 4.968 | 5.050 | 5.031 | 4.955 | 4.976 | 4.918 | 4.989 |
| S2 | 4.995 | 5.008 | 4.893 | 5.005 | 5.061 | 5.041 | 4.997 | 5.016 | 4.876 | 4.951 |
| O1 | −1.921 | −1.908 | −1.965 | −1.912 | −1.919 | −1.918 | −1.964 | −1.960 | −1.983 | −1.906 |
| O2 | −1.968 | −1.902 | −1.974 | −1.905 | −1.931 | −1.942 | −1.989 | −1.865 | −1.944 | −1.903 |
| O3 | −1.920 | −1.930 | −1.978 | −1.909 | −1.934 | −1.939 | −1.924 | −1.935 | −1.963 | −1.916 |
| O4 | −1.882 | −1.898 | −1.921 | −1.926 | −1.889 | −1.890 | −1.907 | −1.902 | −1.950 | −1.933 |
| C1 | 2.639 | 2.609 | 2.695 | 2.657 | 2.576 | 2.604 | 2.670 | 2.631 | 2.715 | 2.659 |
| C2 | 2.641 | 2.648 | 2.802 | 2.679 | 2.554 | 2.581 | 2.680 | 2.662 | 2.768 | 2.708 |
| F1 | −0.896 | −0.868 | −0.978 | −0.956 | −0.993 | −0.958 | −1.054 | −0.983 | −0.988 | −0.953 |
| F2 | −1.054 | −1.061 | −0.973 | −0.941 | −0.859 | −0.806 | −0.982 | −0.990 | −0.992 | −0.964 |
| F3 | −1.012 | −0.915 | −1.006 | −0.976 | −1.034 | −1.018 | −0.960 | −0.885 | −1.001 | −0.951 |
| F4 | −0.956 | −0.957 | −1.003 | −0.957 | −0.906 | −0.893 | −0.954 | −0.956 | −1.016 | −0.996 |
| F5 | −0.949 | −0.958 | −0.995 | −0.956 | −0.958 | −0.988 | −0.951 | −0.958 | −0.976 | −0.921 |
| F6 | −0.955 | −0.905 | −0.950 | −0.940 | −1.082 | −0.955 | −0.992 | −0.923 | −0.963 | −0.927 |
| Total | −1.193 | −1.000 | −1.358 | −1.000 | −1.213 | −1.000 | −1.308 | −1.000 | −1.419 | −1.000 |
| Atom | 2F Attack | 2O Attack | 2F–2O Attack | |||
|---|---|---|---|---|---|---|
| Slab | Iso | Slab | Iso | Slab | Iso | |
| C1 | 2.810 | 2.808 | 2.860 | 2.898 | 2.612 | 2.814 |
| C2 | 2.795 | 2.837 | 2.653 | 2.735 | 0.579 | 1.850 |
| O1 | −1.969 | −1.951 | −1.955 | −1.898 | −2.017 | −1.884 |
| O2 | −1.908 | −1.910 | −1.948 | −1.855 | −1.765 | −1.727 |
| O3 | −1.863 | −1.840 | −1.980 | −1.877 | −1.870 | −1.857 |
| O4 | −1.896 | −1.882 | −1.926 | −1.899 | −1.547 | −1.141 |
| B1 | 2.874 | 2.875 | 2.876 | 2.874 | 2.877 | 2.877 |
| F1 | −1.013 | −0.966 | −0.994 | −0.998 | −1.004 | −0.961 |
| F2 | −1.019 | −0.971 | −0.974 | −0.980 | −1.019 | −0.970 |
| Total | −1.189 | −1.000 | −1.387 | −1.000 | −3.154 | −1.000 |
| 2H Attack | 3H Attack | 4H Attack | 6H Attack | |||||
|---|---|---|---|---|---|---|---|---|
| Atom | Slab | Iso | Slab | Iso | Slab | Iso | Slab | Iso |
| C1 | 2.420 | 2.453 | 2.481 | 2.507 | 2.411 | 2.410 | 2.468 | 2.502 |
| N1 | −2.718 | −2.665 | −2.730 | −2.693 | −2.724 | −2.688 | −2.732 | −2.706 |
| N2 | −2.728 | −2.674 | −2.722 | −2.696 | −2.729 | −2.683 | −2.726 | −2.687 |
| H1 | 0.111 | 0.174 | 0.089 | 0.151 | 0.171 | 0.221 | 0.124 | 0.157 |
| C2 | 0.910 | 0.899 | 0.868 | 0.867 | 0.902 | 0.918 | 0.904 | 0.931 |
| C3 | 0.813 | 0.784 | 0.898 | 0.900 | 0.872 | 0.888 | 0.859 | 0.886 |
| C4 | 0.426 | 0.417 | 0.576 | 0.563 | 0.509 | 0.484 | 0.400 | 0.395 |
| H2 | 0.177 | 0.197 | 0.172 | 0.193 | 0.134 | 0.158 | 0.082 | 0.123 |
