Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (231)

Search Parameters:
Keywords = BRCA2 deficiency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 294 KiB  
Review
Targeting Advanced Pancreatic Ductal Adenocarcinoma: A Practical Overview
by Chiara Citterio, Stefano Vecchia, Patrizia Mordenti, Elisa Anselmi, Margherita Ratti, Massimo Guasconi and Elena Orlandi
Gastroenterol. Insights 2025, 16(3), 26; https://doi.org/10.3390/gastroent16030026 - 30 Jul 2025
Viewed by 251
Abstract
Background/Objectives: Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest solid tumors, with a five-year overall survival rate below 10%. While the introduction of multi-agent chemotherapy regimens has improved outcomes marginally, most patients with advanced disease continue to have limited therapeutic options. Molecular [...] Read more.
Background/Objectives: Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest solid tumors, with a five-year overall survival rate below 10%. While the introduction of multi-agent chemotherapy regimens has improved outcomes marginally, most patients with advanced disease continue to have limited therapeutic options. Molecular profiling has uncovered actionable genomic alterations in select subgroups of PDAC, yet the clinical impact of targeted therapies remains modest. This review aims to provide a clinically oriented synthesis of emerging molecular targets in PDAC, their therapeutic relevance, and practical considerations for biomarker testing, including current FDA and EMA indications. Methods: A narrative review was conducted using data from PubMed, Embase, Scopus, and international guidelines (NCCN, ESMO, ASCO). The selection focused on evidence published between 2020 and 2025, highlighting molecularly defined PDAC subsets and the current status of targeted therapies. Results: Actionable genomic alterations in PDAC include KRAS G12C mutations, BRCA1/2 and PALB2-associated homologous recombination deficiency, MSI-H/dMMR status, and rare gene fusions involving NTRK, RET, and NRG1. While only a minority of patients are eligible for targeted treatments, early-phase trials and real-world data have shown promising results in these subgroups. Testing molecular profiling is increasingly standard in advanced PDAC. Conclusions: Despite the rarity of targetable mutations, systematic molecular profiling is critical in advanced PDAC to guide off-label therapy or clinical trial enrollment. A practical framework for identifying and acting on molecular targets is essential to bridge the gap between precision oncology and clinical management. Full article
(This article belongs to the Special Issue Advances in the Management of Gastrointestinal and Liver Diseases)
16 pages, 1780 KiB  
Perspective
BRCA2 Pre-mRNA Differential 5′ Splicing: A Rescue of Functional Protein Properties from Pathogenic Gene Variants and a Lifeline for Fanconi Anemia D1 Patients
by Roberto Paredes, Kiran Batta, Daniel H. Wiseman, Reham Gothbi, Vineet Dalal, Christine K. Schmidt, Reinhard Kalb, Stefan Meyer and Detlev Schindler
Int. J. Mol. Sci. 2025, 26(14), 6694; https://doi.org/10.3390/ijms26146694 - 12 Jul 2025
Viewed by 365
Abstract
Fanconi anemia (FA) is a DNA repair deficiency disorder associated with genomic and chromosomal instability and a high cancer risk. In a small percentage of cases, FA is caused by biallelic pathogenic variants (PVs) in the BRCA2/FANCD1 gene, defining the FA-D1 subtype. Experimental [...] Read more.
Fanconi anemia (FA) is a DNA repair deficiency disorder associated with genomic and chromosomal instability and a high cancer risk. In a small percentage of cases, FA is caused by biallelic pathogenic variants (PVs) in the BRCA2/FANCD1 gene, defining the FA-D1 subtype. Experimental and epidemiologic data indicate that the complete absence of BRCA2 is incompatible with viability. Therefore, cells from individuals affected with FA caused by biallelic BRCA2 PVs must have a residual BRCA2 function. This activity may be maintained through hypomorphic missense mutations, translation termination–reinitiation associated with a translational stop mutation, or other non-canonical or uncommon translation initiation and elongation events. In some cases, however, residual BRCA2 function is provided by alternatively or aberrantly spliced BRCA2 transcripts. Here, we review and debate aspects of the contribution of splicing in the 5′ segment to BRCA2 functions in the context of PVs affecting this largely intrinsically disordered protein region, with a focus on recent findings in individuals with FA-D1. In this Perspective, we also discuss some of the broader biological implications and open questions that arise from considering 5′-terminal BRCA2 splicing in light of old and new findings from FA-D1 patients and beyond. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

