Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (72)

Search Parameters:
Keywords = Babesia bovis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2882 KiB  
Article
Babesia bovis Enolase Is Expressed in Intracellular Merozoites and Contains B-Cell Epitopes That Induce Neutralizing Antibodies In Vitro
by Alma Cárdenas-Flores, Minerva Camacho-Nuez, Massaro W. Ueti, Mario Hidalgo-Ruiz, Angelina Rodríguez-Torres, Diego Josimar Hernández-Silva, José Guadalupe Gómez-Soto, Masahito Asada, Shin-ichiro Kawazu, Alma R. Tamayo-Sosa, Rocío Alejandra Ruiz-Manzano and Juan Mosqueda
Vaccines 2025, 13(8), 818; https://doi.org/10.3390/vaccines13080818 - 31 Jul 2025
Viewed by 229
Abstract
Background: Bovine babesiosis, caused by the tick-borne apicomplexan parasite Babesia spp., is an economically significant disease that threatens the cattle industry worldwide. Babesia bovis is the most pathogenic species, leading to high morbidity and mortality in infected animals. One promising approach to [...] Read more.
Background: Bovine babesiosis, caused by the tick-borne apicomplexan parasite Babesia spp., is an economically significant disease that threatens the cattle industry worldwide. Babesia bovis is the most pathogenic species, leading to high morbidity and mortality in infected animals. One promising approach to vaccination against bovine babesiosis involves the use of multiple protective antigens, offering advantages over traditional live-attenuated vaccines. Tools such as immunobioinformatics and reverse vaccinology have facilitated the identification of novel antigens. Enolase, a “moonlighting” enzyme of the glycolytic pathway with demonstrated vaccine potential in other pathogens, has not yet been studied in B. bovis. Methods: In this study, the enolase gene from two B. bovis isolates was successfully identified and sequenced. The gene, consisting of 1366 base pairs, encodes a predicted protein of 438 amino acids. Its expression in intraerythrocytic parasites was confirmed by RT-PCR. Two peptides containing predicted B-cell epitopes were synthesized and used to immunize rabbits. Hyperimmune sera were then analyzed by ELISA, confocal microscopy, Western blot, and an in vitro neutralization assay. Results: The hyperimmune sera showed high antibody titers, reaching up to 1:256,000. Specific antibodies recognized intraerythrocytic merozoites by confocal microscopy and bound to a ~47 kDa protein in erythrocytic cultures of B. bovis as detected by Western blot. In the neutralization assay, antibodies raised against peptide 1 had no observable effect, whereas those targeting peptide 2 significantly reduced parasitemia by 71.99%. Conclusions: These results suggest that B. bovis enolase contains B-cell epitopes capable of inducing neutralizing antibodies and may play a role in parasite–host interactions. Enolase is therefore a promising candidate for further exploration as a vaccine antigen. Nonetheless, additional experimental studies are needed to fully elucidate its biological function and validate its vaccine potential. Full article
(This article belongs to the Special Issue Vaccines against Arthropods and Arthropod-Borne Pathogens)
Show Figures

Figure 1

15 pages, 1116 KiB  
Article
Identification of a Tick Midgut Protein Involved in Babesia bovis Infection of Female Rhipicephalus microplus Ticks
by Sadie Izaguirre, Janaina Capelli-Peixoto, Rubikah Vimonish, Karen C. Poh, Sara Davis, Kierra Peltier, Kelly A. Brayton, Naomi Taus, Chungwon Chung and Massaro W. Ueti
Microorganisms 2025, 13(8), 1713; https://doi.org/10.3390/microorganisms13081713 - 22 Jul 2025
Viewed by 1348
Abstract
Rhipicephalus microplus is an important biological vector as it transmits several pathogens, including Babesia bovis, the causative agent of bovine babesiosis. The available strategies for controlling B. bovis are limited, resulting in substantial challenges for both animal health and livestock management. Infection [...] Read more.
Rhipicephalus microplus is an important biological vector as it transmits several pathogens, including Babesia bovis, the causative agent of bovine babesiosis. The available strategies for controlling B. bovis are limited, resulting in substantial challenges for both animal health and livestock management. Infection of the tick midgut is the essential first step for the transmission cycle of B. bovis, yet this process remains largely unexamined. To better understand the first step of tick infection, this study employed a proteomic approach to identify a midgut protein that responds to B. bovis infection. We then used RNA interference for gene silencing to determine if the protein is essential for R. microplus infection. The protein we identified, Rm24, is twofold upregulated in the tick midgut during B. bovis infection. We silenced the gene encoding Rm24 and examined the effect of reduced expression on both tick fitness and B. bovis infection. Our results indicated that silencing the Rm24 gene impacted the survivability of adult female ticks, which exhibited a significant reduction in viability as compared to the control and non-injected groups. Importantly, we found that suppressing the gene encoding Rm24 led to a significant decrease in the number of engorged female ticks infected, with only 15% of female ticks testing positive for B. bovis kinetes as compared to over 50% in the control groups. We also detected a significant reduction in vertical transmission of B. bovis to larval progenies. These findings suggest that the Rm24 protein is critical for infection by B. bovis and could serve as a promising target for future transmission-blocking strategies. Full article
(This article belongs to the Topic Advances in Infectious and Parasitic Diseases of Animals)
Show Figures

