Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (98)

Search Parameters:
Keywords = BDS GEO

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4409 KiB  
Article
Differences in Time Comparison and Positioning of BDS-3 PPP-B2b Signal Broadcast Through GEO
by Hongjiao Ma, Jinming Yang, Xiaolong Guan, Jianfeng Wu and Huabing Wu
Remote Sens. 2025, 17(14), 2351; https://doi.org/10.3390/rs17142351 - 9 Jul 2025
Viewed by 279
Abstract
The BeiDou-3 Navigation Satellite System (BDS-3) precise point positioning (PPP) service through the B2b signal (PPP-B2b) leverages precise correction data disseminated by satellites to eliminate or mitigate key error sources, including satellite orbit errors, clock biases, and ionospheric delays, thereby enabling high-precision timing [...] Read more.
The BeiDou-3 Navigation Satellite System (BDS-3) precise point positioning (PPP) service through the B2b signal (PPP-B2b) leverages precise correction data disseminated by satellites to eliminate or mitigate key error sources, including satellite orbit errors, clock biases, and ionospheric delays, thereby enabling high-precision timing and positioning. This paper investigates the disparities in time comparison and positioning capabilities associated with the PPP-B2b signals transmitted by the BDS-3 Geostationary Earth Orbit (GEO) satellites (C59 and C61). Three stations in the Asia–Pacific region were selected to establish two time comparison links. The study evaluated the time transfer accuracy of PPP-B2b signals by analyzing orbit and clock corrections from BDS-3 GEO satellites C59 and C61. Using multi-GNSS final products (GBM post-ephemeris) as a reference, the performance of PPP-B2b-based time comparison was assessed. The results indicate that while both satellites achieve comparable time transfer accuracy, C59 demonstrates superior stability and availability compared to C61. Additionally, five stations from the International GNSS Service (IGS) and the International GNSS Monitoring and Assessment System (iGMAS) were selected to assess the positioning accuracy of PPP-B2b corrections transmitted by BDS-3 GEO satellites C59 and C61. Using IGS/iGMAS weekly solution positioning results as a reference, the analysis demonstrates that PPP-B2b enables centimeter-level static positioning and decimeter-level simulated kinematic positioning. Furthermore, C59 achieves higher positioning accuracy than C61. Full article
Show Figures

Figure 1

26 pages, 9399 KiB  
Article
An Investigation of Pre-Seismic Ionospheric TEC and Acoustic–Gravity Wave Coupling Phenomena Using BDS GEO Measurements: A Case Study of the 2023 Jishishan Ms6.2 Earthquake
by Xiao Gao, Lina Shu, Zongfang Ma, Penggang Tian, Lin Pan, Hailong Zhang and Shuai Yang
Remote Sens. 2025, 17(13), 2296; https://doi.org/10.3390/rs17132296 - 4 Jul 2025
Viewed by 435
Abstract
This study investigates pre-seismic ionospheric anomalies preceding the 2023 Jishishan Ms6.2 earthquake using total electron content (TEC) data derived from BDS geostationary orbit (GEO) satellites. Multi-scale analysis integrating Butterworth filtering and wavelet transforms resolved TEC disturbances into three distinct frequency regimes: (1) high-frequency [...] Read more.
This study investigates pre-seismic ionospheric anomalies preceding the 2023 Jishishan Ms6.2 earthquake using total electron content (TEC) data derived from BDS geostationary orbit (GEO) satellites. Multi-scale analysis integrating Butterworth filtering and wavelet transforms resolved TEC disturbances into three distinct frequency regimes: (1) high-frequency perturbations (0.56–3.33 mHz) showed localized disturbances (amplitude ≤ 4 TECU, range < 300 km), potentially associated with near-field acoustic waves from crustal stress adjustments; (2) mid-frequency signals (0.28–0.56 mHz) exhibited anisotropic propagation (>1200 km) with azimuth-dependent N-shaped waveforms, consistent with the characteristics of acoustic–gravity waves (AGWs); and (3) low-frequency components (0.18–0.28 mHz) demonstrated phase reversal and power-law amplitude attenuation, suggesting possible lithosphere–atmosphere–ionosphere (LAI) coupling oscillations. The stark contrast between near-field residuals and far-field weak fluctuations highlighted the dominance of large-scale atmospheric gravity waves over localized acoustic disturbances. Geometry-based velocity inversion revealed incoherent high-frequency dynamics (5–30 min) versus anisotropic mid/low-frequency traveling ionospheric disturbance (TID) propagation (30–90 min) at 175–270 m/s, aligning with theoretical AGW behavior. During concurrent G1-class geomagnetic storm activity, spatial attenuation gradients and velocity anisotropy appear primarily consistent with seismogenic sources, providing insights for precursor discrimination and contributing to understanding multi-scale coupling in seismo-ionospheric systems. Full article
Show Figures