| H3 | 0.192 | 0.212 | 0.134 | 0.155 | 0.068 | 0.144 | 0.140 | 0.185 |
| C5 | 0.520 | 0.522 | 0.412 | 0.424 | 0.503 | 0.449 | 0.520 | 0.524 |
| H4 | 0.034 | 0.068 | 0.013 | 0.111 | 0.113 | 0.125 | 0.047 | 0.070 |
| H5 | 0.120 | 0.136 | 0.058 | 0.127 | 0.099 | 0.115 | 0.033 | 0.123 |
| H6 | 0.014 | 0.102 | 0.066 | 0.139 | 0.102 | 0.120 | 0.102 | 0.115 |
| H7 | 0.076 | 0.107 | 0.052 | 0.056 | 0.097 | 0.111 | 0.041 | 0.063 |
| C6 | −0.103 | −0.097 | −0.064 | −0.068 | −0.070 | −0.054 | −0.072 | −0.068 |
| H8 | 0.132 | 0.145 | 0.063 | 0.073 | 0.024 | 0.087 | 0.108 | 0.192 |
| H9 | −0.025 | 0.060 | 0.039 | 0.042 | 0.011 | 0.027 | 0.104 | 0.116 |
| H10 | 0.015 | 0.032 | 0.063 | 0.073 | 0.017 | 0.090 | −0.001 | 0.012 |
| H11 | 0.078 | 0.127 | 0.061 | 0.076 | −0.012 | 0.079 | 0.046 | 0.069 |
| Total | 0.466 | 1.000 | 0.530 | 1.000 | 0.497 | 1.000 | 0.447 | 1.000 |
| 4H Attack | 2H Attack | 3H Attack | 5H Attack | |||||
|---|---|---|---|---|---|---|---|---|
| Atom | Slab | Iso | Slab | Iso | Slab | Iso | Slab | Iso |
| N1 | −1.419 | −1.444 | −1.233 | −1.430 | −1.471 | −1.479 | −1.473 | −1.449 |
| C1 | 0.230 | 0.236 | 0.205 | 0.206 | 0.184 | 0.182 | 0.222 | 0.228 |
| C2 | 0.307 | 0.324 | 0.203 | 0.393 | 0.189 | 0.191 | 0.132 | 0.129 |
| C3 | 0.290 | 0.296 | 0.268 | 0.273 | 0.506 | 0.444 | 0.404 | 0.392 |
| C4 | 0.019 | 0.025 | −0.003 | −0.001 | 0.030 | 0.030 | −0.021 | 0.013 |
| H1 | 0.108 | 0.133 | 0.086 | 0.088 | 0.051 | 0.056 | 0.083 | 0.107 |
| H2 | 0.021 | 0.074 | 0.100 | 0.110 | 0.066 | 0.074 | 0.051 | 0.058 |
| H3 | −0.010 | −0.005 | 0.037 | 0.069 | 0.015 | 0.053 | 0.074 | 0.083 |
| H4 | 0.106 | 0.106 | 0.040 | 0.055 | 0.064 | 0.090 | 0.104 | 0.109 |
| C5 | −0.041 | −0.032 | −0.024 | −0.020 | −0.067 | −0.008 | −0.080 | −0.058 |
| C6 | 0.472 | 0.487 | 0.440 | 0.441 | 0.364 | 0.431 | 0.413 | 0.395 |
| H5 | 0.034 | 0.083 | 0.149 | 0.157 | 0.101 | 0.144 | 0.132 | 0.133 |
| H6 | 0.116 | 0.154 | 0.048 | 0.060 | 0.040 | 0.102 | 0.093 | 0.096 |
| H7 | 0.035 | 0.050 | 0.101 | 0.120 | 0.065 | 0.119 | 0.143 | 0.149 |
| C7 | −0.059 | −0.051 | −0.068 | −0.073 | −0.075 | −0.183 | −0.053 | −0.047 |
| H8 | 0.018 | 0.027 | 0.019 | 0.015 | 0.012 | 0.019 | −0.022 | 0.047 |
| H9 | −0.016 | 0.080 | 0.054 | 0.065 | 0.080 | 0.089 | 0.040 | 0.083 |
| H10 | 0.033 | 0.073 | 0.087 | 0.093 | 0.042 | 0.154 | 0.050 | 0.111 |
| H11 | −0.017 | 0.062 | 0.069 | 0.077 | 0.105 | 0.119 | 0.023 | 0.035 |
| H12 | 0.018 | 0.041 | 0.081 | 0.094 | 0.090 | 0.132 | 0.073 | 0.079 |
| H13 | 0.097 | 0.103 | 0.040 | 0.059 | 0.062 | 0.071 | 0.061 | 0.079 |
| H14 | 0.036 | 0.034 | −0.012 | −0.003 | 0.040 | 0.045 | 0.066 | 0.089 |
| C8 | 0.033 | 0.034 | −0.023 | −0.025 | −0.048 | −0.039 | 0.049 | 0.041 |
| H15 | 0.026 | 0.022 | 0.032 | 0.035 | 0.034 | 0.043 | 0.048 | 0.059 |
| H16 | −0.022 | −0.014 | 0.006 | 0.078 | 0.026 | 0.048 | 0.012 | 0.018 |