Graphical abstract

17 pages, 2502 KiB  
Article
The Translationally Controlled Tumor Protein (TCTP), a Novel Antigen of Babesia bovis, Participates in the Establishment of Acute Infection and Contains Neutralizing B-Cell Epitopes
by Chyntia Pérez-Almeida, Diego Josimar Hernández-Silva, Edwin Esaú Hernández-Arvizu, Masahito Asada, Shin-ichiro Kawazu, Massaro W. Ueti, José Guadalupe Gomez-Soto, Urso Martín Dávila-Montero, Carlos A. Vega y Murguía and Juan Mosqueda
Pathogens 2025, 14(5), 502; https://doi.org/10.3390/pathogens14050502 - 20 May 2025
Viewed by 614
Abstract
Babesia bovis is a protozoan parasite that causes babesiosis in cattle. It has been hypothesized that in apicomplexan parasites, translationally controlled tumor protein (TCTP) interferes with the host immune response by inhibiting B cell proliferation. The aim of this study was the characterization [...] Read more.
Babesia bovis is a protozoan parasite that causes babesiosis in cattle. It has been hypothesized that in apicomplexan parasites, translationally controlled tumor protein (TCTP) interferes with the host immune response by inhibiting B cell proliferation. The aim of this study was the characterization of B. bovis TCTP (BboTCTP) and the evaluation of its expression, immunogenicity and role in infection. The tctp gene was identified and sequenced from B. bovis isolates and revealed a high conservation. Expression was confirmed in intraerythrocytic stages by Western blot and confocal microscopy. Synthetic peptides containing predicted B cell epitopes were used to immunize cattle, followed by a challenge with a virulent B. bovis strain. Immunized animals showed milder clinical signs and faster recovery compared to controls. Sera from non-immunized animals exhibited lower total IgG levels after challenge (p < 0.05), while sera from immunized animals induced significant in vitro invasion inhibition (32–33%). These results suggest that BboTCTP is immunogenic and may play a role in modulating the host immune response. The results provide novel insights into B. bovis biology and support BboTCTP as a promising candidate for further evaluation as a vaccine antigen. Future studies should explore its immunomodulatory mechanisms and potential use in combined vaccine formulations. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Graphical abstract

15 pages, 894 KiB  
Article
Improvement of Cryopreservation and Production of Attenuated Babesia Parasites to Prevent Bovine Babesiosis
by Carmen Rojas-Martínez, José J. Lira-Amaya, Massaro W. Ueti, Roberto O. Castañeda-Arriola, Julio V. Figueroa Millán and Jesús A. Álvarez Martínez
Pathogens 2025, 14(5), 498; https://doi.org/10.3390/pathogens14050498 - 20 May 2025
Viewed by 578
Abstract
This study evaluated the effects of various concentrations of PVP-40 on the in vitro cryopreservation and recovery of Babesia bovis and Babesia bigemina. We also assessed a reduced dose of attenuated Babesia strains to determine its efficacy in preventing clinical disease. A [...] Read more.
This study evaluated the effects of various concentrations of PVP-40 on the in vitro cryopreservation and recovery of Babesia bovis and Babesia bigemina. We also assessed a reduced dose of attenuated Babesia strains to determine its efficacy in preventing clinical disease. A microaerophilic stationary phase blood culture system was used to recover Babesia parasites that were cryopreserved in solutions with various PVP-40 concentrations and Babesia parasites in 20% PVP-40 were used to vaccinate naïve cattle. The animals were vaccinated intramuscularly with frozen parasites cryopreserved in 20% PVP-40, with a dose of either 1 × 108 or 1 × 107 erythrocytes infected with both attenuated B. bigemina and B. bovis produced from blood cultures. The control group received uninfected erythrocytes. During the vaccination, clinical parameters such as rectal temperature and hematocrit levels were unaffected. The animals were relocated to a farm in a Babesia hyperendemic area to test the efficacy of these live vaccines in controlling disease onset. Some vaccinated animals showed mild disease. In the vaccinated groups, parasites were detected in blood smears for only one day during the challenge. In contrast, the control group experienced fever for three consecutive days, a decline in hematocrit levels, and significant health deterioration. In this group, parasites were detected in smears for four consecutive days. All the animals in the control group required treatment to manage their high parasitemia and prevent mortality. In this study, we demonstrated that increasing the concentration of PVP-40 to cryopreserve parasites improved the recovery and proliferation of Babesia spp. in blood culture, and we also showed that when animals were vaccinated with cryopreserved, in vitro cultured, attenuated Babesia parasites in 20% PVP-40, they were effectively protected from severe clinical babesiosis. Full article
(This article belongs to the Topic Advances in Infectious and Parasitic Diseases of Animals)
Show Figures