Figure 1

17 pages, 3775 KiB  
Article
Suitability Evaluation of Site-Level CO2 Geo-Storage in Saline Aquifers of Ying–Qiong Basin, South China Sea
by Jin Liao, Cai Li, Qihui Yang, Aixia Sun, Guangze Song, Joaquin Couchot, Aohan Jin and Quanrong Wang
Energies 2025, 18(13), 3388; https://doi.org/10.3390/en18133388 - 27 Jun 2025
Viewed by 262
Abstract
CO2 geo-storage is a promising approach in reducing greenhouse gas emissions and controlling global temperature rise. Although numerous studies have reported that offshore saline aquifers have greater storage potential and safety, current suitability evaluation models for CO2 geo-storage primarily focus on [...] Read more.
CO2 geo-storage is a promising approach in reducing greenhouse gas emissions and controlling global temperature rise. Although numerous studies have reported that offshore saline aquifers have greater storage potential and safety, current suitability evaluation models for CO2 geo-storage primarily focus on onshore saline aquifers, and site-level evaluations for offshore CO2 geo-storage remain unreported. In this study, we propose a framework to evaluate the site-level offshore CO2 geo-storage suitability with a multi-tiered indicator system, which considers three types of factors: engineering geology, storage potential, and socio-economy. Compared to the onshore CO2 geo-storage suitability evaluation models, the proposed indicator system considers the unique conditions of offshore CO2 geo-storage, including water depth, offshore distance, and distance from drilling platforms. The Analytic Hierarchy Process (AHP) and Fuzzy Comprehensive Evaluation (FCE) methods were integrated and applied to the analysis of the Ying–Qiong Basin, South China Sea. The results indicated that the average suitability score in the Yinggehai Basin (0.762) was higher than that in the Qiongdongnan Basin (0.691). This difference was attributed to more extensive fault development in the Qiongdongnan Basin, suggesting that the Yinggehai Basin is more suitable for CO2 geo-storage. In addition, the DF-I reservoir in the Yinggehai Basin and the BD-A reservoir in the Qiongdongnan Basin were selected as the optimal CO2 geo-storage targets for the two sub-basins, with storage potentials of 1.09 × 108 t and 2.40 × 107 t, respectively. This study advances the methodology for assessing site-level potential of CO2 geo-storage in offshore saline aquifers and provides valuable insights for engineering applications and decision-making in future CO2 geo-storage projects in the Ying–Qiong Basin. Full article
Show Figures

