Niraparib Plus Aromatase Inhibitors for Hormone Receptor-Positive/HER2-Negative Advanced Breast Cancer with a Germline BRCA Mutation
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Trial Design
2.2. Patients
2.3. Trial Oversight
2.4. Endpoints and Assessments
2.5. Statistical Analysis
3. Results
3.1. Patients
3.2. Efficacy Analysis
Efficacy Analysis Based on Previous AIs
3.3. Safety
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Aromatase inhibitor |
BRCA | Breast cancer gene |
CBR | Clinical benefit rate |
CDK | Cyclin-dependent kinase |
CI | Confidence interval |
CR | Complete response |
CTCAE | Common Terminology Criteria for Adverse Event |
DNA | Deoxyribonucleic acid |
DoR | Duration of response |
ECOG | Eastern Cooperative Oncology Group |
gBRCAm | Germline BRCA1/2 mutation |
gBRCAwt | Germline BRCA1/2 wild type |
HER2 | Human epidermal growth factor 2 |
HR | Hormonal receptor |
HRD | Homologous repair deficiencies |
HRR | Homologous recombination repair |
KM Est | Kaplan–Meier estimated |
mTOR | Mammalian target of rapamycin |
N | Number of patients |
NE | Not evaluable |
NCI | National Cancer Institute |
OS | Overall survival |
ORR | Overall response rate |
PARP | Poly (adenosine diphosphate-ribose) polymerase |
PD | Progressive disease |
PFS | Progression-free survival |
PR | Partial response |
RAD51 | Radiation-sensitive gene 51 |
RECIST | Response Evaluation Criteria in Solid Tumors |
SD | Stable disease |
TEAE | Treatment-emergent adverse event |
TTR | Time to response |
W | Weeks |
n (%) | Number of patients (percentage of patients) |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.; Morgan, E.; Rumgay, H.; Mafra, A.; Singh, D.; Laversanne, M.; Vignat, J.; Gralow, J.R.; Cardoso, F.; Siesling, S.; et al. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast 2022, 66, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Ottini, L.; Rizzolo, P.; Silvestri, V.; Falchetti, M. Inherited and acquired alterations in development of breast cancer. Appl. Clin. Genet. 2011, 4, 145–158. [Google Scholar] [CrossRef]
- Godet, I.; Gilkes, D. BRCA1 and BRCA2 mutations and treatment strategies for breast cancer. Integr. Cancer Sci. Ther. 2017, 4, 1000228. Available online: http://oatext.com/BRCA1-and-BRCA2-mutations-and-treatment-strategies-for-breast-cancer.php (accessed on 20 May 2024). [CrossRef]
- Winter, C.; Nilsson, M.P.; Olsson, E.; George, A.M.; Chen, Y.; Kvist, A.; Törngren, T.; Vallon-Christersson, J.; Hegardt, C.; Häkkinen, J.; et al. Targeted sequencing of BRCA1 and BRCA2 across a large unselected breast cancer cohort suggests that one-third of mutations are somatic. Ann. Oncol. 2016, 27, 1532–1538. [Google Scholar] [CrossRef]
- Breast Cancer Association Consortium. Breast Cancer Risk Genes—Association Analysis in More than 113,000 Women. N. Engl. J. Med. 2021, 384, 428–439. [Google Scholar] [CrossRef]