Graphical abstract

15 pages, 4043 KiB  
Article
Discovery of Evolutionary Loss of the Ubiquitin-like Autophagy-Related ATG12 System in a Lineage of Apicomplexa
by Xiaoxia X. Lin, Yun D. Bai, Sichang T. Wang, Akira Nozawa, Tatsuya Sawasaki, Tatsunori Masatani, Kenji Hikosaka, Masahito Asada and Hirokazu Sakamoto
Cells 2025, 14(2), 121; https://doi.org/10.3390/cells14020121 - 15 Jan 2025
Cited by 2 | Viewed by 1697
Abstract
The autophagy-related ubiquitin-like conjugation systems, the ATG8 and ATG12 systems, are universally conserved in eukaryotes. However, the covalent bond in the ATG12 system has recently been shown to be evolutionarily lost in Apicomplexa. Here, we show that all genes associated with the ATG12 [...] Read more.
The autophagy-related ubiquitin-like conjugation systems, the ATG8 and ATG12 systems, are universally conserved in eukaryotes. However, the covalent bond in the ATG12 system has recently been shown to be evolutionarily lost in Apicomplexa. Here, we show that all genes associated with the ATG12 system are absent in piroplasmida, a lineage within Apicomplexa. Comparative genomics of ATGs further shows that piroplasm ATG3 has lost the region necessary for ATG12 binding. However, our in vitro functional analysis using recombinant proteins demonstrated that ATG3 retained the ability to interact with ATG8 in Babesia bovis, a model species in piroplasmida. These findings provide evidence that the ATG8 system is functional, while the ATG12 system is completely lost in the common ancestor of piroplasmida and highlight the evolutionary flexibility of the ATG12 system in Apicomplexa. Full article
(This article belongs to the Section Autophagy)
Show Figures

Figure 1

13 pages, 9441 KiB  
Article
Molecular Epidemiology of Ticks and Tick-Borne Pathogens in the Ta-Pa Mountain Area of Chongqing, China
by Lijun Wang, Zhongqiu Teng, Li Wan, Wen Wang, Shan Yuan, Qingzhu Huang, Juan Huang, Na Zhao, Meijia Wang, Kun Cao, Hai Huang, Jianguo Xu, Yi Yuan and Tian Qin
Pathogens 2024, 13(11), 948; https://doi.org/10.3390/pathogens13110948 - 31 Oct 2024
Cited by 1 | Viewed by 1441
Abstract
To validate the prevalence and biodiversity of ticks and tick-borne pathogens in Chongqing, a total of 601 ticks were collected from dogs, cattle, and goats within the Ta-pa Mountain range in Chongqing, China. Five distinct tick species were identified, including Ixodes ovatus (1.66%, [...] Read more.
To validate the prevalence and biodiversity of ticks and tick-borne pathogens in Chongqing, a total of 601 ticks were collected from dogs, cattle, and goats within the Ta-pa Mountain range in Chongqing, China. Five distinct tick species were identified, including Ixodes ovatus (1.66%, 10/601), I. acutitarsus (0.50%, 3/601), Haemaphysalis flava (10.32%, 62/601), Ha. hystricis (9.82%, 59/601), and Ha. longicornis (77.70%, 467/601). A suit of semi-nest PCR and nest PCR primers were custom-synthesized for the detection of tick-borne pathogens. The analysis yielded positive results for 7.15% Rickettsia (Candidatus R. principis, R. japonica, and R. raoultii), 3.49% Anaplasma (A. bovis and A. capra), 1.16% Ehrlichia, 1.83% Coxiella burnetii, and 3.49% protozoa (Theileria. capreoli, T. orientalis, T. luwenshuni, and Babesia sp.) in ticks. Notably, Ca. R. principis was identified for the first time in I. ovatus and Ha. longicornis. These findings underscore the significant prevalence and diversity of ticks and their associated pathogens within the Chongqing Ta-pa Mountain region. This study accordingly provides an extensive dataset that contributes to the epidemiological understanding and disease prevention strategies for tick-borne illnesses in the local area. Full article
Show Figures