Figure 1

18 pages, 9085 KiB  
Article
Analysis of Ionospheric Disturbances in China During the December 2023 Geomagnetic Storm Using Multi-Instrument Data
by Jun Tang, Sheng Wang, Jintao Wang, Mingxian Hu and Chaoqian Xu
Remote Sens. 2025, 17(9), 1629; https://doi.org/10.3390/rs17091629 - 4 May 2025
Viewed by 599
Abstract
This study investigates the ionospheric response over China during the geomagnetic storm that occurred on 1–2 December 2023. The data used include GPS measurements from the Crustal Movement Observation Network of China, BDS-GEO satellite data from IGS MEGX stations, [O]/[N2] ratio [...] Read more.
This study investigates the ionospheric response over China during the geomagnetic storm that occurred on 1–2 December 2023. The data used include GPS measurements from the Crustal Movement Observation Network of China, BDS-GEO satellite data from IGS MEGX stations, [O]/[N2] ratio information obtained by the TIMED/GUVI, and electron density (Ne) observations from Swarm satellites. The Prophet time series forecasting model is employed to detect ionospheric anomalies. VTEC variations reveal significant daytime increases in GNSS stations such as GAMG, URUM, and CMUM after the onset of the geomagnetic storm on 1 December, indicating a dayside positive ionospheric response primarily driven by prompt penetration electric fields (PPEF). In contrast, the stations JFNG and CKSV show negative responses, reflecting regional differences. The [O]/[N2] ratio increased significantly in the southern region between 25°N and 40°N, suggesting that atmospheric gravity waves (AGWs) induced thermospheric compositional changes, which played a crucial role in the ionospheric disturbances. Ne observations from Swarm A and C satellites further confirmed that the intense ionospheric perturbations were consistent with changes in VTEC and [O]/[N2], indicating the medium-scale traveling ionospheric disturbance was driven by atmospheric gravity waves. Precise point positioning (PPP) analysis reveals that ionospheric variations during the geomagnetic storm significantly impact GNSS positioning precision, with various effects across different stations. Station GAMG experienced disturbances in the U direction (vertical positioning error) at the onset of the storm but quickly stabilized; station JFNG showed significant fluctuations in the U direction around 13:00 UT; and station CKSV experienced similar fluctuations during the same period; station CMUM suffered minor disturbances in the U direction; while station URUM maintained relatively stable positioning throughout the storm, corresponding to steady VTEC variations. These findings demonstrate the substantial impact of ionospheric disturbances on GNSS positioning accuracy in southern and central China during the geomagnetic storm. This study reveals the complex and dynamic processes of ionospheric disturbances over China during the 1–2 December 2023 storm, highlighting the importance of ionospheric monitoring and high-precision positioning corrections during geomagnetic storms. The results provide scientific implications for improving GNSS positioning stability in mid- and low-latitude regions. Full article
(This article belongs to the Special Issue BDS/GNSS for Earth Observation: Part II)
Show Figures

Figure 1

19 pages, 5290 KiB  
Article
Real-Time Regional Ionospheric Total Electron Content Modeling Using the Extended Kalman Filter
by Jun Tang, Yuhan Gao, Heng Liu, Mingxian Hu, Chaoqian Xu and Liang Zhang
Remote Sens. 2025, 17(9), 1568; https://doi.org/10.3390/rs17091568 - 28 Apr 2025
Viewed by 468
Abstract
Real-time ionospheric products can accelerate the convergence of real-time precise point positioning (PPP) to improve the real-time positioning services of global navigation satellite systems (GNSSs), as well as to achieve continuous monitoring of the ionosphere. This study applied an extended Kalman filter (EKF) [...] Read more.
Real-time ionospheric products can accelerate the convergence of real-time precise point positioning (PPP) to improve the real-time positioning services of global navigation satellite systems (GNSSs), as well as to achieve continuous monitoring of the ionosphere. This study applied an extended Kalman filter (EKF) to total electron content (TEC) modeling, proposing a regional real-time EKF-based ionospheric model (REIM) with a spatial resolution of 1° × 1° and a temporal resolution of 1 h. We examined the performance of REIM through a 7-day period during geomagnetic storms. The post-processing model from the China Earthquake Administration (IOSR), CODG, IGSG, and the BDS geostationary orbit satellite (GEO) observations were utilized as reference. The consistency analysis showed that the mean deviation between REIM and IOSR was 0.97 TECU, with correlation coefficients of 0.936 and 0.938 relative to IOSR and IGSG, respectively. The VTEC mean deviation between REIM and BDS GEO observations was 4.15 TECU, which is lower than those of CODG (4.68 TECU), IGSG (5.67 TECU), and IOSR (6.27 TECU). In the real-time single-frequency PPP (RT-SF-PPP) experiments, REIM-augmented positioning converges within approximately 80 epochs, and IGSG requires 140 epochs. The REIM-augmented east-direction positioning error was 0.086 m, smaller than that of IGSG (0.095 m) and the Klobuchar model (0.098 m). REIM demonstrated high consistencies with post-processing models and showed a higher accuracy at IPPs of BDS GEO satellites. Moreover, the correction results of the REIM model are comparable to post-processing models in RT-SF-PPP while achieving faster convergence. Full article
Show Figures