- Hu, C.; Hart, S.N.; Gnanaolivu, R.; Huang, H.; Lee, K.Y.; Na, J.; Gao, C.; Lilyquist, J.; Yadav, S.; Boddicker, N.J.; et al. A Population-Based Study of Genes Previously Implicated in Breast Cancer. N. Engl. J. Med. 2021, 384, 440–451. [Google Scholar] [CrossRef]
- Roy, R.; Chun, J.; Powell, S.N. BRCA1 and BRCA2: Different roles in a common pathway of genome protection. Nat. Rev. Cancer 2012, 12, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Antoniou, A.C.; Kuchenbaecker, K.B.; Soucy, P.; Beesley, J.; Chen, X.; McGuffog, L.; Lee, A.; Barrowdale, D.; Healey, S.; Sinilnikova, O.M.; et al. Common variants at 12p11, 12q24, 9p21, 9q31.2 and in ZNF365 are associated with breast cancer risk for BRCA1 and/or BRCA2 mutation carriers. Breast Cancer Res. 2012, 14, R33. [Google Scholar] [CrossRef]
- Mavaddat, N.; Barrowdale, D.; Andrulis, I.L.; Domchek, S.M.; Eccles, D.; Nevanlinna, H.; Ramus, S.J.; Spurdle, A.; Robson, M.; Sherman, M.; et al. Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: Results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Cancer Epidemiol. Biomark. Prev. 2012, 21, 134–147. [Google Scholar] [CrossRef]
- Sánchez-Bayona, R.; Oliveira, M. Overall survival in first-line HR+/HER2- advanced breast cancer in the era of CDK4/6 inhibitors. Ann. Oncol. 2024, 35, 689–691. [Google Scholar] [CrossRef] [PubMed]
- Bardia, A.; Bidard, F.C.; Neven, P.; Streich, G.; Montero, A.J.; Forget, F.; Mouret-Reynier, M.A.; Sohn, J.H.; Taylor, D.; Harnden, K.K.; et al. Abstract GS3-01, GS3-01 EMERALD phase 3 trial of elacestrant versus standard of care endocrine therapy in patients with ER+/HER2- metastatic breast cancer: Updated results by duration of prior CDK4/6i in metastatic setting. Cancer Res. 2023, 83, GS3-01. [Google Scholar] [CrossRef]
- André, F.; Ciruelos, E.M.; Juric, D.; Loibl, S.; Campone, M.; Mayer, I.A.; Rubovszky, G.; Yamashita, T.; Kaufman, B.; Lu, Y.S.; et al. Alpelisib plus fulvestrant for PIK3CA-mutated, hormone receptor-positive, human epidermal growth factor receptor-2–negative advanced breast cancer: Final overall survival results from SOLAR-1. Ann. Oncol. 2021, 32, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Robson, M.; Im, S.A.; Senkus, E.; Xu, B.; Domchek, S.M.; Masuda, N.; Delaloge, S.; Li, W.; Tung, N.; Armstrong, A.; et al. Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation. N. Engl. J. Med. 2017, 377, 523–533. [Google Scholar] [CrossRef] [PubMed]
- Litton, J.K.; Rugo, H.S.; Ettl, J.; Hurvitz, S.A.; Gonçalves, A.; Lee, K.H.; Fehrenbacher, L.; Yerushalmi, R.; Mina, L.A.; Martin, M.; et al. Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation. N. Engl. J. Med. 2018, 379, 753–763. [Google Scholar] [CrossRef]
- Walsh, C.S. Two decades beyond BRCA1/2: Homologous recombination, hereditary cancer risk and a target for ovarian cancer therapy. Gynecol. Oncol. 2015, 137, 343–350. [Google Scholar] [CrossRef]