14 pages, 15324 KiB  
Article
Curcumin Induces Homologous Recombination Deficiency by BRCA2 Degradation in Breast Cancer and Normal Cells
by Zofia M. Komar, Marjolijn M. Ladan, Nicole S. Verkaik, Ahmed Dahmani, Elodie Montaudon, Elisabetta Marangoni, Roland Kanaar, Julie Nonnekens, Adriaan B. Houtsmuller, Agnes Jager and Dik C. van Gent
Cancers 2025, 17(13), 2109; https://doi.org/10.3390/cancers17132109 - 24 Jun 2025
Viewed by 584
Abstract
Background: Breast cancer (BC) is the most common cancer in women worldwide. Much progress has been made to improve treatment options for patients suffering from the disease, including a novel therapy—Poly (ADP-ribose) polymerase inhibitor (PARPi) that specifically targets tumors with deficiencies in [...] Read more.
Background: Breast cancer (BC) is the most common cancer in women worldwide. Much progress has been made to improve treatment options for patients suffering from the disease, including a novel therapy—Poly (ADP-ribose) polymerase inhibitor (PARPi) that specifically targets tumors with deficiencies in the Homologous Recombination (HR) DNA repair pathway. To benefit better from conventional therapy, many patients seek alternative supplementation, with 20–30% of cancer patients using herbal medication on top of their regular treatment. An example of such easily available over-the-counter supplements is curcumin, a natural compound derived from turmeric (Curcuma longa). Various studies reported the potential HR deficiency (HRD) inducing effect of curcumin in cancer cells. Methods: Eight BrC and three normal cell lines and a BrC PDX model were used to evaluate the effect of curcumin on RAD51 ionizing radiation-induced focus (IRIF) formation. Three breast BrC cell lines underwent further analysis using the BRCA2 Western blot technique. To assess cell survival after treatment with curcumin and/or PARPi, a clonogenic survival assay was performed on both normal and cancerous cell lines. Results: Curcumin treatment led to a reduction in RAD51 IRIF formation capacity across all tested models. A decrease in BRCA2 levels was observed in the tested cell lines. Our findings demonstrate that HRD can be induced in both cancerous and normal cells, suggesting that curcumin treatment may increase the risk of toxicity when combined with PARPi therapy. Conclusions: The use of curcumin in combination with certain anti-cancer treatments should not be implemented without extensive monitoring for deleterious side effects. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Graphical abstract

18 pages, 1692 KiB  
Review
Unraveling Homologous Recombination Deficiency in Ovarian Cancer: A Review of Currently Available Testing Platforms
by Nicola Marconato, Orazio De Tommasi, Dino Paladin, Diego Boscarino, Giulia Spagnol, Carlo Saccardi, Tiziano Maggino, Roberto Tozzi, Marco Noventa and Matteo Marchetti
Cancers 2025, 17(11), 1771; https://doi.org/10.3390/cancers17111771 - 25 May 2025
Viewed by 1224
Abstract
Homologous recombination deficiency (HRD) is a key biomarker associated with increased sensitivity to PARP inhibitors (PARPi) in advanced epithelial ovarian cancer. Accurate identification of HRD status is essential for selecting patients most likely to benefit from these therapies. Current diagnostic approaches combine sequencing [...] Read more.
Homologous recombination deficiency (HRD) is a key biomarker associated with increased sensitivity to PARP inhibitors (PARPi) in advanced epithelial ovarian cancer. Accurate identification of HRD status is essential for selecting patients most likely to benefit from these therapies. Current diagnostic approaches combine sequencing to detect mutations in homologous recombination repair genes—particularly BRCA1 and BRCA2—with genome-wide analysis of structural genomic alterations indicative of HRD. This review briefly outlines the biological basis of HRD and its clinical significance and then focuses on currently available assays for HRD assessment. We compare their molecular strategies, including the use of targeted gene panels and genomic instability metrics such as loss of heterozygosity, telomeric allelic imbalance, and large-scale state transitions. The review also highlights the strengths and limitations of each platform and discusses their role in guiding clinical decision-making. Challenges related to dynamic tumor evolution and the interpretation of HRD status in recurrent disease settings are also addressed. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