Graphical abstract

14 pages, 775 KiB  
Article
The Combination of Buparvaquone and ELQ316 Exhibit a Stronger Effect than ELQ316 and Imidocarb Against Babesia bovis In Vitro
by Natalia M. Cardillo, Nicolas F. Villarino, Paul A. Lacy, Michael K. Riscoe, Joseph Stone Doggett, Massaro W. Ueti, Chungwon J. Chung and Carlos E. Suarez
Pharmaceutics 2024, 16(11), 1402; https://doi.org/10.3390/pharmaceutics16111402 - 31 Oct 2024
Cited by 1 | Viewed by 1718
Abstract
Background/Objectives: Bovine babesiosis is a vector-borne disease transmitted by ticks that causes important losses in livestock worldwide. Recent research performed on the drugs currently used to control bovine babesiosis reported several issues including drug resistance, toxicity impact, and residues in edible tissue, suggesting [...] Read more.
Background/Objectives: Bovine babesiosis is a vector-borne disease transmitted by ticks that causes important losses in livestock worldwide. Recent research performed on the drugs currently used to control bovine babesiosis reported several issues including drug resistance, toxicity impact, and residues in edible tissue, suggesting the need for developing novel effective therapies. The endochin-like quinolones ELQ-316 and buparvaquone (BPQ) act as cytochrome bc1 inhibitors and have been proven to be safe and efficacious against related apicomplexans, such as Plasmodium spp. and Babesia microti, without showing toxicity in mammals. The objectives of this study are investigating whether ELQ-316, BPQ, and their combination treatment could be effective against Babesia bovis in an in vitro culture model and comparing with imidocarb (ID), the routinely used drug. Methods: In vitro cultured parasites starting at 2% percentage of parasitemia (PPE) were treated with BPQ, ELQ-316, ID, and the combinations of BPQ + ELQ-316 and ID + ELQ-316 at drug concentrations that ranged from 25 to 1200 nM, during four consecutive days. The IC50% and IC99% were reported. Parasitemia levels were evaluated daily using microscopic examination. Data were compared using the non-parametrical Mann–Whitney and Kruskall–Wallis test. Results: All drugs tested, whether used alone or in combination, significantly decreased the survival (p < 0.05) of B. bovis in in vitro cultures. The combination of BPQ + ELQ-316 had the lowest calculated inhibitory concentration 50% (IC50%) values, 31.21 nM (IC95%: 15.06–68.48); followed by BPQ, 77.06 nM (IC95%: 70.16–86.01); ID + ELQ316, 197 nM (IC95%:129.0–311.2); ID, 635.1 nM (IC95%: 280.9–2119); and ELQ316, 654.9 nM (IC95%: 362.3–1411). Conclusions: The results reinforce the higher efficacy of BPQ at affecting B. bovis survival and the potential synergistic effects of its combination with ELQ-316, providing a promising treatment option against B. bovis. Full article
Show Figures