Figure 1

21 pages, 10437 KiB  
Article
A Continuous B2b-PPP Model Considering Interruptions in BDS-3 B2b Orbits and Clock Corrections as Well as Signal-in-Space Range Error Residuals
by Rui Shang, Zhenhao Xu, Chengfa Gao, Xiaolin Meng, Wang Gao and Qi Liu
Remote Sens. 2025, 17(4), 618; https://doi.org/10.3390/rs17040618 - 11 Feb 2025
Viewed by 700
Abstract
In 2020, BDS-3 began broadcasting high-precision positioning correction products through B2b signals, effectively addressing the limitations of ground-based augmentation. However, challenges such as the “south wall effect” from geostationary orbit (GEO) satellites, issues of data (IOD) mismatch, and signal priority conflicts often result [...] Read more.
In 2020, BDS-3 began broadcasting high-precision positioning correction products through B2b signals, effectively addressing the limitations of ground-based augmentation. However, challenges such as the “south wall effect” from geostationary orbit (GEO) satellites, issues of data (IOD) mismatch, and signal priority conflicts often result in interruptions and anomalies during real-time positioning with the B2b service. This paper proposes a continuous B2b-PPP (B2b signal-based Precise Point Positioning) model that incorporates signal-in-space range error (SISRE) residuals and predictions for B2b orbits and clock corrections to achieve seamless, high-precision continuous positioning. In our experiments, we first analyze the characteristics of B2b SISRE for both BDS-3 and GPS. We then evaluate the positioning accuracy of several models, B2b-PPP, EB2b-PPP, PB2b-PPP, EB2bS-PPP, and PB2bS-PPP, through simulated and real dynamic experiments. Here, ‘E’ indicates the direct utilization of the previous observation corrections from B2b before the signal interruption, ‘P’ represents B2b prediction products, and ‘S’ signifies the incorporation of the SISRE residuals. The results show that EB2b-PPP exhibits significant deviations as early as 10 min into a B2b signal interruption. Both PB2b-PPP and EB2bS-PPP demonstrate comparable performances, with PB2bS-PPP emerging as the most effective method. Notably, in real dynamic experiments, PB2bS-PPP maintains positioning accuracy in the E/N directions like B2b-PPP, even after 40 min of signal interruption, ensuring continuous and stable positioning upon signal restoration. This achievement significantly enhances the capability for high-precision continuous positioning based on B2b signals. Full article
(This article belongs to the Special Issue Advanced Multi-GNSS Positioning and Its Applications in Geoscience)
Show Figures

Figure 1

19 pages, 8948 KiB  
Article
Differential Code Bias Estimation and Accuracy Analysis Based on CSES Onboard GPS and BDS Observations
by Jiawen Pang, Fuying Zhu and Shang Wu
Remote Sens. 2025, 17(3), 374; https://doi.org/10.3390/rs17030374 - 23 Jan 2025
Viewed by 959
Abstract
An accurate estimation of Differential Code Bias (DCB) is essential for high-precision applications of the Global Navigation Satellite System (GNSS) and for the precise determination of GNSS-derived total electron content (TEC). This study leverages BeiDou Navigation Satellite System (BDS) and Global Positioning System [...] Read more.
An accurate estimation of Differential Code Bias (DCB) is essential for high-precision applications of the Global Navigation Satellite System (GNSS) and for the precise determination of GNSS-derived total electron content (TEC). This study leverages BeiDou Navigation Satellite System (BDS) and Global Positioning System (GPS) dual-frequency observations of the China Seismo-electromagnetic Satellite (CSES) from day of the year (DOY) 201 to DOY 232 in 2018, we evaluate the quality of CSES onboard GNSS observations, improve the data preprocessing method, and use the least-squares to estimate DCBs for both GNSS satellites and CSES receivers. A comprehensive analysis of the estimation accuracy is presented, revealing that DCBs for BDS satellites, derived from joint BDS and GPS observations, exhibit superior consistency compared to those from single BDS observations. Notably, the stability of DCBs for the CSES BDS receiver as well as for BDS GEO, IGSO, and MEO satellites has been significantly enhanced by 70%, 14%, 22%, and 23%, respectively. Conversely, the consistency of GPS satellite DCBs estimated from joint observations shows a decline when compared to the DCB products from the Center for Orbit Determination in Europe (CODE) and the Chinese Academy of Sciences (CAS). When fewer than nine satellites are tracked daily and nighttime observations are under 25%, estimation errors increase. The optimal DCB estimation is achieved with a cutoff elevation angle set at 10°, with monthly mean DCB values for CSES GPS and BDS receivers determined to be −2.193 ns and −1.099 ns, respectively, accompanied by root mean square errors (RMSEs) of 0.10 ns and 0.31 ns. The highest accuracy of DCBs estimated by the single-GPS scheme is corroborated by examining the occurrence of negative vertical total electron content (VTEC) percentages. Full article
Show Figures

