Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (67)

Search Parameters:
Keywords = BaMoO3

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 9280 KB  
Article
Petrogenesis of the Chamuhan Intrusion in the Southern Great Xing’an Range: Constraints from Zircon U-Pb Dating and Petrogeochemistry
by Yutong Song, Gongzheng Chen, Guang Wu, Tiegang Li, Tong Zhang, Jinfang Wang, Yingjie Li, Chenyu Liu, Yuze Li and Yinlong Wang
Minerals 2025, 15(10), 1085; https://doi.org/10.3390/min15101085 - 18 Oct 2025
Viewed by 444
Abstract
The Southern Great Xing’an Range (SGXR), an important W–Sn polymetallic metallogenic belt in northern China, hosts multiphase magmatism and has witnessed recent discoveries of multiple tungsten–tin polymetallic deposits. The W–Sn mineralization in this area is intimately associated with Early Cretaceous highly fractionated granites. [...] Read more.
The Southern Great Xing’an Range (SGXR), an important W–Sn polymetallic metallogenic belt in northern China, hosts multiphase magmatism and has witnessed recent discoveries of multiple tungsten–tin polymetallic deposits. The W–Sn mineralization in this area is intimately associated with Early Cretaceous highly fractionated granites. The Chamuhan deposit, a small-sized W–Mo polymetallic deposit in SGXR, is genetically linked to a concealed fine-grained porphyritic alkali feldspar granite intrusion. In this study, we present the LA-ICP-MS zircon U-Pb ages, whole-rock geochemical, and electron probe microanalysis (EPMA) mineral chemistry to constrain the petrogenesis and metallogenic implications of this granite. Zircon U–Pb dating yields a crystallization age of 141.3 ± 1.2 Ma, consistent with molybdenite Re–Os ages. The granite is characterized by elevated SiO2 (76.9–79.1 wt%) and total alkalis (7.3–8.5 wt%), and exhibits peraluminous high-K calc-alkaline affinity (A/CNK = 1.37–1.57). Geochemical signatures reveal enrichment in large ion lithophile elements (LILEs, e.g., Rb, Th, U) coupled with depletion in high-field strength elements (HFSEs, e.g., Ba, Sr, P, Eu, Ti, Nb, Ta), and are accompanied by right-sloping REE patterns with LREE enrichment and HREE depletion. EPMA data indicate that the mica in the intrusion is primarily zinnwaldite and Li-rich phengite, whereas the plagioclase occurs as albite. The feldspar thermobarometry yields crystallization temperatures of 689–778 °C and 313 MPa–454 MPa, while the melt H2O content and oxygen fugacity are 8.61–11.1 wt% and −22.58–−14.48, respectively. These geochemical signatures indicate that the granites are highly fractionated I-type granites with extensive fractional crystallization of various minerals like plagioclase, K-feldspar, and apatite, etc. From the Late Jurassic to the Early Cretaceous, the subduction and rollback of the Paleo-Pacific Ocean plate resulted in extensional tectonic environments in eastern China. Asthenospheric upwelling and lower crustal melting generated parental magmas, wherein progressive fractional crystallization during ascent concentrated ore-forming elements and volatiles within residual melts. This process played a key role in the formation of the Chamuhan deposit, exemplifying the metallogenic potential of highly evolved granitic systems in the SGXR. Full article
(This article belongs to the Special Issue Igneous Rocks and Related Mineral Deposits)
Show Figures

Figure 1

14 pages, 4332 KB  
Article
Powerful Tribocatalytic Degradation of Methyl Orange Solutions with Concentrations as High as 100 mg/L by BaTiO3 Nanoparticles
by Mingzhang Zhu, Zeren Zhou, Yanhong Gu, Lina Bing, Yuqin Xie, Zhenjiang Shen and Wanping Chen
Nanomaterials 2025, 15(14), 1135; https://doi.org/10.3390/nano15141135 - 21 Jul 2025
Cited by 3 | Viewed by 803
Abstract
In sharp contrast to photocatalysis and other prevalent catalytic technologies, tribocatalysis has emerged as a promising technology to degrade high-concentration organic dyes in recent years. In this study, BaTiO3 (BTO) nanoparticles were challenged to degrade methyl orange (MO) solutions with unprecedentedly high [...] Read more.
In sharp contrast to photocatalysis and other prevalent catalytic technologies, tribocatalysis has emerged as a promising technology to degrade high-concentration organic dyes in recent years. In this study, BaTiO3 (BTO) nanoparticles were challenged to degrade methyl orange (MO) solutions with unprecedentedly high concentrations through magnetic stirring. With BTO nanoparticles and home-made PTFE magnetic rotary disks in 50 mg/L MO solutions, 10 h of magnetic stirring resulted in 91.4% and 98.1% degradations in an as-received glass beaker and in a beaker with a PTFE disk coated on its bottom, respectively. Even for 100 mg/L MO solutions, nearly complete degradation was achieved by magnetic-stirring-stimulated BTO nanoparticles in beakers with the following four kinds of bottom: 97.3% degradation in 30 h for a glass bottom, 97.4% degradation in 20 h for a PTFE coating, 97.9% degradation in 42 h for a Ti coating, and 97.4% degradation in 74 h for an Al2O3 coating. Electron paramagnetic resonance (EPR) analyses revealed that the generation of reactive oxygen species (ROS) by magnetic-stirring-stimulated BTO nanoparticles is dramatically affected by the bottom material of beakers. These findings suggest an appealing prospect for BTO nanoparticles to utilize mechanical energy for sustainable water remediation. Full article
Show Figures