- Patsouris, A.; Tredan, O.; Nenciu, D.; Tran-Dien, A.; Campion, L.; Goncalves, A.; Arnedos, M.; Sablin, M.P.; Gouraud, W.; Jimenez, M.; et al. RUBY: A phase II study testing rucaparib in germline (g) BRCA wild-type patients presenting metastatic breast cancer (mBC) with homologous recombination deficiency (HRD). J. Clin. Oncol. 2019, 37, 1092. [Google Scholar] [CrossRef]
- Tung, N.M.; Robson, M.E.; Ventz, S.; Santa-Maria, C.A.; Nanda, R.; Marcom, P.K.; Shah, P.D.; Ballinger, T.J.; Yang, E.S.; Vinayak, S.; et al. TBCRC 048: Phase II Study of Olaparib for Metastatic Breast Cancer and Mutations in Homologous Recombination-Related Genes. J. Clin. Oncol. 2020, 38, 4274–4282. [Google Scholar] [CrossRef]
- Hyman, D.; Hendifar, A.; Cheol Chung, H.; Maio, M.; Leary, A.; Spanggaard, I.; Rhee, J.; Marton, M.; Chen, M.; Krishnan, S.; et al. Phase II study of olaparib in previously treated advanced solid tumours with homologous recombination repair mutation (HRRm) or homologous recombination repair deficiency (HRD): LYNK-002. Ann. Oncol. 2019, 30, v53–v54. [Google Scholar] [CrossRef]
- De La Haba, J.; Guerrero-Zotano, A.; Perez-Fidalgo, J.A.; Gonzalez Santiago, S.; Muñoz, M.; Andres, R.; Cruz Zambrano, C.; Moran Salama, S.; Lopez-Tarruella, S.; Quiroga Garcia, V.; et al. A phase II clinical trial to analyze olaparib response in patients with BRCA1 and/or BRCA 2 promoter methylation with advanced breast cancer (GEICAM/2015-06 COMETA-Breast study). J. Clin. Oncol. 2018, 36, TPS1114. [Google Scholar] [CrossRef]
- Gruber, J.J.; Afghahi, A.; Hatton, A.; Scott, D.; McMillan, A.; Ford, J.M.; Telli, M.L. Talazoparib beyond BRCA: A phase II trial of talazoparib monotherapy in BRCA1 and BRCA2 wild-type patients with advanced HER2-negative breast cancer or other solid tumors with a mutation in homologous recombination (HR) pathway genes. J. Clin. Oncol. 2019, 37, 3006. [Google Scholar] [CrossRef]
- Mirza, M.R.; Monk, B.J.; Herrstedt, J.; Oza, A.M.; Mahner, S.; Redondo, A.; Fabbro, M.; Ledermann, J.A.; Lorusso, D.; Vergote, I.; et al. Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer. N. Engl. J. Med. 2016, 375, 2154–2164. [Google Scholar] [CrossRef]
- Spring, L.M.; Gupta, A.; Reynolds, K.L.; Gadd, M.A.; Ellisen, L.W.; Isakoff, S.J.; Moy, B.; Bardia, A. Neoadjuvant Endocrine Therapy for Estrogen Receptor-Positive Breast Cancer: A Systematic Review and Meta-analysis. JAMA Oncol. 2016, 2, 1477–1486. [Google Scholar] [CrossRef] [PubMed]
- Vinayak, S.; Tolaney, S.M.; Schwartzberg, L.; Mita, M.; McCann, G.; Tan, A.R.; Wahner-Hendrickson, A.E.; Forero, A.; Anders, C.; Wulf, G.M.; et al. Open-label Clinical Trial of Niraparib Combined with Pembrolizumab for Treatment of Advanced or Metastatic Triple-Negative Breast Cancer. JAMA Oncol. 2019, 5, 1132. [Google Scholar] [CrossRef]
- Turner, N.C.; Balmaña, J.; Poncet, C.; Goulioti, T.; Tryfonidis, K.; Honkoop, A.H.; Zoppoli, G.; Razis, E.; Johannsson, O.T.; Colleoni, M.; et al. Niraparib for Advanced Breast Cancer with Germline BRCA1 and BRCA2 Mutations: The EORTC 1307-BCG/BIG5–13/TESARO PR-30–50–10-C BRAVO Study. Clin. Cancer Res. 2021, 27, 5482–5491. [Google Scholar] [CrossRef]