Figure 1

27 pages, 36855 KiB  
Article
Evaluation and Anomaly Detection Methods for Broadcast Ephemeris Time Series in the BeiDou Navigation Satellite System
by Jiawei Cai, Jianwen Li, Shengda Xie and Hao Jin
Sensors 2024, 24(24), 8003; https://doi.org/10.3390/s24248003 - 14 Dec 2024
Cited by 1 | Viewed by 1635
Abstract
Broadcast ephemeris data are essential for the precision and reliability of the BeiDou Navigation Satellite System (BDS) but are highly susceptible to anomalies caused by various interference factors, such as ionospheric and tropospheric effects, solar radiation pressure, and satellite clock biases. Traditional threshold-based [...] Read more.
Broadcast ephemeris data are essential for the precision and reliability of the BeiDou Navigation Satellite System (BDS) but are highly susceptible to anomalies caused by various interference factors, such as ionospheric and tropospheric effects, solar radiation pressure, and satellite clock biases. Traditional threshold-based methods and manual review processes are often insufficient for detecting these complex anomalies, especially considering the distinct characteristics of different satellite types. To address these limitations, this study proposes an automated anomaly detection method using the IF-TEA-LSTM model. By transforming broadcast ephemeris data into multivariate time series and integrating anomaly score sequences, the model enhances detection robustness through data integrity assessments and stationarity tests. Evaluation results show that the IF-TEA-LSTM model reduces the RMSE by up to 20.80% for orbital parameters and improves clock deviation prediction accuracy for MEO satellites by 68.37% in short-term forecasts, outperforming baseline models. This method significantly enhances anomaly detection accuracy across GEO, IGSO, and MEO satellite orbits, demonstrating its superiority in long-term data processing and its capacity to improve the reliability of satellite operations within the BDS. Full article
(This article belongs to the Special Issue Advances in GNSS Signal Processing and Navigation)
Show Figures

Figure 1

12 pages, 4527 KiB  
Article
Observation of Post-Sunset Equatorial Plasma Bubbles with BDS Geostationary Satellites over South China
by Guanyi Ma, Jinghua Li, Jiangtao Fan, Qingtao Wan, Takashi Maruyama, Liang Dong, Yang Gao, Le Zhang and Dong Wang
Remote Sens. 2024, 16(18), 3521; https://doi.org/10.3390/rs16183521 - 23 Sep 2024
Cited by 1 | Viewed by 1240
Abstract
An equatorial plasma bubble (EPB) is characterized by ionospheric irregularities which disturb radio waves by causing phase and amplitude scintillations or even signal loss. It is becoming increasingly important in space weather to assure the reliability of radio systems in both space and [...] Read more.
An equatorial plasma bubble (EPB) is characterized by ionospheric irregularities which disturb radio waves by causing phase and amplitude scintillations or even signal loss. It is becoming increasingly important in space weather to assure the reliability of radio systems in both space and on the ground. This paper presents a newly established GNSS ionospheric observation network (GION) around the north equatorial ionization anomaly (EIA) crest in south China, which has a longitudinal coverage of ∼30° from 94°E to 124°E. The measurement with signals from geostationary earth orbit (GEO) satellites of the BeiDou navigation satellite system (BDS) is capable of separating the temporal and spatial variations of the ionosphere. A temporal fluctuation of TEC (TFT) parameter is proposed to characterize EPBs. The longitude of the EPBs’ generation can be located with TFT variations in the time–longitude dimension. It is found that the post-sunset EPBs have a high degree of longitudinal variability. They generally show a quasiperiodic feature, indicating their association with atmospheric gravity wave activities. Wave-like structures with different scale sizes can co-exist in the same night. Full article
Show Figures