Graphical abstract

13 pages, 462 KB  
Article
Electron and Hole Doping Effects on the Magnetic Properties and Band Gap Energy of Ba2FeMoO6 and Sr2FeMoO6
by Angel T. Apostolov, Iliana N. Apostolova and Julia M. Wesselinowa
Molecules 2025, 30(14), 2987; https://doi.org/10.3390/molecules30142987 - 16 Jul 2025
Viewed by 800
Abstract
Using the s-d model and Green’s function theory, we investigated for the first time the electron and hole doping effects on the magnetic and optical properties of the double perovskites Ba2FeMoO6 (BFMO) and Sr2FeMoO6 (SFMO). Our aim [...] Read more.
Using the s-d model and Green’s function theory, we investigated for the first time the electron and hole doping effects on the magnetic and optical properties of the double perovskites Ba2FeMoO6 (BFMO) and Sr2FeMoO6 (SFMO). Our aim was to find the doping ions that lead to an increase in Curie temperature TC. On the basis of a competition mechanism between spin exchange and s-d interactions, we explain at a microscopic level the decrease in magnetization M and band gap energy Eg, as well as the increase in TC of BFMO and SFMO through substitution with rare earth ions at the Ba(Sr) sites. The influence of doping with K at the Ba(Sr) and Co at the Fe sites on the magnetic properties and the band gap is also discussed. A very good qualitative coincidence with the existing experimental data was observed. Moreover, we found that both M and TC decrease with decreasing the size of BFMO and SFMO nanoparticles. Full article
Show Figures

Figure 1

16 pages, 1987 KB  
Article
Barium-Impregnated Ag3PO4 for Enhanced Visible Light Photocatalytic Degradation of Methyl Orange
by Habiba Khiar, Fatima Zahra Janani, M’hamed Sadiq, Ghadah M. Al-Senani, Salhah D. Al-Qahtani and Noureddine Barka
Ceramics 2025, 8(2), 44; https://doi.org/10.3390/ceramics8020044 - 25 Apr 2025
Cited by 1 | Viewed by 1151
Abstract
In this study, we highlight the use of the alkaline earth metal barium (Ba) for the impregnation of Ag3PO4 (AgP). AgP was synthesized via co-precipitation and subsequently impregnated with a Ba2⁺-containing solution, followed by hydrothermal treatment to obtain [...] Read more.
In this study, we highlight the use of the alkaline earth metal barium (Ba) for the impregnation of Ag3PO4 (AgP). AgP was synthesized via co-precipitation and subsequently impregnated with a Ba2⁺-containing solution, followed by hydrothermal treatment to obtain Ba-AgP. The addition of barium significantly influenced both the crystallinity and crystallite size. Ba impregnation enhanced the crystallinity of AgP and promoted the growth of its crystallites. It was confirmed that Ba2⁺ was homogeneously distributed on the surface of AgP, with only a slight effect on particle shape. Ba-impregnated Ag3PO4 (Ba-AgP) exhibited improved photocatalytic activity for the degradation of methyl orange (MO) under visible light compared to bare AgP. The optimal impregnation concentration of Ba2⁺ was determined to be 6%. This enhancement is attributed to the role of Ba2+ in facilitating the separation of photogenerated electron–hole pairs, which also contributed to the improved stability of AgP. The active species h+, ·OH, and O2· were all identified as essential for the MO degradation process, with h+ being the most significant contributor. Full article
Show Figures