- Robson, M.E.; Tung, N.; Conte, P.; Im, S.A.; Senkus, E.; Xu, B.; Masuda, N.; Delaloge, S.; Li, W.; Armstrong, A.; et al. OlympiAD final overall survival and tolerability results: Olaparib versus chemotherapy treatment of physician’s choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer. Ann. Oncol. 2019, 30, 558–566. [Google Scholar] [CrossRef] [PubMed]
- Litton, J.K.; Hurvitz, S.A.; Mina, L.A.; Rugo, H.S.; Lee, K.H.; Gonçalves, A.; Diab, S.; Woodward, N.; Goodwin, A.; Yerushalmi, R.; et al. Talazoparib versus chemotherapy in patients with germline BRCA1/2-mutated HER2-negative advanced breast cancer: Final overall survival results from the EMBRACA trial. Ann. Oncol. 2020, 31, 1526–1535. [Google Scholar] [CrossRef]
- Collins, J.M.; Nordstrom, B.L.; McLaurin, K.K.; Dalvi, T.B.; McCutcheon, S.C.; Bennett, J.C.; Murphy, B.R.; Singhal, P.K.; McCrea, C.; Shinde, R.; et al. A Real-World Evidence Study of CDK4/6 Inhibitor Treatment Patterns and Outcomes in Metastatic Breast Cancer by Germline BRCA Mutation Status. Oncol Ther. 2021, 9, 575–589. [Google Scholar] [CrossRef]
- Bruno, L.; Ostinelli, A.; Waisberg, F.; Enrico, D.; Ponce, C.; Rivero, S.; Blanco, A.; Zarba, M.; Loza, M.; Fabiano, V.; et al. Cyclin-Dependent Kinase 4/6 Inhibitor Outcomes in Patients With Advanced Breast Cancer Carrying Germline Pathogenic Variants in DNA Repair–Related Genes. JCO Precis. Oncol. 2022, 6, e2100140. [Google Scholar] [CrossRef]
- Guiu, S.; Balmaña, J.; Lemercier, P.; Follana, P.; Gonçalves, A.; Bigot, F.; Frenel, J.S.; Brain, E.G.C.; Mailliez, A.; Brugere, C.C.; et al. 179O Combination of olaparib, durvalumab and fulvestrant in patients with advanced ER-positive, HER2-negative breast cancer harboring homologous recombination repair (HRR) deficiency or microsatellite instability (MSI): Results of the international phase II DOLAF trial. ESMO Open 2024, 9, 103201. [Google Scholar]
Baseline Characteristics; N = 14 | n (%) |
---|---|
Age, Median (min; max) years | 46 (32; 83) |
ECOG | |
0 | 8 (57.1%) |
1 | 6 (42.9%) |
Visceral involvement | |
No | 4 (28.6%) |
Yes | 10 (71.4%) |
Number of metastatic sites | |
1 | 3 (21.4%) |
2 | 5 (35.7%) |
≥3 | 6 (42.9%) |
Previous treatment with targeted therapy for advanced disease | |
CDK4/6 inhibitor | 13 (92.9%) |
mTOR inhibitor | 1 (7.1%) |
Previous lines of chemotherapy for advanced disease | |
0 | 9 (64.3%) |
1 | 5 (35.7%) |
Previous lines of systemic therapy for advanced disease | |
0 | 1 (7.1%) |
1 | 6 (42.9%) |
2 | 3 (21.4%) |
≥3 | 4 (28.6%) |
Patients treated with an AI different from the last AI-containing regimen | |
No | 8 (57.1%) |
Yes | 6 (42.9%) |
Different AI (N = 5) | Same AI (N = 8) | Overall (N = 13) | |
---|---|---|---|
Clinical Benefit Rate (CBR) | |||
No | 1 (20.0%) | 6 (75.0%) | 7 (53.8%) |
Yes | 4 (80.0%) | 2 (25.0%) | 6 (46.2%) |
95% CI | (28.4%; 99.5%) | (3.2%; 65.1%) | (19.2%; 74.9%) |
Best Overall Response (BOR) | |||