Figure 1

26 pages, 3287 KiB  
Article
Assessment of Satellite Differential Code Biases and Regional Ionospheric Modeling Using Carrier-Smoothed Code of BDS GEO and IGSO Satellites
by Xiao Gao, Zongfang Ma, Lina Shu, Lin Pan, Hailong Zhang and Shuai Yang
Remote Sens. 2024, 16(17), 3118; https://doi.org/10.3390/rs16173118 - 23 Aug 2024
Cited by 2 | Viewed by 1041
Abstract
The geostationary earth orbit (GEO) represents a distinctive geosynchronous orbit situated in the Earth’s equatorial plane, providing an excellent platform for long-term monitoring of ionospheric total electron content (TEC) at a quasi-invariant ionospheric pierce point (IPP). With GEO satellites having limited dual-frequency coverage, [...] Read more.
The geostationary earth orbit (GEO) represents a distinctive geosynchronous orbit situated in the Earth’s equatorial plane, providing an excellent platform for long-term monitoring of ionospheric total electron content (TEC) at a quasi-invariant ionospheric pierce point (IPP). With GEO satellites having limited dual-frequency coverage, the inclined geosynchronous orbit (IGSO) emerges as a valuable resource for ionospheric modeling across a broad range of latitudes. This article evaluates satellite differential code biases (DCB) of BDS high-orbit satellites (GEO and IGSO) and assesses regional ionospheric modeling utilizing data from international GNSS services through a refined polynomial method. Results from a 48-day observation period show a stability of approximately 2.0 ns in BDS satellite DCBs across various frequency signals, correlating with the available GNSS stations and satellites. A comparative analysis between GEO and IGSO satellites in BDS2 and BDS3 reveals no significant systematic bias in satellite DCB estimations. Furthermore, high-orbit BDS satellites exhibit considerable potential for promptly detecting high-resolution fluctuations in vertical TECs compared to conventional geomagnetic activity indicators like Kp or Dst. This research also offers valuable insights into ionospheric responses over mid-latitude regions during the March 2024 geomagnetic storm, utilizing TEC estimates derived from BDS GEO and IGSO satellites. Full article
(This article belongs to the Special Issue Autonomous Space Navigation (Second Edition))
Show Figures

Figure 1

19 pages, 9432 KiB  
Article
Temporal Characteristics Based Outlier Detection and Prediction Methods for PPP-B2b Orbit and Clock Corrections
by Zhenhao Xu, Rui Shang, Chengfa Gao, Wang Gao, Qi Liu, Fengyang Long and Dawei Xu
Remote Sens. 2024, 16(13), 2337; https://doi.org/10.3390/rs16132337 - 26 Jun 2024
Cited by 1 | Viewed by 1500
Abstract
The BeiDou Global Navigation Satellite System (BDS-3) provides real-time precise point positioning (PPP) service via B2b signals, offering real-time decimeter-level positioning for users in China and surrounding areas. However, common interruptions and outliers in PPP-B2b services arise due to factors such as the [...] Read more.
The BeiDou Global Navigation Satellite System (BDS-3) provides real-time precise point positioning (PPP) service via B2b signals, offering real-time decimeter-level positioning for users in China and surrounding areas. However, common interruptions and outliers in PPP-B2b services arise due to factors such as the Geostationary Orbit (GEO) satellite “south wall effect”, Issue of Data (IOD) matching errors, and PPP-B2b signal broadcast priorities, posing challenges to continuous high-precision positioning. This study meticulously examines the completeness, continuity, and jumps in PPP-B2b orbit and clock correction using extensive observational data. Based on this analysis, a two-step method for detecting outliers in PPP-B2b orbit and clock corrections is devised, leveraging epoch differences and median absolute deviation. Subsequently, distinct prediction methods are developed for BDS-3 and GPS orbit and clock corrections. Results from simulated and real-time dynamic positioning experiments indicate that predicted corrections can maintain the same accuracy as normal correction values for up to 10 min and sustain decimeter-level positioning accuracy within 30 min. The adoption of predicted correction values significantly enhances the duration of sustaining real-time PPP during signal interruptions. Full article
Show Figures