Figure 1

28 pages, 9029 KB  
Article
Petrogenesis, Geochemistry, and Geological Significance of the Kongco Granitic Porphyry Dykes in the Northern Part of the Central Lhasa Microblock, Tibet
by Anping Xiang, Hong Liu, Wenxin Fan, Qing Zhou, Hong Wang and Kaizhi Li
Minerals 2025, 15(3), 283; https://doi.org/10.3390/min15030283 - 11 Mar 2025
Cited by 1 | Viewed by 1376
Abstract
The Kongco area of Nima in the northern part of the Lhasa terrane has a suite of alkaline granitic porphyry dykes associated with Early Cretaceous granites and accompanied by Cu/Mo mineralization. LA-ICP-MS 206Pb/238U zircon geochronology performed on the dykes produced [...] Read more.
The Kongco area of Nima in the northern part of the Lhasa terrane has a suite of alkaline granitic porphyry dykes associated with Early Cretaceous granites and accompanied by Cu/Mo mineralization. LA-ICP-MS 206Pb/238U zircon geochronology performed on the dykes produced an age of 104.15 ± 0.94 Ma (MSWD = 0.98), indicating the Early Cretaceous emplacement of the dykes. The dykes exhibit high silica (SiO2 = 76.22~77.90 wt.%), high potassium (K2O = 4.97~6.21 wt.%), high alkalinity (K2O + Na2O = 8.07~8.98 wt.%), low calcium (CaO = 0.24~0.83 wt.%), low magnesium (MgO = 0.06~0.20 wt.%), and moderate aluminum content (Al2O3 = 11.93~12.45 wt.%). The Rieterman index (σ) ranges from 1.93 to 2.34. A/NK (molar ratio Al2O3/(Na2O + K2O)) and A/CNK (molar ratio Al2O3/(CaO + Na2O + K2O)) values of the dykes range from 1.06 to 1.18 and 0.98 to 1.09, respectively. The dykes are relatively enriched in Rb, Th, U, K, Ta, Ce, Nd, Zr, Hf, Sm, Y, Yb, and Lu, and they show a noticeable relative depletion in Ba, Nb, Sr, P, Eu, and Ti, as well as an average differentiation index (DI) of 96.42. The dykes also exhibit high FeOT/MgO ratios (3.60~10.41), Ga/Al ratios (2.22 × 10−4~3.01 × 10−4), Y/Nb ratios (1.75~2.40), and Rb/Nb ratios (8.36~20.76). Additionally, they have high whole-rock Zr saturation temperatures (884~914 °C), a pronounced Eu negative anomaly (δEu = 0.04~0.23), and a rightward-sloping “V-shaped” rare earth element pattern. These characteristics suggest that the granitic porphyry dykes can be classified as A2-type granites formed in a post-collisional tectonic environment and that they are weakly peraluminous, high-potassium, and Calc-alkaline basaltic rocks. Positive εHf(t) values = 0.43~3.63 and a relatively young Hf crustal model age (TDM2 = 826~1005 Ma, 87Sr/86Sr ratios = 0.7043~0.7064, and εNd(t) = −8.60~−2.95 all indicate lower crust and mantle mixing. The lower crust and mantle mixing model is also supported by (206Pb/204Pb)t = 18.627~18.788, (207Pb/204Pb)t = 15.707~15.719, (208Pb/204Pb)t = 39.038~39.110). Together, the Hf, Sr and Pb isotopic ratios indicate that the Kongco granitic porphyry dykes where derived from juvenile crust formed by the addition of mantle material to the lower crust. From this, we infer that the Kongco granitic porphyry dykes are related to a partial melting of the lower crust induced by subduction slab break-off and asthenospheric upwelling during the collision between the Qiangtang and Lhasa terranes and that they experienced significant fractional crystallization dominated by potassium feldspar and amphibole. These dykes are also accompanied by significant copper mineralization (five samples, copper content 0.2%), suggesting a close relationship between the magmatism associated with these dykes and regional metallogenesis, indicating a high potential for mineral exploration. Full article
(This article belongs to the Special Issue Using Mineral Chemistry to Characterize Ore-Forming Processes)
Show Figures