14 pages, 966 KiB  
Article
Niraparib Plus Aromatase Inhibitors for Hormone Receptor-Positive/HER2-Negative Advanced Breast Cancer with a Germline BRCA Mutation
by Laura Lema, José Manuel Pérez-García, Salvador Blanch, Judith Balmaña, José Ángel García-Sáenz, Elena Filipovich Vegas, Begoña Jiménez, Juan de la Haba, Marta Campolier, Eileen Shimizu, Daniel Alcalá-López, Miguel Sampayo-Cordero, Javier Cortés and Antonio Llombart-Cussac
Cancers 2025, 17(11), 1744; https://doi.org/10.3390/cancers17111744 - 22 May 2025
Viewed by 917
Abstract
Background: Niraparib is an oral poly (adenosine diphosphate-ribose) polymerase inhibitor with promising activity for patients with advanced breast cancer harboring germline BRCA1/2 mutations. Methods: LUZERN (NCT04240106) was a multicenter, open-label, Simon’s two-stage, phase II clinical trial evaluating the efficacy and safety of [...] Read more.
Background: Niraparib is an oral poly (adenosine diphosphate-ribose) polymerase inhibitor with promising activity for patients with advanced breast cancer harboring germline BRCA1/2 mutations. Methods: LUZERN (NCT04240106) was a multicenter, open-label, Simon’s two-stage, phase II clinical trial evaluating the efficacy and safety of niraparib with aromatase inhibitors (AIs) for patients with HR-positive/HER2-negative advanced breast cancer with either a germline BRCA1/2 mutation (cohort A) or germline BRCA1/2 wild-type and homologous recombination deficiency (exploratory cohort B). Eligible patients received ≤1 line of chemotherapy and 1–2 prior lines of endocrine therapy for advanced disease with secondary resistance to the last AI-based regimen. Patients received niraparib (300 mg or 200 mg) plus an AI. The primary endpoint was the clinical benefit rate (CBR) in cohort A. Results: Between June 2020 and November 2022, 14 patients were enrolled in cohort A (n = 6 for stage I, n = 8 for stage II) and no patients were enrolled in cohort B. One patient was excluded from the efficacy analysis due to no prior AI treatment. Nearly all patients (92.9%) previously received a cyclin-dependent kinase 4/6 inhibitor, but no patients had received prior platinum-based chemotherapy. Median follow-up was 16.7 months (range: 13.2–18.2). The CBR was 46.2% (95% CI: 19.2–74.9), meeting the primary endpoint. Median progression-free survival was 5.5 months (95% CI: 1.9–8.5), and median overall survival was 18.1 months (95% CI: 9.7–NE). The safety profile was consistent with the known toxicity of both drugs. Conclusions: Niraparib combined with an AI has encouraging antitumor activity and a manageable safety profile in patients with AI-resistant HR-positive/HER2-negative advanced breast cancer with germline BRCA1/2 mutations. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

13 pages, 5798 KiB  
Review
Recent Developments in Rare Ovarian Carcinosarcoma: Literature Review and Case Report
by Alexandra Nienhaus and Elena Bernad
Diseases 2025, 13(6), 163; https://doi.org/10.3390/diseases13060163 - 22 May 2025
Viewed by 594
Abstract
Background and Objectives: Ovarian carcinosarcoma (OCS) is a rare gynecologic malignancy defined by both epithelial and mesenchymal components, generally associated with advanced clinical stage and poor outcomes. We present a 66-year-old patient initially presenting with right iliac vein thrombosis, ultimately diagnosed with OCS, [...] Read more.
Background and Objectives: Ovarian carcinosarcoma (OCS) is a rare gynecologic malignancy defined by both epithelial and mesenchymal components, generally associated with advanced clinical stage and poor outcomes. We present a 66-year-old patient initially presenting with right iliac vein thrombosis, ultimately diagnosed with OCS, and place these findings in context with a focused literature review from 2000 through to 2024. Methods: A comprehensive account of the patient’s clinical course—spanning diagnostic imaging, surgical pathology, neoadjuvant chemotherapy, and interval debulking—was combined with a review of the current data on OCS pathogenesis, treatment protocols, and outcomes. Results: The patient’s tumor showed predominantly sarcomatous histology (approximately 90%) with high-grade serous features, responded to platinum/taxane chemotherapy, and was resected to no visible residual disease. The updated literature indicates that the majority of OCS cases present at advanced stages (often exceeding 60%), with suboptimal cytoreduction closely tied to worse prognosis. Up to 64% of tumors may harbor homologous recombination deficiency, offering a rationale for PARP inhibitor therapy; nonetheless, five-year survival rarely surpasses 45% in most series. Conclusions: Despite its aggressive course, optimal debulking surgery plus platinum-based chemotherapy remain central in treating OCS. Emerging molecular insights highlight homologous recombination deficiency and BRCA mutations as potential therapeutic targets. Multidisciplinary care and future prospective studies are key to improving long-term outcomes in this challenging malignancy. Full article
Show Figures