Figure 1

20 pages, 3230 KiB  
Article
SLR Validation and Evaluation of BDS-3 MEO Satellite Precise Orbits
by Ran Li, Chen Wang, Hongyang Ma, Yu Zhou, Chengpan Tang, Ziqian Wu, Guang Yang and Xiaolin Zhang
Remote Sens. 2024, 16(11), 2016; https://doi.org/10.3390/rs16112016 - 4 Jun 2024
Cited by 3 | Viewed by 1228
Abstract
Starting from February 2023, the International Laser Ranging Service (ILRS) began releasing satellite laser ranging (SLR) data for all BeiDou global navigation satellite system (BDS-3) medium earth orbit (MEO) satellites. SLR data serve as the best external reference for validating satellite orbits, providing [...] Read more.
Starting from February 2023, the International Laser Ranging Service (ILRS) began releasing satellite laser ranging (SLR) data for all BeiDou global navigation satellite system (BDS-3) medium earth orbit (MEO) satellites. SLR data serve as the best external reference for validating satellite orbits, providing a basis for comprehensive evaluation of the BDS-3 satellite orbit. We utilized the SLR data from February to May 2023 to comprehensively evaluate the orbits of BDS-3 MEO satellites from different analysis centers (ACs). The results show that, whether during the eclipse season or the yaw maneuver season, the accuracy was not significantly decreased in the BDS-3 MEO orbit products released from the Center for Orbit Determination in Europe (CODE), Wuhan University (WHU), and the Deutsches GeoForschungsZentrum (GFZ) ACs, and the STD (Standard Deviation) of SLR residuals of those three ACs are all less than 5 cm. Among these, CODE had the smallest SLR residuals, with 9% and 12% improvement over WHU and GFZ, respectively. Moreover, the WHU precise orbits exhibit the smallest systematic biases, whether during non-eclipse seasons, eclipse seasons, or satellite yaw maneuver seasons. Additionally, we found some BDS-3 satellites (C32, C33, C34, C35, C45, and C46) exhibit orbit errors related to the Sun elongation angle, which indicates that continued effort for the refinement of the non-conservative force model further to improve the orbit accuracy of BDS-3 MEO satellites are in need. Full article
(This article belongs to the Special Issue Space-Geodetic Techniques (Third Edition))
Show Figures

Figure 1

24 pages, 1819 KiB  
Article
Improved SSA-Based GRU Neural Network for BDS-3 Satellite Clock Bias Forecasting
by Hongjie Liu, Feng Liu, Yao Kong and Chaozhong Yang
Sensors 2024, 24(4), 1178; https://doi.org/10.3390/s24041178 - 11 Feb 2024
Cited by 6 | Viewed by 1820
Abstract
Satellite clock error is a key factor affecting the positioning accuracy of a global navigation satellite system (GNSS). In this paper, we use a gated recurrent unit (GRU) neural network to construct a satellite clock bias forecasting model for the BDS-3 navigation system. [...] Read more.
Satellite clock error is a key factor affecting the positioning accuracy of a global navigation satellite system (GNSS). In this paper, we use a gated recurrent unit (GRU) neural network to construct a satellite clock bias forecasting model for the BDS-3 navigation system. In order to further improve the prediction accuracy and stability of the GRU, this paper proposes a satellite clock bias forecasting model, termed ITSSA-GRU, which combines the improved sparrow search algorithm (SSA) and the GRU, avoiding the problems of GRU’s sensitivity to hyperparameters and its tendency to fall into local optimal solutions. The model improves the initialization population phase of the SSA by introducing iterative chaotic mapping and adopts an iterative update strategy based on t-step optimization to enhance the optimization ability of the SSA. Five models, namely, ITSSA-GRU, SSA-GRU, GRU, LSTM, and GM(1,1), are used to forecast the satellite clock bias data in three different types of orbits of the BDS-3 system: MEO, IGSO, and GEO. The experimental results show that, as compared with the other four models, the ITSSA-GRU model has a stronger generalization ability and forecasting effect in the clock bias forecasting of all three types of satellites. Therefore, the ITSSA-GRU model can provide a new means of improving the accuracy of navigation satellite clock bias forecasting to meet the needs of high-precision positioning. Full article
Show Figures