Figure 1

1 pages, 1262 KB  
Article
Consecrated Medicines and Spiritual Practices: A Reflection on the Many Traditions Represented in the Relics by Zur mKhar ba mNyam nyid rdo rje
by Carmela Simioli
Religions 2025, 16(3), 324; https://doi.org/10.3390/rel16030324 - 4 Mar 2025
Cited by 2 | Viewed by 2813
Abstract
This contribution is aimed at analyzing a series of life-prolonging and rejuvenating treatments (bcud len), recipes of ambrosia for immortality (bdud rtsi sman), and yogic and meditative techniques incorporated in the Man ngag bye ba ring bsrel (Ten Million [...] Read more.
This contribution is aimed at analyzing a series of life-prolonging and rejuvenating treatments (bcud len), recipes of ambrosia for immortality (bdud rtsi sman), and yogic and meditative techniques incorporated in the Man ngag bye ba ring bsrel (Ten Million of Quintessential Instructions, The Relics; henceforth Ring bsrel), a medical corpus mainly authored by Zur mkhar ba mNyam nyid rdo rje (1439–1475). The many treads of mNyam nyid rdo rje’s literary production reflect his rNying ma and bKa’ brgyud spiritual legacies: the author systematically elaborated materials drawn from the rNying ma gter ma tradition and complex medico–alchemical practices ascribed to the third Karmapa Rang byung rdo rje (1284–1339) and O rgyan pa rin chen dpal (1230–1309). The key ingredients of the recipes include saxifrage [bdud rtsi ’od ldan; Micranthes melanocentra; Saxifraga melanocentra], purple sage [lug mur; Phlomoides bracteosa], potent substances such as black aconite [bstan dug; Aconitum spicatum;], nightshade [thang phrom; Anisodus spp.; Mandragora caulescens], mercury–sulfide ashes (zla bcud; bcud rgyal), aphrodisiacs containing salamander meat [da byid, gangs sbal; Batrachuporus pinchonii], caterpillar fungus [dByar rtswa dgun ’bu; Cordyceps sinensis], and other substances endowed with hot potencies that can enhance gtum mo practices such as the dwarf rhododendron [da lis; Rhododendron spp.] and compounds containing long peer [pi pi ling; Piper longum], black pepper, [pho bar is; Piper nigrum], ginger, and so forth. The consecrated medicines and the rituals can bestow protection from any sort of diseases, diseases-carrier forces (gdon), and poisoning and lead to spiritual achievements. The analysis of these scriptural materials brings into focus the historical interrelation of diverse traditions that are represented by the heterogeneity of ideas and practices handed down through the Zur medical lineage. Full article
(This article belongs to the Special Issue Materiality and Private Rituals in Tibetan and Himalayan Cultures)
15 pages, 4184 KB  
Article
Photocatalysis of Methyl Orange (MO), Orange G (OG), Rhodamine B (RhB), Violet and Methylene Blue (MB) Under Natural Sunlight by Ba-Doped BiFeO3 Thin Films
by Abderrahmane Boughelout, Abdelmadjid Khiat and Roberto Macaluso
Materials 2025, 18(4), 887; https://doi.org/10.3390/ma18040887 - 18 Feb 2025
Cited by 1 | Viewed by 1259
Abstract
We present structural, morphological, optical and photocatalytic properties of multiferroic Bi0.98Ba0.02FeO3 (BBFO2) perovskite thin films prepared by a combined sol–gel and spin-coating method. X-ray diffraction (XRD) analysis revealed that all the perovskite films consisted of the stable polycrystalline [...] Read more.
We present structural, morphological, optical and photocatalytic properties of multiferroic Bi0.98Ba0.02FeO3 (BBFO2) perovskite thin films prepared by a combined sol–gel and spin-coating method. X-ray diffraction (XRD) analysis revealed that all the perovskite films consisted of the stable polycrystalline rhombohedral phase structure (space group R3c) with a tolerance factor of 0.892. By using Rietveld refinement of diffractogram XRD data, crystallographic parameters, such as bond angle, bond length, atom position, unit cell parameters, and electron density measurements were computed. Scanning electron microscopy (SEM) allowed us to assess the homogeneous and smooth surface morphology of the films with a small degree of porosity, while chemical surface composition characterization by X-ray photoelectron spectroscopy (XPS) showed the presence of Bi, Fe, O and the doping element Ba. Absorption measurements allowed us to determine the energy band gap of the films, while photoluminescence measurements have shown the presence of oxygen vacancies, which are responsible for the enhanced photocatalytic activity of the material. Photocatalytic degradation experiments of Methylene Blue (MB), Methyl orange (MO), orange G (OG), Violet and Rhodamine B (RhB) performed on top of BBFO2 thin films under solar light showed the degradation of all pollutants in varying discoloration efficiencies, ranging from 81% (RhB) to 54% (OG), 53% (Violet), 47% (MO) and 43% (MB). Full article
(This article belongs to the Special Issue Halide Perovskite Crystal Materials and Optoelectronic Devices)
Show Figures