Figure 1

17 pages, 1115 KiB  
Article
Real-World Analysis of HRD Assay Variability in High-Grade Serous Ovarian Cancer: Impacts of BRCA1/2 Mutation Subtypes on HRD Assessment
by Giovanni Luca Scaglione, Valentina Lombardo, Maurizio Polano, Giuseppa Scandurra, Angela Pettinato, Corrado Giunta, Rosario Iemmolo, Paolo Scollo and Ettore D. Capoluongo
Biomolecules 2025, 15(5), 745; https://doi.org/10.3390/biom15050745 - 21 May 2025
Viewed by 1061
Abstract
The HRD (Homologous Recombination Deficiency) test is considered a genomic alteration useful for guiding therapeutic decisions in patients with ovarian cancer. Some commercial and in house alternative “academic” tests are available. Recent findings indicate that not all BRCA1/2 mutations determine the magnitude of [...] Read more.
The HRD (Homologous Recombination Deficiency) test is considered a genomic alteration useful for guiding therapeutic decisions in patients with ovarian cancer. Some commercial and in house alternative “academic” tests are available. Recent findings indicate that not all BRCA1/2 mutations determine the magnitude of HRD and that some patients carrying BRCA1/2 mutations may exhibit indeterminate or even negative HRD scores. Furthermore, certain therapies (e.g., olaparib and bevacizumab) offer particularly pronounced benefits for high-grade serous ovarian cancer (HGSOC) patients harboring mutations in the DNA-binding domain (DBD) of BRCA1/2. The aim of the present study is to investigate the relationship between the HRD scores and BRCA1/2 status of 51 HGSOC patients (50 BRCA1/2 mutated and 1 wild type). The HRD status was assessed by means of shallow whole-genome sequencing and BRCA1/2 status by the NGS pipeline. We did not find a correlation between the HRD status and type of BRCA1/2 alterations. A strong correlation between the HRD score and age was found. Our paper underlines the need to introduce other biological factors within the algorithms of the HRD evaluation in order to better tailor the HRD status, harmonize the metrics of the HRD assessment, and personalize therapies. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

25 pages, 1419 KiB  
Review
Cancer Vulnerabilities Through Targeting the ATR/Chk1 and ATM/Chk2 Axes in the Context of DNA Damage
by Anell Fernandez, Maider Artola, Sergio Leon, Nerea Otegui, Aroa Jimeno, Diego Serrano and Alfonso Calvo
Cells 2025, 14(10), 748; https://doi.org/10.3390/cells14100748 - 20 May 2025
Cited by 3 | Viewed by 1800
Abstract
Eliciting DNA damage in tumor cells continues to be one of the most successful strategies against cancer. This is the case for classical chemotherapy drugs and radiotherapy. In the modern era of personalized medicine, this strategy tries to identify specific vulnerabilities found in [...] Read more.
Eliciting DNA damage in tumor cells continues to be one of the most successful strategies against cancer. This is the case for classical chemotherapy drugs and radiotherapy. In the modern era of personalized medicine, this strategy tries to identify specific vulnerabilities found in each patient’s tumor, to inflict DNA damage in certain cell contexts that end up in massive cancer cell death. Cells rely on multiple DNA repair pathways to fix DNA damage, but cancer cells frequently exhibit defects in these pathways, many times being tolerant to the damage. Key vulnerabilities, such as BRCA1/BRCA2 mutations, have been exploited with PARP inhibitors, leveraging synthetic lethality to selectively kill tumor cells and improving patients’ survival. In the DNA damage response (DDR) network, kinases ATM, ATR, Chk1, and Chk2 coordinate DNA repair, cell cycle arrest, and apoptosis. Inhibiting these proteins enhances tumor sensitivity to DNA-damaging therapies, especially in DDR-deficient cancers. Several small-molecule inhibitors targeting ATM/Chk2 or ATR/Chk1 are currently being tested in preclinical and/or clinical settings, showing promise in cancer models and patients. Additionally, pharmacological blockade of ATM/Chk2 and ATR/Chk1 axes enhances the effects of immunotherapy by increasing tumor immunogenicity, promoting T-cell infiltration and activating immune responses. Combining ATM/Chk2- or ATR/Chk1-targeting drugs with conventional chemotherapy, radiotherapy or immune checkpoint inhibitors offers a compelling strategy to improve treatment efficacy, overcome resistance, and enhance patients’ survival in modern oncology. Full article
(This article belongs to the Special Issue Unlocking the Secrets Behind Drug Resistance at the Cellular Level)
Show Figures