Figure 1

16 pages, 3296 KiB  
Article
Evaluation of the Use of Sub-Immunodominant Antigens of Babesia bovis with Flagellin C Adjuvant in Subunit Vaccine Development
by Manuel J. Rojas, Reginaldo G. Bastos, Jinna A. Navas, Heba F. Alzan, Jacob M. Laughery, Paul A. Lacy, Massaro W. Ueti and Carlos E. Suarez
Vaccines 2024, 12(11), 1215; https://doi.org/10.3390/vaccines12111215 - 25 Oct 2024
Cited by 1 | Viewed by 1280
Abstract
Bovine babesiosis caused by the tick-borne apicomplexan parasite Babesia bovis remains a threat for cattle worldwide, and new vaccines are needed. We propose using immune-subdominant (ISD) antigens as alternative vaccine candidates. We first determined that RAP-1 NT and RRA are subdominant antigens using [...] Read more.
Bovine babesiosis caused by the tick-borne apicomplexan parasite Babesia bovis remains a threat for cattle worldwide, and new vaccines are needed. We propose using immune-subdominant (ISD) antigens as alternative vaccine candidates. We first determined that RAP-1 NT and RRA are subdominant antigens using recombinant antigens in ELISAs against sera from B. bovis-protected cattle. Protected animals demonstrated high antibody responses against the known immunodominant rRAP-1 CT antigen, but significantly lower levels against the rRAP-1 NT and rRRA antigens. Next, a group of cattle (n = 6) was vaccinated with rRRA and rRAP-1 NT using a FliC–Emulsigen mix as the adjuvant, and there was a control group (n = 6) with the adjuvant mix alone. All but one immunized animal demonstrated elicitation of strong humoral immune responses against the two ISD antigens. Acute babesiosis occurred in both groups of cattle upon a challenge with the virulent B. bovis, but a significant delay in the average rate of decrease in hematocrit in the vaccinated group, and an early monocyte response, was found in half of the vaccinated animals. In conclusion, we confirmed the immune subdominance of rRRA and rRAP-1 NT and the ability of FliC to increase immunogenicity of ISD antigens and generate useful information toward developing future subunit vaccines against B. bovis. Full article
(This article belongs to the Special Issue Vaccines against Arthropods and Arthropod-Borne Pathogens)
Show Figures

Figure 1

11 pages, 2171 KiB  
Article
Molecular Diagnosis of the Main Hemoparasites of Dairy Cows in the State of Ceará
by Gilderlândio Pinheiro Rodrigues, Beatriz Dantas Fernandes, Bruno Vinicios Silva de Araújo, Jaciara de Oliveira Jorge Costa, Milena Melo Silva, André de Macêdo Medeiros, Arlei Marcili, Juliana Fortes Vilarinho Braga and Michelly Fernandes de Macedo
Genes 2024, 15(11), 1369; https://doi.org/10.3390/genes15111369 - 24 Oct 2024
Viewed by 1221
Abstract
Background/Objectives: Trypanosomiasis and bovine babesiosis correspond to important diseases that cause great economic losses, but there are still no studies evaluating their occurrence in herds of dairy cattle in Ceará. The aim of this study was to perform molecular diagnosis of the main [...] Read more.
Background/Objectives: Trypanosomiasis and bovine babesiosis correspond to important diseases that cause great economic losses, but there are still no studies evaluating their occurrence in herds of dairy cattle in Ceará. The aim of this study was to perform molecular diagnosis of the main hemoparasites of dairy cows in the microregion of the central hinterland of Ceará. Methods: For the molecular diagnosis of parasites, genomic material was extracted and polymerase chain reaction directed to the cdCatL-like gene for Trypanossoma vivax and SS rRNA of Babesia bigemina and Babesia. bovis was performed. In addition, the mean corpuscular volume of the samples was evaluated. The data were statistically processed. Results: T. vivax was detected in 0.40% (1/246) of the samples, while B. bigemina and B. bovis were detected in 20.62% (33/160) and 11.87% (19/160) of the samples, respectively. It was found that there was a reduction in mean corpuscular volume in animals that presented with co-infection and those infected by B. bovis only, but not in those hosting B. bigemina alone. The variables “purchase of recent animals” and “tick control” had no association with or influence on B. bovis and/or B. bigemina infection. It was possible to identify epidemiologically important factors that may facilitate the transmission of trypanosoma to healthy animals, such as the recent purchase of animals and use of the same needle and syringe for oxytocin application. Conclusions: The pathogens studied were present in the evaluated population. Daily cow management practices can facilitate the transmission of the diseases they cause. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