Figure 1

14 pages, 49185 KB  
Article
Investigating Influence of Mo Elements on Friction and Wear Performance of Nickel Alloy Matrix Composites in Air from 25 to 800 °C
by Jinming Zhen, Yunxiang Han, Lin Yuan, Zhengfeng Jia and Ran Zhang
Lubricants 2024, 12(11), 396; https://doi.org/10.3390/lubricants12110396 - 18 Nov 2024
Cited by 2 | Viewed by 1549
Abstract
Rapid developments in aerospace and nuclear industries pushed forward the search for high-performance self-lubricating materials with low friction and wear characteristics under severe environment. In this paper, we investigated the influence of the Mo element on the tribological performance of nickel alloy matrix [...] Read more.
Rapid developments in aerospace and nuclear industries pushed forward the search for high-performance self-lubricating materials with low friction and wear characteristics under severe environment. In this paper, we investigated the influence of the Mo element on the tribological performance of nickel alloy matrix composites from room temperature to 800 °C under atmospheric conditions. The results demonstrated that composites exhibited excellent lubricating (with low friction coefficients of 0.19–0.37) and wear resistance properties (with low wear rates of 2.5–28.1 × 10−5 mm3/Nm), especially at a content of elemental Mo of 8 wt. % and 12 wt. %. The presence of soft metal Ag on the sliding surface as solid lubricant resulted in low friction and wear rate in a temperature range from 25 to 400 °C, while at elevated temperatures (600 and 800 °C), the effective lubricant contributed to the formation of a glazed layer rich in NiCr2O4, BaF2/CaF2, and Ag2MoO4. SEM, EDS, and the Raman spectrum indicated that abrasive and fatigue wear were the main wear mechanisms for the studied composites during sliding against the Si3N4 ceramic ball. The obtained results provide an insightful suggestion for future designing and fabricating solid lubricant composites with low friction and wear properties. Full article
(This article belongs to the Special Issue Tribology in Manufacturing Engineering)
Show Figures

Figure 1

21 pages, 21536 KB  
Review
A Review on Uranium Mineralization Related to Na-Metasomatism: Indian and International Examples
by Priyanka Mishra, Manju Sati and Rajagopal Krishnamurthi
Geosciences 2024, 14(11), 304; https://doi.org/10.3390/geosciences14110304 - 12 Nov 2024
Cited by 3 | Viewed by 2611
Abstract
Uranium mineralization related to Na-metasomatism is known as Na-metasomatite or albitite-type. They represent the fourth-largest uranium resource globally and constitute fifty thousand tons of U resources. The present work gives details about well-known Na-metasomatic uranium occurrences worldwide in terms of structures, metasomatic stages, [...] Read more.
Uranium mineralization related to Na-metasomatism is known as Na-metasomatite or albitite-type. They represent the fourth-largest uranium resource globally and constitute fifty thousand tons of U resources. The present work gives details about well-known Na-metasomatic uranium occurrences worldwide in terms of structures, metasomatic stages, geochemical characteristics, fluid inclusions, and compositions of stable isotopes. The host rocks are granite, granitoid, and metamorphosed volcano-sedimentary rocks, and these rocks experienced two/three deformational stages. U mineralization is mainly confined to faults and characterized by granitic intrusive, cataclasis, mylonitization, and albitization. The albitized rocks exhibit two to three metasomatic and late hydrothermal stages. The first stage is marked by the replacement of pre-existing host minerals during a ductile shear regime. The second stage is related to U mineralization contemporaneous with the brittle deformation. The albitized rocks exhibit depletion in Si, K, Ba, and heavy rare-earth elements relative to the host rocks and enrichments in Na, Ca, U, Zr, P, V, Sr, and light rare-earth elements. U-enrichment is positively correlated with Na, Mo, Cu, and high-field strength elements. The pressure–temperature (P-T) conditions of U mineralization are considered to be epithermal and mesothermal. Fluid inclusion studies indicate that the mineralizing fluids were rich in Na+, Mg2+, Cl, CO2, H2O, F, and PO43− and meteoric–magmatic derived. The geological processes responsible for the genesis of Na-metasomatic U deposits of the North Delhi Fold Belt (India) are comparable with some international examples, i.e., Australia, Ukraine, Cameroon, Brazil, Guyana, China, and the USA. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

12 pages, 6128 KB  
Article
Preparation and Properties of Fe-Based Double Perovskite Oxide as Cathode Material for Intermediate-Temperature Solid Oxide Fuel Cell
by Liangmei Xue, Songbo Li, Shengli An, Ning Li, Huipu Ma and Mengxin Li
Molecules 2024, 29(22), 5299; https://doi.org/10.3390/molecules29225299 - 9 Nov 2024
Cited by 5 | Viewed by 2185
Abstract
Double perovskite oxides with mixed ionic and electronic conductors (MIECs) have been widely investigated as cathode materials for solid oxide fuel cells (SOFCs). Classical Fe-based double perovskites, due to their inherent low electronic and oxygen ionic conductivity, usually exhibit poor electrocatalytic activity. The [...] Read more.
Double perovskite oxides with mixed ionic and electronic conductors (MIECs) have been widely investigated as cathode materials for solid oxide fuel cells (SOFCs). Classical Fe-based double perovskites, due to their inherent low electronic and oxygen ionic conductivity, usually exhibit poor electrocatalytic activity. The existence of various valence states of B-site ions modifies the material’s catalytic activity, indicating the possibility of the partial substitution of Fe by higher-valence ions. LaBaFe2−xMoxO5+δ (x = 0, 0.03, 0.05, 0.07, 0.1, LBFMx) is used as intermediate-temperature solid oxide fuel cell (IT-SOFC) cathode materials. At a doping concentration above 0.1, the Mo substitution enhanced the cell volume, and the lattice expansion caused the formation of the impurity phase, BaMoO4. Compared with the parent material, Mo doping can regulate the oxygen vacancy concentration and accelerate the oxygen reduction reaction process to improve the electrochemical performance, as well as having a suitable coefficient of thermal expansion and excellent electrode stability. LaBaFe1.9Mo0.1O5+δ is a promising cathode material for IT-SOFC, which shows an excellent electrochemical performance, with this being demonstrated by having the lowest polarization resistance value of 0.017 Ω·cm2 at 800 °C, and the peak power density (PPD) of anode-supported single-cell LBFM0.1|CGO|NiO+CGO reaching 599 mW·cm−2. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

15 pages, 3542 KB  
Article
Effect of (Ba1/3Nb2/3)4+ Substitution on Microstructure, Bonding Properties and Microwave Dielectric Properties of Ce2Zr3(MoO4)9 Ceramics
by Huamin Gao, Xiangyu Xu, Xinwei Liu, Xiaoyu Zhang, Mingling Li, Jialun Du and Haitao Wu
Ceramics 2024, 7(3), 1172-1186; https://doi.org/10.3390/ceramics7030077 - 29 Aug 2024
Viewed by 1211
Abstract
In this study, Ce2[Zr1−x(Ba1/3Nb2/3)x]3(MoO4)9 (0.02 ≤ x ≤ 0.1, CZ1−xNx) ceramics were sintered at 600 °C and 700 °C using the traditional [...] Read more.
In this study, Ce2[Zr1−x(Ba1/3Nb2/3)x]3(MoO4)9 (0.02 ≤ x ≤ 0.1, CZ1−xNx) ceramics were sintered at 600 °C and 700 °C using the traditional solid-state method. An analysis conducted through XRD and Rietveld refinement confirmed that all the CZ1−xNx ceramics displayed a single phase with a trigonal structure (space group R-3c). The observed increases in cell volume with increasing x values indicate the successful substitution of (Ba1/3Nb2/3)4+. The high densification of the synthesized phase was validated by the density and SEM results. Additionally, the P-V-L theory demonstrates a strong correlation between the Ce-O bond and εr, as well as τf, and between the Mo-O bond and Q×f. Notably, the CZ0.98N0.02 ceramics demonstrated superior performance at 675 °C, exhibiting εr = 10.41, Q×f = 53,296 GHz, and τf = −23.45 ppm/°C. Finally, leveraging CZ0.98N0.02 ceramics as substrate materials enabled the design of a patch antenna suitable for the 5G communication band, demonstrating its significant potential in this field. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics)
Show Figures

Figure 1

16 pages, 8278 KB  
Article
Ag Nanoparticles Deposited onto BaTiO3 Aerogel for Highly Efficient Photodegradation
by Jun Wu, Wen Yan, Mengyuan Xie, Kai Zhong, Sheng Cui and Xiaodong Shen
Gels 2024, 10(6), 378; https://doi.org/10.3390/gels10060378 - 31 May 2024
Cited by 3 | Viewed by 1631
Abstract
Given the increasingly severe environmental problems caused by water pollution, the degradation of organic dyes can be effectively achieved through the utilization of photocatalysis. In this work, metal alkoxides and a combination of alcohol/hydrophobic solvents are employed to prepare BaTiO3 aerogels via [...] Read more.
Given the increasingly severe environmental problems caused by water pollution, the degradation of organic dyes can be effectively achieved through the utilization of photocatalysis. In this work, metal alkoxides and a combination of alcohol/hydrophobic solvents are employed to prepare BaTiO3 aerogels via a liquid-phase and template-free synthetic route. The preparation process of the aerogels solely entails facile agitation and supercritical drying, eliminating the need for additional heat treatment. The binary solvent of ethanol and toluene is identified as the optimal choice, resulting in a significantly enhanced surface area (up to 223 m2/g) and an abundant pore structure of BaTiO3 aerogels compared to that of the BaTiO3 nanoparticles. Thus, the removal efficiency of the BaTiO3 aerogel sample for MO is nearly twice as high as that of the BaTiO3 nanoparticles sample. Noble metal Ag nanoparticles’ deposition onto the BaTiO3 aerogel surface is further achieved via the photochemical deposition method, which enhances the capture of photogenerated electrons, thereby ensuring an elevated level of photocatalytic efficiency. As a result, Ag nanoparticles deposited on BaTiO3 aerogel can degrade MO completely after 40 min of illumination, while the corresponding aerogel before modification can only remove 80% of MO after 60 min. The present work not only complements the preparatory investigation of intricate aerogels but also offers a fresh perspective for the development of diverse perovskite aerogels with broad applications. Full article
(This article belongs to the Special Issue Preparation and Characteristics of Aerogel-Based Materials)
Show Figures

Graphical abstract

16 pages, 9267 KB  
Article
Ag-Incorporated Cr-Doped BaTiO3 Aerogel toward Enhanced Photocatalytic Degradation of Methyl Orange
by Jun Wu, Gaofeng Shao, Xiaodong Wu, Sheng Cui and Xiaodong Shen
Nanomaterials 2024, 14(10), 848; https://doi.org/10.3390/nano14100848 - 13 May 2024
Cited by 9 | Viewed by 1939
Abstract
A novel Cr-doped BaTiO3 aerogel was successfully synthesized using a co-gelation technique that involves two metallic alkoxides and a supercritical drying method. This freshly prepared aerogel has a high specific surface area of over 100 m2/g and exhibits improved responsiveness [...] Read more.
A novel Cr-doped BaTiO3 aerogel was successfully synthesized using a co-gelation technique that involves two metallic alkoxides and a supercritical drying method. This freshly prepared aerogel has a high specific surface area of over 100 m2/g and exhibits improved responsiveness to the simulated sunlight spectrum. Methyl orange (MO) was chosen as the simulated pollutant, and the results reveal that the Cr-doped BaTiO3 aerogel, when modified with the noble metal silver (Ag), achieves a pollutant removal rate approximately 3.2 times higher than that of the commercially available P25, reaching up to 92% within 60 min. The excellent photocatalytic performance of the Ag-modified Cr-doped BaTiO3 aerogel can be primarily attributed to its extensive specific surface area and three-dimensional porous architecture. Furthermore, the incorporation of Ag nanoparticles effectively suppresses the recombination of photo-generated electrons and holes. Stability and reusability tests have confirmed the reliability of the Ag-modified Cr-doped BaTiO3 aerogel. Therefore, this material emerges as a highly promising candidate for the treatment of textile wastewater. Full article
(This article belongs to the Special Issue Nanomaterials in Aerogel Composites)
Show Figures

Figure 1

10 pages, 3041 KB  
Article
Highly Sensitive Temperature Sensors Resulting from the Luminescent Behavior of Sm3+-Doped Ba2MgMoO6 High-Symmetry Double-Perovskite Molybdate Phosphors
by Natalia Miniajluk-Gaweł, Bartosz Bondzior, Maciej Ptak and Przemysław Jacek Dereń
Materials 2024, 17(8), 1897; https://doi.org/10.3390/ma17081897 - 19 Apr 2024
Cited by 6 | Viewed by 1495
Abstract
We present double-perovskite molybdate with the formula of Ba2MgMoO6 doped with Sm3+ ions as a potential red phosphor to improve the color characteristics of white-light-emitting dioded (wLEDs). The new orange–red phosphor was synthesized using the co-precipitation (CP) method, and [...] Read more.
We present double-perovskite molybdate with the formula of Ba2MgMoO6 doped with Sm3+ ions as a potential red phosphor to improve the color characteristics of white-light-emitting dioded (wLEDs). The new orange–red phosphor was synthesized using the co-precipitation (CP) method, and then its structural and spectroscopic properties were determined. Red emission at 642.6 nm dominates, which results from the electric dipole (ED) transition of the 4G5/26H9/2 type, and the materials are characterized by short luminescence decay times. BMM:Sm3+ is, to our best knowledge, the clearest example of dominant red emission of Sm3+ resulting from the location of the dopant in octahedral sites of high-symmetry cubic structure. In the sample containing 0.1% Sm3+, Sm3+ ions are located in both Mg2+ and Ba2+ sites, while at higher concentrations the Ba2+ site is less preferable for doping, as a result of which the emission becomes more uniform and single-site. The relative sensitivity calculated from FIR has a maximum of 2.7% K−1 at −30 °C and another local maximum of 1.6% K−1 at 75 °C. Such value is, to the best of our knowledge, one of the highest achieved for luminescent thermometry performed using only Sm3+ ions. To sum up, the obtained materials are good candidates as red phosphor to improve the color characteristics of wLEDs, obtaining a color-rendering index (CRI) of 91 and coordinated color temperature (CCT) of 2943 K, constituting a warm white emission. In addition to this, a promising precedent for temperature sensing using high-symmetry perovskite materials is the high sensitivity achieved, which results from the high symmetry of the BMM host. Full article
(This article belongs to the Special Issue Research in Perovskite Films)
Show Figures

Figure 1

26 pages, 45411 KB  
Article
Metallogenic Difference between the Late Aptian Nansu and Aishan Pluton in Jiaodong: Constraints from In Situ Apatite Elemental and Nd Isotopic Composition
by Kexin Li, Liqiang Yang, Lei Ju and Dong Xie
Minerals 2024, 14(4), 372; https://doi.org/10.3390/min14040372 - 31 Mar 2024
Viewed by 2081
Abstract
A series of Mo-polymetallic deposits have been developed in the Jiaodong Peninsula. Notably, these Mo-dominant deposits formed essentially during the same period as the well-known world-class Au deposits in this area, hinting at a potentially unique geological correlation between them. Therefore, conducting thorough [...] Read more.
A series of Mo-polymetallic deposits have been developed in the Jiaodong Peninsula. Notably, these Mo-dominant deposits formed essentially during the same period as the well-known world-class Au deposits in this area, hinting at a potentially unique geological correlation between them. Therefore, conducting thorough research on Mo deposits in Jiaodong holds significant importance in exploring the area’s controlling factors of Mesozoic metal endowments. To reveal the petrogenesis and metallogenic potentials of Mo-fertile and ore-barren granitoid, apatite grains from the Late Aptian Nansu granodiorite and Aishan monzogranite are investigated in this study. Detailed petrographical observations, combined with in situ analysis of electron probe micro-analyzer (EPMA) and Laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), have been conducted on apatite grains from the Nansu and Aishan plutons. This comprehensive analysis, encompassing both major and trace elements as well as isotopic characteristics of apatite, aims to elucidate the metallogenic differences within the late Early Cretaceous granitoids of Jiaodong. The results reveal that the apatite grains across all samples belong to fluorapatites, suggesting their magmatic origin. Additionally, chondrite-normalized rare earth element (REE) patterns of apatites in ore-fertile and ore-barren granitoids exhibit a “right-leaning” trend, characterized by relative enrichments in light REEs and depletions in heavy REEs. Both the Nansu and Aishan plutons exhibit moderately negative Eu anomalies (with averages δEu values of 0.44 and 0.51, respectively), along with slightly positive Ce anomalies (averaging δCe values of 1.08 and 1.11, respectively). A negative correlation is observed between their δEu and δCe values, indicating that the parental magmas of ore-fertile and ore-barren granitoids were formed in a relatively oxidizing environment. The calculated apatite OH contents for the Nansu pluton range from 0.26 to 1.38, while those for the Aishan pluton vary between 0.24 and 1.51, indicating comparable melt H2O abundances. Consequently, the results suggest that neither the oxygen fugacities nor the water contents of the parental magma can account for the metallogenic differences between Nansu and Aishan plutons. The apatite in the Nansu pluton exhibits a higher Ce/Pb ratio and a relatively lower Th/U ratio, indicating the involvement of a greater volume of fluids in the magmatic evolution process of this ore-bearing granitoid. Apatite grains sourced from the Nansu and Aishan plutons exhibit εNd(t) values ranging from −16.63 to −17.61 (t = 115.7 Ma) and −17.86 to −20.86 (t = 116.8 Ma), respectively. These results suggest that their parental magmas primarily originated from the partial melting of Precambrian metamorphic basement rocks within the North China Craton, with a minor contribution from mantle-derived materials. Additionally, the presence of mafic microgranular enclaves in both the Nansu and Aishan plutons indicates that both have undergone magma mixing processes. The binary diagrams plotting the ratios of Ba/Th, Sr/Th, and U/Th against La/Sm demonstrate that apatite grains of ore-fertile granitoid exhibit a distinct trend towards sediment melting. This suggests the potential incorporation of sedimentary materials, particularly those rich in molybdenum, into the magmatic source of the Nansu pluton, ultimately leading to the occurrence of molybdenum mineralization. Full article
(This article belongs to the Special Issue The Formation and Evolution of Gold Deposits in China)
Show Figures

Figure 1

Back to TopTop