Graphical abstract

20 pages, 4437 KiB  
Article
The Use of Mutational Signatures to Decipher the Inter-Relationship of Reactive Oxygen Species with Homologous Recombination and Non-Homologous End-Joining Deficiencies as Well as Their Effects on APOBEC Mutagenesis in Breast Cancer
by Amir Farmanbar, Robert Kneller and Sanaz Firouzi
Cancers 2025, 17(10), 1627; https://doi.org/10.3390/cancers17101627 - 12 May 2025
Viewed by 688
Abstract
Background: Defective DNA repair systems result in the accumulation of mutations, loss of genomic integrity, and eventually cancer. Following initial malignant transformation due to specific DNA damage and defective DNA repair, cancer cells become reliant upon other DNA repair pathways for their survival. [...] Read more.
Background: Defective DNA repair systems result in the accumulation of mutations, loss of genomic integrity, and eventually cancer. Following initial malignant transformation due to specific DNA damage and defective DNA repair, cancer cells become reliant upon other DNA repair pathways for their survival. The co-occurrence of specific repair deficiencies brings catastrophic outcomes such as cell death for cancer cells and thus holds promise as a potential therapeutic strategy. Exploring the co-occurrence and mutual exclusivity of mutational signatures provides valuable knowledge regarding combinations of defective repair pathways that are cooperative and confer selective advantage to cancer cells and those that are detrimental and cannot be tolerated by them. Methods: Taking advantage of mutational signature profiling, we analyzed whole-genome sequences of 1014 breast cancers to reveal the underlying mutational processes and their interrelationships. Results: We found an inverse relationship between deficiencies of homologous recombination (HRd) and non-homologous end joining (NHEJd) with reactive oxygen species (ROS). Moreover, HRd and NHEJd co-occurred with APOBEC but were mutually exclusive with mismatch repair deficiency (MMRd) and ROS. Our analysis revealed that SBS8 and SBS39 signatures of currently unknown etiology correlate with NHEJd. ID1 and ID2 signatures co-occur with ROS and have mutual exclusivity with HRd, SBS8, SBS39 and NHEJd. The ID4 signature, with currently unknown etiology, has mutual exclusivity with HRd and NHEJd and co-occurred with ROS. On the other hand, the ID15 signature, with currently unknown etiology, co-occurred with SBS8, SBS39, HRd, NHEJd and DBS2, while having an inverse relationship with MMRd and ROS. Comparing the mutational signatures of HRd and non-HRd TNBC genomes reveals the unique presence of ROS signatures in non-HRd tumors and the lack of ROS signature in HRd tumors. Conclusion: Taken together, these analyses indicate the possible application of mutation signatures and their interactions in advancing patient stratification and suggest appropriate therapies targeting the make-up of individual tumors’ mutational processes. Ultimately, this information provides the opportunity to discover promising synthetic lethal candidates targeting DNA repair systems. Full article
(This article belongs to the Section Cancer Epidemiology and Prevention)
Show Figures

Figure 1

17 pages, 1590 KiB  
Review
Molecular Mechanisms of Tumor Progression and Novel Therapeutic and Diagnostic Strategies in Mesothelioma
by Taketo Kato, Ichidai Tanaka, Heng Huang, Shoji Okado, Yoshito Imamura, Yuji Nomata, Hirofumi Takenaka, Hiroki Watanabe, Yuta Kawasumi, Keita Nakanishi, Yuka Kadomatsu, Harushi Ueno, Shota Nakamura, Tetsuya Mizuno and Toyofumi Fengshi Chen-Yoshikawa
Int. J. Mol. Sci. 2025, 26(9), 4299; https://doi.org/10.3390/ijms26094299 - 1 May 2025
Cited by 1 | Viewed by 1191
Abstract
Mesothelioma is characterized by the inactivation of tumor suppressor genes, with frequent mutations in neurofibromin 2 (NF2), BRCA1-associated protein 1 (BAP1), and cyclin-dependent kinase inhibitor 2A (CDKN2A). These mutations lead to disruptions in the Hippo signaling pathway [...] Read more.
Mesothelioma is characterized by the inactivation of tumor suppressor genes, with frequent mutations in neurofibromin 2 (NF2), BRCA1-associated protein 1 (BAP1), and cyclin-dependent kinase inhibitor 2A (CDKN2A). These mutations lead to disruptions in the Hippo signaling pathway and histone methylation, thereby promoting tumor growth. NF2 mutations result in Merlin deficiency, leading to uncontrolled cell proliferation, whereas BAP1 mutations impair chromatin remodeling and hinder DNA damage repair. Emerging molecular targets in mesothelioma include mesothelin (MSLN), oxytocin receptor (OXTR), protein arginine methyltransferase (PRMT5), and carbohydrate sulfotransferase 4 (CHST4). MSLN-based therapies, such as antibody–drug conjugates and immunotoxins, have shown efficacy in clinical trials. OXTR, upregulated in mesothelioma, is correlated with poor prognosis and represents a novel therapeutic target. PRMT5 inhibition is being explored in tumors with MTAP deletions, commonly co-occurring with CDKN2A loss. CHST4 expression is associated with improved prognosis, potentially influencing tumor immunity. Immune checkpoint inhibitors targeting PD-1/PD-L1 have shown promise in some cases; however, resistance mechanisms remain a challenge. Advances in multi-omics approaches have improved our understanding of mesothelioma pathogenesis. Future research will aim to identify novel therapeutic targets and personalized treatment strategies, particularly in the context of epigenetic therapy and combination immunotherapy. Full article
(This article belongs to the Special Issue Translational Oncology: From Molecular Basis to Therapy)
Show Figures

Figure 1

42 pages, 3927 KiB  
Review
Precision Targeting in Metastatic Prostate Cancer: Molecular Insights to Therapeutic Frontiers
by Whi-An Kwon and Jae Young Joung
Biomolecules 2025, 15(5), 625; https://doi.org/10.3390/biom15050625 - 27 Apr 2025
Cited by 1 | Viewed by 1645
Abstract
Metastatic prostate cancer (mPCa) remains a significant cause of cancer-related mortality in men. Advances in molecular profiling have demonstrated that the androgen receptor (AR) axis, DNA damage repair pathways, and the PI3K/AKT/mTOR pathway are critical drivers of disease progression and therapeutic resistance. Despite [...] Read more.
Metastatic prostate cancer (mPCa) remains a significant cause of cancer-related mortality in men. Advances in molecular profiling have demonstrated that the androgen receptor (AR) axis, DNA damage repair pathways, and the PI3K/AKT/mTOR pathway are critical drivers of disease progression and therapeutic resistance. Despite the established benefits of hormone therapy, chemotherapy, and bone-targeting agents, mPCa commonly becomes treatment-resistant. Recent breakthroughs have highlighted the importance of identifying actionable genetic alterations, such as BRCA2 or ATM defects, that render tumors sensitive to poly-ADP ribose polymerase (PARP) inhibitors. Parallel efforts have refined imaging—particularly prostate-specific membrane antigen (PSMA) positron emission tomography-computed tomography—to detect and localize metastatic lesions with high sensitivity, thereby guiding patient selection for PSMA-targeted radioligand therapies. Multi-omics innovations, including liquid biopsy technologies, enable the real-time tracking of emergent AR splice variants or reversion mutations, supporting adaptive therapy paradigms. Nonetheless, the complexity of mPCa necessitates combination strategies, such as pairing AR inhibition with PI3K/AKT blockade or PARP inhibitors, to inhibit tumor plasticity. Immuno-oncological approaches remain challenging for unselected patients; however, subsets with mismatch repair deficiency or neuroendocrine phenotypes may benefit from immune checkpoint blockade or targeted epigenetic interventions. We present these pivotal advances, and discuss how biomarker-guided integrative treatments can improve mPCa management. Full article
(This article belongs to the Special Issue Prostate Cancer Biomarkers and Therapeutics)
Show Figures

Figure 1

13 pages, 521 KiB  
Review
The Interplay Between DNA Repair and the Immune Microenvironment in Pancreatic Cancer
by Aaron Ciner, Peter J. Hosein, Yixing Jiang and Feyruz Rassool
Biomedicines 2025, 13(5), 1031; https://doi.org/10.3390/biomedicines13051031 - 24 Apr 2025
Viewed by 679
Abstract
This narrative review describes the relationship between DNA repair and the immune microenvironment in pancreatic cancer and its potential clinical relevance. Pancreatic cancer is a devastating disease, often diagnosed at an advanced and incurable stage. BRCA or PALB2 mutations occur in a small [...] Read more.
This narrative review describes the relationship between DNA repair and the immune microenvironment in pancreatic cancer and its potential clinical relevance. Pancreatic cancer is a devastating disease, often diagnosed at an advanced and incurable stage. BRCA or PALB2 mutations occur in a small subset, disabling accurate DNA double-strand break repair and sensitizing tumors to platinum-based chemotherapy and poly-ADP ribose polymerase inhibitors. While immune checkpoint blockade targeting PD1 and CTLA4 is ineffective for most patients, accumulating translational work indicates that those with BRCA or PALB2 mutations harbor a distinct and more permissive immune microenvironment. The phase 2 TAPUR study and retrospective series demonstrate that combined PD1 and CTLA4 inhibition can be effective for this subgroup of patients. In this manuscript, we review the current treatment landscape, the underlying mechanisms for immune resistance, and the interplay between defective DNA repair and the immune microenvironment in pancreatic cancer. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

21 pages, 1590 KiB  
Article
Enhancing Prognosis in Advanced Ovarian Cancer: Primary Cytoreductive Surgery and Adjuvant Chemotherapy or Neoadjuvant Chemotherapy and Interval Cytoreduction—A Single-Center Retrospective Observational Study
by Adelina Silvana Gheorghe, Irina Alexandra Chirea, Mădălin Marius Margan, Mihai-Teodor Georgescu, Isabela Anda Komporaly, Lidia Anca Kajanto, Elena Adriana Iovănescu, Bogdan Georgescu, Radu Matei, Daniela Luminița Zob, Mara Mardare, Octav Ginghină, Mara Mădălina Mihai and Dana Lucia Stănculeanu
Cancers 2025, 17(8), 1314; https://doi.org/10.3390/cancers17081314 - 14 Apr 2025
Viewed by 902
Abstract
Background: Advanced-stage ovarian cancer presents a significant therapeutic challenge, with primary cytoreductive surgery (PCS) followed by chemotherapy and neoadjuvant chemotherapy (NACT) with interval debulking surgery (IDS) as the two main treatment modalities. This study aims to compare the clinical outcomes, surgical complexity, and [...] Read more.
Background: Advanced-stage ovarian cancer presents a significant therapeutic challenge, with primary cytoreductive surgery (PCS) followed by chemotherapy and neoadjuvant chemotherapy (NACT) with interval debulking surgery (IDS) as the two main treatment modalities. This study aims to compare the clinical outcomes, surgical complexity, and survival rates between these approaches and to assess the impact of molecular markers such as BRCA and HRD status. Methods: This retrospective, single-center observational study included 100 patients diagnosed with stage III-IV high-grade serous ovarian cancer. The patients were divided into two cohorts based on their treatment strategy: PCS followed by adjuvant chemotherapy or NACT followed by IDS. Clinical outcomes, recurrence-free survival (RFS), progression-free survival (PFS), and overall survival (OS) were analyzed, along with the impact of genetic biomarkers. Results: No statistically significant differences were observed in OS and PFS between the two treatment approaches. Patients who underwent NACT followed by IDS had lower surgical complexity scores and reduced perioperative morbidity. The HRD-positive patients exhibited improved responses to PARP inhibitors, reinforcing the significance of molecular profiling in therapeutic decision-making. The KELIM scores demonstrated prognostic relevance, particularly in the patients receiving neoadjuvant chemotherapy. Conclusion: Both PCS and NACT-IDS are viable treatment options for advanced ovarian cancer, with similar survival outcomes. The choice between strategies should be tailored based on patient-specific factors, including tumor burden, performance status, and molecular profile. The integration of biomarkers such as BRCA mutations and HRD status into clinical practice can further refine treatment selection and improve personalized management strategies. Full article
Show Figures

Figure 1

14 pages, 6033 KiB  
Article
Ivosidenib Confers BRCAness Phenotype and Synthetic Lethality to Poly (ADP-Ribose) Polymerase Inhibition in BRCA1/2-Proficient Cancer Cells
by Danyang Zhou, Wei Liu, Yanyan Zhang and Chong Li
Biomedicines 2025, 13(4), 958; https://doi.org/10.3390/biomedicines13040958 - 14 Apr 2025
Viewed by 803
Abstract
Background/Objectives: PARP inhibitors (PARPi) are pivotal to treating homologous recombination repair-deficient (HRD) cancers, particularly BRCA1/2-mutated ovarian and breast cancers. However, most ovarian and breast cancers harbor wild-type (WT) BRCA1/2, limiting PARPi eligibility. This study aims to identify an approved drug [...] Read more.
Background/Objectives: PARP inhibitors (PARPi) are pivotal to treating homologous recombination repair-deficient (HRD) cancers, particularly BRCA1/2-mutated ovarian and breast cancers. However, most ovarian and breast cancers harbor wild-type (WT) BRCA1/2, limiting PARPi eligibility. This study aims to identify an approved drug that could induce a BRCAness phenotype, thereby sensitizing WT BRCA cancers to PARPi. Methods: Ovarian and breast cancer cell lines with WT BRCA1/2 were treated with ivosidenib. HR repair efficiency was assessed via RAD51 foci formation and reporter assays. Synthetic lethality with PARPi was evaluated using viability and colony formation assays. Mechanistic studies included RNA-binding protein pulldown, co-immunoprecipitation, and functional analyses of DNA repair pathways. YTHDC2′s role in HR was investigated through siRNA knockdown and rescue experiments. Results: Ivosidenib significantly reduced HR repair efficiency and sensitized cells to PARPi, inducing synthetic lethality. Mechanistically, ivosidenib directly bound YTHDC2, an m6A reader critical for HR. This interaction disrupted YTHDC2′s ability to promote DNA double-strand break repair via HR, evidenced by impaired recruitment of repair proteins (e.g., BRCA1, RAD51) and accumulation of DNA damage (γH2AX foci). YTHDC2 knockdown phenocopied ivosidenib effects, while overexpression rescued HR defects. Conclusions: Ivosidenib induces BRCAness in WT BRCA ovarian and breast cancers by targeting YTHDC2, thereby suppressing HR repair and enhancing PARPi sensitivity. This uncovers a novel, metabolism-independent mechanism of ivosidenib, repositioning it as a therapeutic agent for HRD tumors. These findings propose a strategy to expand PARPi eligibility to WT BRCA cancers, addressing a critical unmet need in oncology. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

20 pages, 2014 KiB  
Review
Overview of Roles of Novel Components in the Regulation of DNA Damage Repair in BRCA1-Deficient Cancers: An Update
by Nhat Nguyen, Dominic Arris and Manh Tien Tran
DNA 2025, 5(2), 17; https://doi.org/10.3390/dna5020017 - 1 Apr 2025
Viewed by 1374
Abstract
Cancers that arise from germline mutations of breast cancer associated gene 1 (BRCA1), which is a crucial player in homologous recombination (HR) DNA repair, are vulnerable to DNA-damaging agents such as platinum and PARP inhibitors (PARPis). Increasing evidence suggests that BRCA1 [...] Read more.
Cancers that arise from germline mutations of breast cancer associated gene 1 (BRCA1), which is a crucial player in homologous recombination (HR) DNA repair, are vulnerable to DNA-damaging agents such as platinum and PARP inhibitors (PARPis). Increasing evidence suggests that BRCA1 is an essential driver of all phases of the cell cycle, thereby maintaining orderly steps during cell cycle progression. Specifically, loss of BRCA1 activity causes the S-phase, G2/M, spindle checkpoints, and centrosome duplication to be dysregulated, thereby blocking cell proliferation and inducing apoptosis. In vertebrates, loss of HR genes such as BRCA1 and/or BRCA2 is lethal, since HR is a prerequisite for genome integrity. Thus, cancer cells utilize alternative DNA repair pathways such as non-homologous end joining (NHEJ) to cope with the loss of BRCA1 function. In this review, we attempt to update and discuss how these novel components are crucial for regulating DNA damage repair (DDR) in BRCA1-deficient cancers. Full article
Show Figures

Graphical abstract

Back to TopTop