16 pages, 1291 KiB  
Article
First Report of Trypanosoma vivax (Duttonella), Babesia bovis and Babesia bigemina DNA in Cattle from the Galapagos Islands, Ecuador, and Its Relationship with Anaplasma marginale
by María Augusta Chávez-Larrea, Cristina Cholota-Iza, Michelle Yugcha-Diaz, Jorge Ron-Román, Freddy Proaño-Pérez, Alicia Maya-Delgado, Jimmy Jumbo-Moreira, Armando Reyna-Bello and Claude Saegerman
Pathogens 2024, 13(10), 910; https://doi.org/10.3390/pathogens13100910 - 18 Oct 2024
Viewed by 2052
Abstract
Bovine trypanosomoses, caused by Trypanosoma vivax, is a disease present in African and South American countries. This haemoflagellate protozoan parasite, as well as Anaplasma marginale and Babesia spp., are microorganisms that have a blood tropism, mainly causing fever and anaemia, which reduces [...] Read more.
Bovine trypanosomoses, caused by Trypanosoma vivax, is a disease present in African and South American countries. This haemoflagellate protozoan parasite, as well as Anaplasma marginale and Babesia spp., are microorganisms that have a blood tropism, mainly causing fever and anaemia, which reduces the productive capacity of dairy or meat farms. This study aimed to detect T. vivax and other blood parasites in bovine herds in the Galapagos Islands. A total of 170 blood samples from bovines in 19 farms on Santa Cruz Island (the most populated) were collected and analyzed using different PCR techniques: Da-PCR and CatL-PCR to detect Trypanosoma vivax, CatL-PCR to detect Trypanosoma theileri, ESAG-PCR to detect Trypanosoma evansi, 18S rRNA-PCR to detect Babesia spp., rap-1-PCR to detect Babesia bovis, hyp-PCR to detect Babesia bigemina, and msp5-PCR to detect A. marginale. The prevalence of T. vivax, B. bovis, B. bigemina, and A. marginale was estimated as 14.7%, 11.2%, 14.7%, and 67.1%, respectively. In this study, the presence of four haemotropic agents was evidenced in 26.3% (5/19) of the farms. Coinfected cattle (A. marginale, B. bovis and B. bigemina) had significantly higher body temperatures compared to others (two-sample Wilcoxon rank-sum test; p-value = 0.047). The molecular techniques used in this study demonstrated the presence of T. vivax and B. bovis in cattle from Santa Cruz Island in the Galapagos for the first time. The study also investigates the relationship between T. vivax, A. marginale and Babesia spp., making a significant contribution to the field of veterinary medicine. Full article
(This article belongs to the Special Issue Emerging Vector-Borne and Zoonotic Diseases—2nd Edition)
Show Figures

Figure 1

17 pages, 1557 KiB  
Article
Antiparasitic Evaluation of Aquiluscidin, a Cathelicidin Obtained from Crotalus aquilus, and the Vcn-23 Derivative Peptide against Babesia bovis, B. bigemina and B. ovata
by Edwin Esaú Hernández-Arvizu, Masahito Asada, Shin-Ichiro Kawazu, Carlos Agustín Vega, Angelina Rodríguez-Torres, Rodrigo Morales-García, Aldo J. Pavón-Rocha, Gloria León-Ávila, Bruno Rivas-Santiago and Juan Mosqueda
Pathogens 2024, 13(6), 496; https://doi.org/10.3390/pathogens13060496 - 10 Jun 2024
Cited by 1 | Viewed by 1803
Abstract
Babesiosis is a growing concern due to the increased prevalence of this infectious disease caused by Babesia protozoan parasites, affecting various animals and humans. With rising worries over medication side effects and emerging drug resistance, there is a notable shift towards researching babesiacidal [...] Read more.
Babesiosis is a growing concern due to the increased prevalence of this infectious disease caused by Babesia protozoan parasites, affecting various animals and humans. With rising worries over medication side effects and emerging drug resistance, there is a notable shift towards researching babesiacidal agents. Antimicrobial peptides, specifically cathelicidins known for their broad-spectrum activity and immunomodulatory functions, have emerged as potential candidates. Aquiluscidin, a cathelicidin from Crotalus aquilus, and its derivative Vcn-23, have been of interest due to their previously observed antibacterial effects and non-hemolytic activity. This work aimed to characterize the effect of these peptides against three Babesia species. Results showed Aquiluscidin’s significant antimicrobial effects on Babesia species, reducing the B. bigemina growth rate and exhibiting IC50 values of 14.48 and 20.70 μM against B. ovata and B. bovis, respectively. However, its efficacy was impacted by serum presence in culture, and it showed no inhibition against a B. bovis strain grown in serum-supplemented medium. Conversely, Vcn-23 did not demonstrate babesiacidal activity. In conclusion, Aquiluscidin shows antibabesia activity in vitro and its efficacy is affected by the presence of serum in the culture medium. Nevertheless, this peptide represents a candidate for further investigation of its antiparasitic properties and provides insights into potential alternatives for the treatment of babesiosis. Full article
(This article belongs to the Collection Advances in Tick Research)
Show Figures