| H17 | 0.027 | 0.029 | −0.024 | 0.021 | −0.029 | −0.004 | −0.034 | −0.027 |
| C9 | −0.108 | −0.109 | −0.080 | −0.043 | −0.070 | −0.072 | −0.093 | −0.071 |
| H18 | 0.021 | 0.023 | −0.008 | 0.046 | 0.022 | 0.028 | −0.056 | −0.002 |
| H19 | 0.104 | 0.113 | −0.043 | 0.077 | 0.076 | 0.078 | −0.005 | 0.019 |
| H20 | 0.048 | 0.046 | −0.053 | −0.037 | 0.039 | 0.046 | 0.036 | 0.103 |
| Total | 0.505 | 1.000 | 0.496 | 1.000 | 0.545 | 1.000 | 0.471 | 1.000 |
| Molecule | Attack Orientation | Total Molecule/Slab Energy (Ry) | Binding Energy (eV) | Molecule Charge | Charge Transfer | |
|---|---|---|---|---|---|---|
| PF6 | 3F | −953.9407 | 2.15 | −1.371 | −0.371 | −2.389 |
| BF4 | 3F | −791.1409 | 2.35 | −1.282 | −0.282 | −2.410 |
| FSI | 3O | −987.8320 | 2.09 | −1.308 | −0.308 | −1.873 |
| 2O–F | −987.7712 | 1.38 | −1.312 | −0.312 | −1.871 | |
| 2F | −987.7769 | 1.65 | −1.398 | −0.398 | −1.855 | |
| TFSI | FO | −1262.0411 | 1.14 | −1.193 | −0.194 | −1.828 |
| 3O | −1262.1048 | 2.09 | −1.358 | −0.358 | −2.070 | |
| 2F | −1262.0032 | 0.62 | −1.213 | −0.213 | −2.018 | |
| F–2O | −1262.0593 | 1.37 | −1.308 | −0.308 | −2.070 | |
| 2O | −1262.0876 | 1.91 | −1.419 | −0.419 | −2.066 | |
| DFOB | 2F | −875.7581 | 1.47 | −1.189 | −0.189 | −2.199 |
| 2O | −875.7971 | 2.02 | −1.387 | −0.387 | −2.154 | |
| 2F–2O | −875.9489 | 7.43 | −3.154 | −2.154 | −2.289 | |
| EMIM | 2H | −721.2826 | 2.16 | 0.466 | −0.534 | 2.524 |
| 3H | −721.2796 | 1.90 | 0.530 | −0.470 | 1.937 | |
| 4H | −721.2801 | 1.91 | 0.497 | −0.503 | 1.825 | |
| 6H | −721.2839 | 2.23 | 0.447 | −0.553 | 1.937 | |
| Pyr14 | 4H | −721.2826 | 2.16 | 0.505 | −0.495 | 2.119 |
| 2H | −721.2796 | 1.90 | 0.496 | −0.504 | 1.277 | |
| 3H | −721.2801 | 1.92 | 0.545 | −0.455 | 2.234 | |
| 5H | −721.2839 | 2.24 | 0.471 | −0.529 | 1.894 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selis, L.A.; Velazco-Lorenzo, D.; Quillas, J.; Galvez-Aranda, D.E. Electronic Structure and Binding Characteristics of Ionic Liquid Ions on Li-Metal Surfaces Through a DFT Approach. Crystals 2025, 15, 928. https://doi.org/10.3390/cryst15110928
Selis LA, Velazco-Lorenzo D, Quillas J, Galvez-Aranda DE. Electronic Structure and Binding Characteristics of Ionic Liquid Ions on Li-Metal Surfaces Through a DFT Approach. Crystals. 2025; 15(11):928. https://doi.org/10.3390/cryst15110928
Chicago/Turabian StyleSelis, Luis A., Dinau Velazco-Lorenzo, Juan Quillas, and Diego E. Galvez-Aranda. 2025. "Electronic Structure and Binding Characteristics of Ionic Liquid Ions on Li-Metal Surfaces Through a DFT Approach" Crystals 15, no. 11: 928. https://doi.org/10.3390/cryst15110928
APA StyleSelis, L. A., Velazco-Lorenzo, D., Quillas, J., & Galvez-Aranda, D. E. (2025). Electronic Structure and Binding Characteristics of Ionic Liquid Ions on Li-Metal Surfaces Through a DFT Approach. Crystals, 15(11), 928. https://doi.org/10.3390/cryst15110928