Figure 1

20 pages, 4355 KiB  
Article
Estimation of Earth Rotation Parameters Based on BDS-3 and Discontinuous VLBI Observations
by Chenxiang Wang, Jizhang Sang, Xingxing Li and Pengfei Zhang
Remote Sens. 2024, 16(2), 333; https://doi.org/10.3390/rs16020333 - 14 Jan 2024
Cited by 2 | Viewed by 1802
Abstract
Earth rotation parameters (ERPs) are fundamental to geodetic and astronomical studies. With its high measurement accuracy and stability, the Very Long Baseline Interferometry (VLBI) plays an irreplaceable role in estimating the ERPs and maintaining the earth reference frame. However, the imperfect global station [...] Read more.
Earth rotation parameters (ERPs) are fundamental to geodetic and astronomical studies. With its high measurement accuracy and stability, the Very Long Baseline Interferometry (VLBI) plays an irreplaceable role in estimating the ERPs and maintaining the earth reference frame. However, the imperfect global station distribution, observation discontinuity, and vast cost of the VLBI make the GNSS a more attractive technique. In 2020, the third generation of the BeiDou Navigation System (BDS), namely BDS-3, was constructed completely. In this study, we conducted a series of experiments to estimate Earth’s rotation parameters based on the continuous BDS-3 observation data, the discontinuous VLBI observation data, and the combined BDS-3 and discontinuous VLBI observation data. We used two methods, namely the weighted averaging method and the normal equation combination method, to obtain ERP combination solutions. The results are compared with the International Earth Rotation and Reference Systems Service (IERS) EOP 20C04 at 00:00:00 UTC. Final results show that (a) the estimation accuracy becomes stable when the number of BDS-3 tracking stations is more than 40. At the same time, both the number of stations and the volume of polyhedrons formed by the observing stations affect the accuracy of the ERPs estimated by the BDS-3 or VLBI. (b) Results have also shown that the inclusion of the BDS-3 IGSO and GEO satellites contributes little to the ERP estimation. (c) For the BDS-3-only MEO satellites solution, the root mean square (RMS) was 113.2 µas, 102.8 µas, and 13.1 µs/day for X-pole coordinate, Y-pole coordinate, and length of day (LOD), respectively. For the VLBI solution, the RMSs of the X-pole, Y-pole, and LOD were 100.4 µas for the X-pole, 94.2 µas for the Y-pole, and 14.1 µs/day. The RMS was 82.6 µas, 70.3 µas, and 10.5 µs/day for the combined X-pole, Y-pole, and LOD using the weighted averaging method. It was 78.2 µas, 62.6 µas, and 8.6 µs/day when the normal equation combination method was applied. This demonstrates that by taking advantage of the BDS-3 and VLBI technique combinations, accuracy in estimating the ERPs can be improved over that using either of them, in addition to enhanced stability and reliability. Full article
(This article belongs to the Special Issue Space-Geodetic Techniques II)
Show Figures

Graphical abstract

15 pages, 2225 KiB  
Article
Detection and Analysis of Radiation Doses in Multiple Orbital Space during Solar Minimum
by Juyu Wang, Shenyi Zhang, Guohong Shen, Ying Sun, Binquan Zhang, Zheng Chang, Chunqin Wang, Donghui Hou and Zhe Yang
Aerospace 2023, 10(11), 944; https://doi.org/10.3390/aerospace10110944 - 6 Nov 2023
Cited by 1 | Viewed by 2461
Abstract
Based on orbit detection data acquired by a positive channel Metal Oxide Semiconductor (PMOS) dose detectors on FY4-A (GEO), BD3-M15 (MEO), and YH1-01A (LEO) between November 2018 and November 2022, investigations reveal variations in total dose and the mechanism of radiation dose increase [...] Read more.
Based on orbit detection data acquired by a positive channel Metal Oxide Semiconductor (PMOS) dose detectors on FY4-A (GEO), BD3-M15 (MEO), and YH1-01A (LEO) between November 2018 and November 2022, investigations reveal variations in total dose and the mechanism of radiation dose increase within the geostationary earth orbit (GEO), medium earth orbit (MEO), and low earth orbit (LEO) during the transition from the 24th to the 25th solar cycles. It provides the radiation dose parameters for the study of the space environment from different altitude orbits, and also provides an important basis for studying the solar minimum activity and dose generation The data indicate directional disparities in radiation doses among the orbital regions, with the hierarchy being FY4-A > YH1-01A > BD3-M15. Furthermore, the results show that the total doses of FY4-A and BD3-M15 were higher than that of YH1-01A by two orders of magnitude, with BD3-M15 > FY4-A > YH1-01A. The monthly radiation dose rates of FY4-A in GEO and BD3-M15 in MEO exhibited positive correlation with their corresponding APs during the solar minimum. Notably, for FY4-A, the monthly radiation dose rate during geomagnetic disturbed periods exceeded that of the dose rate during geomagnetic quiet periods by one order of magnitude. This analysis revealed the substantial impact of geomagnetic storms and space environment disturbances on radiation doses detected by MEO and GEO orbital satellites. These perturbations, attributable to medium- and small-scale high-energy electron storms induced by reproducible coronal holes, emerged as key driving factors of the increase in radiation doses in MEO and GEO environments. Full article
(This article belongs to the Special Issue Meteorological Satellites Data Analysis)
Show Figures

Figure 1

Back to TopTop