Figure 1

15 pages, 1215 KiB  
Article
Genetic Characterization of the RAP-1A and SBP-4 Genes of Babesia Species Infecting Cattle from Selangor, Malaysia, and Ribah, Nigeria
by Adamu Isah Gano, Siti Zubaidah Ramanoon, Nor-Azlina Abdul Aziz, Mazlina Mazlan, Mohd Rosly Shaari, Abdullahi Aliyu, Muhammad Bashir Bello, Mustapha Umar Imam and Hazilawati Hamzah
Pathogens 2024, 13(3), 247; https://doi.org/10.3390/pathogens13030247 - 13 Mar 2024
Cited by 3 | Viewed by 2296
Abstract
Bovine babesiosis has substantial economic implications in the cattle industry, emphasizing the need for a thorough understanding of the genetic diversity of the causative apicomplexan pathogen. Although babesiosis has been extensively studied globally, the genetic diversity of Babesia species in Malaysian and Nigerian [...] Read more.
Bovine babesiosis has substantial economic implications in the cattle industry, emphasizing the need for a thorough understanding of the genetic diversity of the causative apicomplexan pathogen. Although babesiosis has been extensively studied globally, the genetic diversity of Babesia species in Malaysian and Nigerian cattle remains unreported. This study aims to bridge this gap by detecting and characterizing Babesia species in selected cattle herds. Our investigation explores the genetic diversity of Babesia species in cattle from Selangor, Malaysia, and Ribah, Nigeria. Blood samples revealed a 32.9% infection rate via PCR analysis. Further genetic analysis detected variations in Malaysian Babesia bigemina isolates but genetic similarity among Nigerian isolates. Conversely, all Babesia bovis isolates displayed genetic homogeneity. In summary, this research identifies genetic diversity in Babesia species affecting Malaysian and Nigerian cattle, highlighting regional disparities. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Figure 1

11 pages, 1731 KiB  
Article
Molecular Identification of Babesia and Theileria Infections in Livestock in the Qinghai–Tibetan Plateau Area, China
by Yihong Ma, Yingna Jian, Geping Wang, Xiuping Li, Guanghua Wang, Yong Hu, Naoaki Yokoyama, Liqing Ma and Xuenan Xuan
Animals 2024, 14(3), 476; https://doi.org/10.3390/ani14030476 - 1 Feb 2024
Cited by 1 | Viewed by 1854
Abstract
The northwestern region of China, known as the Qinghai–Tibet Plateau Area (QTPA), is characterized by unique climate conditions that support the breeding of various highly-adapted livestock species. Tick vectors play a significant role in transmitting Babesia and Theileria species, posing serious risks to [...] Read more.
The northwestern region of China, known as the Qinghai–Tibet Plateau Area (QTPA), is characterized by unique climate conditions that support the breeding of various highly-adapted livestock species. Tick vectors play a significant role in transmitting Babesia and Theileria species, posing serious risks to animal health as well as the economy of animal husbandry in QTPA. A total of 366 blood samples were collected from Tibetan sheep (n = 51), goats (n = 67), yaks (n = 43), cattle (n = 49), Bactrian camels (n = 50), horses (n = 65), and donkeys (n = 40). These samples were examined using conventional and nested PCR techniques to detect Theileria and Babesia species. The overall infection rates were 0.3% (1/366) for Babesia spp. and 38.2% (140/366) for Theileria spp. Notably, neither Babesia nor Theileria species were detected in donkeys and yaks. The infection rates of Babesia and Theileria species among animals in different prefectures were significantly different (p < 0.05). Furthermore, Babesia bovis, B. bigemina, B. caballi, and B. ovis were not detected in the current study. To our knowledge, this is the first documented detection of Theileria luwenshuni infection in Bactrian camels and goats, as well as T. sinesis in cattle and T. equi in horses on the Qinghai plateau. These novel findings shed light on the distribution of Babesia and Theileria species among livestock species in QTPA. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