CR | 1 (20.0%) | 1 (12.5%) | 2 (15.4%) |
PR | 2 (40.0%) | 0 (0.0%) | 2 (15.4%) |
SD ≥ 24 w | 1 (20.0%) | 1 (12.5%) | 2 (15.4%) |
SD < 24 w | 0 (0.0%) | 4 (50.0%) | 4 (30.8%) |
PD | 0 (0.0%) | 1 (12.5%) | 1 (7.7%) |
NE | 1 (20.0%) | 1 (12.5%) | 2 (15.4%) |
Objective Response Rate (ORR) | |||
No | 2 (40.0%) | 7 (87.5%) | 9 (69.2%) |
Yes | 3 (60.0%) | 1 (12.5%) | 4 (30.8%) |
95% CI | (14.7%; 94.7%) | (0.3%; 52.7%) | (9.1%; 61.4%) |
Overall (N = 14) | TEAEs | Related TEAEs | ||
---|---|---|---|---|
n (%) | Any | G3 | Any | G3 |
Any | 13 (92.9%) | 6 (42.9%) | 10 (71.4%) | 4 (28.6%) |
Hematologic | ||||
Neutropenia | 7 (50.0%) | 1 (7.1%) | 5 (35.7%) | 1 (7.1%) |
Anemia | 7 (50.0%) | 2 (14.3%) | 3 (21.4%) | 1 (7.1%) |
Thrombocytopenia | 4 (28.6%) | 1 (7.1%) | 2 (14.3%) | 1 (7.1%) |
Leukopenia | 2 (14.3%) | 0 (0.0%) | 1 (7.1%) | 0 (0.0%) |
Non-hematologic | ||||
Fatigue | 10 (71.4%) | 0 (0.0%) | 5 (35.7%) | 0 (0.0%) |
Nausea | 8 (57.1%) | 1 (7.1%) | 7 (50.0%) | 1 (7.1%) |
Vomiting | 4 (28.6%) | 1 (7.1%) | 4 (28.6%) | 1 (7.1%) |
Abdominal discomfort | 2 (14.1%) | 0 (0.0%) | 1 (7.1%) | 0 (0.0%) |
Constipation | 2 (14.1%) | 0 (0.0%) | 1 (7.1%) | 0 (0.0%) |
Limb discomfort | 2 (14.1%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) |
Musculoskeletal chest pain | 2 (14.1%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) |
Palpitations | 2 (14.1%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lema, L.; Pérez-García, J.M.; Blanch, S.; Balmaña, J.; García-Sáenz, J.Á.; Vegas, E.F.; Jiménez, B.; de la Haba, J.; Campolier, M.; Shimizu, E.; et al. Niraparib Plus Aromatase Inhibitors for Hormone Receptor-Positive/HER2-Negative Advanced Breast Cancer with a Germline BRCA Mutation. Cancers 2025, 17, 1744. https://doi.org/10.3390/cancers17111744
Lema L, Pérez-García JM, Blanch S, Balmaña J, García-Sáenz JÁ, Vegas EF, Jiménez B, de la Haba J, Campolier M, Shimizu E, et al. Niraparib Plus Aromatase Inhibitors for Hormone Receptor-Positive/HER2-Negative Advanced Breast Cancer with a Germline BRCA Mutation. Cancers. 2025; 17(11):1744. https://doi.org/10.3390/cancers17111744
Chicago/Turabian StyleLema, Laura, José Manuel Pérez-García, Salvador Blanch, Judith Balmaña, José Ángel García-Sáenz, Elena Filipovich Vegas, Begoña Jiménez, Juan de la Haba, Marta Campolier, Eileen Shimizu, and et al. 2025. "Niraparib Plus Aromatase Inhibitors for Hormone Receptor-Positive/HER2-Negative Advanced Breast Cancer with a Germline BRCA Mutation" Cancers 17, no. 11: 1744. https://doi.org/10.3390/cancers17111744
APA StyleLema, L., Pérez-García, J. M., Blanch, S., Balmaña, J., García-Sáenz, J. Á., Vegas, E. F., Jiménez, B., de la Haba, J., Campolier, M., Shimizu, E., Alcalá-López, D., Sampayo-Cordero, M., Cortés, J., & Llombart-Cussac, A. (2025). Niraparib Plus Aromatase Inhibitors for Hormone Receptor-Positive/HER2-Negative Advanced Breast Cancer with a Germline BRCA Mutation. Cancers, 17(11), 1744. https://doi.org/10.3390/cancers17111744