12 pages, 3880 KiB  
Article
Bovine Piroplasma Populations in the Philippines Characterized Using Targeted Amplicon Deep Sequencing
by Eloiza May Galon, Adrian Miki Macalanda, Tatsuki Sugi, Kyoko Hayashida, Naoko Kawai, Taishi Kidaka, Rochelle Haidee Ybañez, Paul Franck Adjou Moumouni, Aaron Edmond Ringo, Hang Li, Shengwei Ji, Junya Yamagishi, Adrian Ybañez and Xuenan Xuan
Microorganisms 2023, 11(10), 2584; https://doi.org/10.3390/microorganisms11102584 - 18 Oct 2023
Cited by 1 | Viewed by 2129
Abstract
Molecular assays and capillary electrophoresis sequencing have been used to identify parasites in livestock. The low sample capacity, which increases labor and processing time, is one drawback. Targeted amplicon sequencing (Ampliseq) uses the fast and large sample capacity platform to identify parasites in [...] Read more.
Molecular assays and capillary electrophoresis sequencing have been used to identify parasites in livestock. The low sample capacity, which increases labor and processing time, is one drawback. Targeted amplicon sequencing (Ampliseq) uses the fast and large sample capacity platform to identify parasites in the target host, overcoming this limitation. DNA was extracted from 162 whole blood samples collected from cattle in three provinces in the Philippines. Using Illumina’s Miseq platform, the V4 hypervariable region of the piroplasma 18S rRNA gene was amplified and sequenced. The AMPtk pipeline was used to obtain distinct amplicon sequence variants (ASVs) and the NCBI BLAST non-redundant database was used to assign taxonomy. In total, 95 (58.64%) samples were positive for piroplasma. Using the AMPTk pipeline, 2179 ASVs were obtained. A total of 79 distinct ASVs were obtained after clustering and filtering, which belonged to genera Babesia (n = 58), Theileria (n = 17), Hepatozoon (n = 2), and Sarcocystis (n = 2). The ASV top hits were composed of 10 species: Babesia bovis, B. bigemina, Theileria orientalis, Babesia sp., Hepatozoon canis, Sarcocystis cruzi, T. annulata, T. equi, T. mutans, and Theileria sp. Thung Song. The results generated in this study demonstrated the applicability of Ampliseq in detecting piroplasmid parasites infecting cattle in the Philippines. Full article
(This article belongs to the Special Issue 10th Anniversary of Microorganisms: Past, Present and Future)
Show Figures

Figure 1

15 pages, 2063 KiB  
Article
Genetic Diversity of Merozoite Surface Antigens in Global Babesia bovis Populations
by El-Sayed El-Alfy, Ibrahim Abbas, Rana Elseadawy, Shimaa Abd El-Salam El-Sayed and Mohamed Abdo Rizk
Genes 2023, 14(10), 1936; https://doi.org/10.3390/genes14101936 - 13 Oct 2023
Cited by 2 | Viewed by 1797
Abstract
Cattle can be severely infected with the tick-borne protozoa Babesia bovis, giving rise to serious economic losses. Invasion of the host’s RBCs by the parasite merozoite/sporozoites depends largely on the MSA (merozoite surface antigens) gene family, which comprises various fragments, e.g., MSA-1, [...] Read more.
Cattle can be severely infected with the tick-borne protozoa Babesia bovis, giving rise to serious economic losses. Invasion of the host’s RBCs by the parasite merozoite/sporozoites depends largely on the MSA (merozoite surface antigens) gene family, which comprises various fragments, e.g., MSA-1, MSA-2a1, MSA-2a2, MSA-2b and MSA-2c, highlighting the importance of these antigens as vaccine candidates. However, experimental trials documented the failure of some developed MSA-based vaccines to fully protect animals from B. bovis infection. One reason for this failure may be related to the genetic structure of the parasite. In the present study, all MSA-sequenced B. bovis isolates on the GenBank were collected and subjected to various analyses to evaluate their genetic diversity and population structure. The analyses were conducted on 199 MSA-1, 24 MSA-2a1, 193 MSA-2b and 148 MSA-2c isolates from geographically diverse regions. All these fragments displayed high nucleotide and haplotype diversities, but the MSA-1 was the most hypervariable and had the lowest inter- and intra-population gene flow values. This fragment also displayed a strong positive selection when testing its isolates for the natural selection, which suggests the potential occurrence of more genetic variations. On the contrary, the MSA-2c was the most conserved in comparison to the other fragments, and displayed the highest inter- and intra-population gene flow values, which was evidenced by a significantly negative selection and negative neutrality indices (Fu’s Fs and Tajima’s D). The majority of the MSA-2c tested isolates had two conserved amino acid repeats, and earlier reports have found these repeats to be highly immunogenic, which underlines the importance of this fragment in developing vaccines against B. bovis. Results of the MSA-2a1 analyses were also promising, but many more MSA-2a1 sequenced isolates are required to validating this assumption. The genetic analyses conducted for the MSA-2b fragment displayed borderline values when compared to the other fragments. Full article
(This article belongs to the Section Population and Evolutionary Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop