Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = Ara h 1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1856 KiB  
Article
Purification and Epitope Mapping of Jug r 4, a Major Walnut Allergen
by Stephen A. Y. Gipson, Jacqueline B. Nesbit, Lauren T. Swientoniewski, Stephen I. Rogers, S. Shahzad Mustafa, Stephen C. Dreskin, Suzanne S. Teuber, Hsiaopo Cheng and Soheila J. Maleki
Allergies 2025, 5(1), 8; https://doi.org/10.3390/allergies5010008 - 13 Mar 2025
Viewed by 1182
Abstract
Background: Tree nut allergy affects approximately 1% of the U.S. population and the prevalence is increasing. Walnut allergy is the most commonly reported tree nut allergy in the United States. This study aimed to investigate the IgE cross-reactivity between walnut allergen Jug r [...] Read more.
Background: Tree nut allergy affects approximately 1% of the U.S. population and the prevalence is increasing. Walnut allergy is the most commonly reported tree nut allergy in the United States. This study aimed to investigate the IgE cross-reactivity between walnut allergen Jug r 4 and peanut allergen Ara h 3 in individuals with dual walnut and peanut allergies. Methods: Jug r 4 was purified from whole walnut extract and analyzed via western blot using anti-Ara h 3 antibodies alongside serum IgE from walnut allergic patients. Sera from individuals allergic to both peanuts and walnuts were utilized to examine peptide microarrays comprising synthetic overlapping 15 mer peptides, offset by five amino acids, of Ara h 3 and Jug r 4. These results were compared against computationally predicted IgE epitopes using the Structural Database for Allergic Proteins (SDAP). Additionally, SWISS-MODEL protein modeling software was employed to map IgE epitopes onto Ara h 3 and Jug r 4. Results: Our findings revealed previously unreported IgE epitopes for dual-allergic sera within both allergens, highlighting the locations of empirically determined and SDAP-predicted IgE epitopes. Conclusions: While six epitopes were predicted as cross-reactive, only three were frequently recognized by IgE in dual-allergic individuals, underscoring their potential significance in clinically relevant cross-reactivity. Full article
(This article belongs to the Section Food Allergy)
Show Figures

Figure 1

16 pages, 4050 KiB  
Article
Is Component-Specific Antibody Testing Sufficient to Replace the Oral Food Challenge in the Diagnostics of Peanut-Sensitized Children? A Proof-of-Concept Study
by Klementyna Łyżwa, Klaudia Prasek, Anna Krupa-Łaska, Joanna Zielińska, Alicja Krejner-Bienias, Magdalena Chojnowska-Wójtowicz, Wioletta Zagórska, Marek Kulus, Adam Grzela, Tomasz Grzela and Katarzyna Grzela
Int. J. Mol. Sci. 2024, 25(13), 7415; https://doi.org/10.3390/ijms25137415 - 6 Jul 2024
Viewed by 1147
Abstract
(1) Peanut allergy is associated with high risk of anaphylaxis which could be prevented by oral immunotherapy. Patients eligible for immunotherapy are selected on the basis of a food challenge, although currently the assessment of antibodies against main peanut molecules (Ara h 1, [...] Read more.
(1) Peanut allergy is associated with high risk of anaphylaxis which could be prevented by oral immunotherapy. Patients eligible for immunotherapy are selected on the basis of a food challenge, although currently the assessment of antibodies against main peanut molecules (Ara h 1, 2, 3 and 6) is thought to be another option. (2) The current study assessed the relationship between the mentioned antibodies, challenge outcomes, skin tests and some other parameters in peanut-sensitized children. It involved 74 children, divided into two groups, based on their response to a food challenge. (3) Both groups differed in results of skin tests, levels of component-specific antibodies and peanut exposure history. The antibody levels were then used to calculate thresholds for prediction of challenge results or symptom severity. While the antibody-based challenge prediction revealed statistical significance, it failed in cases of severe symptoms. Furthermore, no significant correlation was observed between antibody levels, symptom-eliciting doses and the risk of severe anaphylaxis. Although in some patients it could result from interference with IgG4, the latter would not be a universal explanation of this phenomenon. (4) Despite some limitations, antibody-based screening may be an alternative to the food challenge, although its clinical relevance still requires further studies. Full article
(This article belongs to the Special Issue Advances in Molecular and Translational Medicine: 2nd Edition)
Show Figures

Figure 1

11 pages, 617 KiB  
Article
Sensitization to Food and Aero-Allergens in Children with Coeliac Disease Assessed with the Use of a Multiplex Molecular Diagnostic Technique
by Izabela Knyziak-Mędrzycka, Bożena Cukrowska, Wojciech Nazar, Joanna Beata Bierła, Kamil Janeczek, Paulina Krawiec, Weronika Gromek, Mariusz Wysokiński, Ewa Konopka, Ilona Trojanowska, Sylwia Smolińska and Emilia Majsiak
J. Clin. Med. 2024, 13(10), 2992; https://doi.org/10.3390/jcm13102992 - 19 May 2024
Viewed by 2114
Abstract
(1) Background. Coeliac disease (CD) often co-occurs with autoimmune conditions or genetic syndromes, but there are few studies on the co-existence of CD and immunoglobulin E (IgE)-mediated allergies. The purpose of this study was to assess sensitization to food and aero-allergens in pediatric [...] Read more.
(1) Background. Coeliac disease (CD) often co-occurs with autoimmune conditions or genetic syndromes, but there are few studies on the co-existence of CD and immunoglobulin E (IgE)-mediated allergies. The purpose of this study was to assess sensitization to food and aero-allergens in pediatric patients with CD. (2) Methods. A multiplex ALEX®2 test was used to determine specific IgEs (sIgEs). (3) Results. The study included 108 children newly diagnosed with CD. Allergen extract- and/or allergen molecule-sIgEs were detected in 49.1% of children. Most children (41.5%) were sensitized to both inhalant and food allergens. The three most common aero-allergens (timothy pollen, ryegrass, silver birch) were molecules Phl p 1, Lol p 1, and Bet v 1. The most common food allergens (hazelnut, apple, and peanut) were Cor a 1, Mal d 1, and Ara h 8 molecules of the PR-10 subfamily. Patients were not sensitized to cereal allergens containing gluten. Spearman’s rank correlation analysis of sensitized patients showed a significant positive relationship (r = 0.31) between the patients’ age and the occurrence of positive sIgEs (≥0.3 kUA/L) for inhalant allergen molecules (p = 0.045). In sensitized patients, mainly symptoms of inhalant allergy were observed, such as hay fever, conjunctivitis, and bronchial asthma. (4) Conclusions. The current study indicates the co-occurrence of IgE sensitization to food and inhalant allergens in children with CD. The study highlights the need to take a closer look at the diagnosis of IgE-mediated allergy in patients with CD, which may help in their care and lead to a better understanding of the relationship between CD and IgE-mediated allergy. Full article
(This article belongs to the Special Issue Novel Strategies for Diagnosis and Treatment of Autoimmune Diseases)
Show Figures

Figure 1

17 pages, 965 KiB  
Article
The Sensitization Profile for Selected Food Allergens in Polish Children Assessed with the Use of a Precision Allergy Molecular Diagnostic Technique
by Izabela Knyziak-Mędrzycka, Emilia Majsiak, Weronika Gromek, Danuta Kozłowska, Jakub Swadźba, Joanna Beata Bierła, Ryszard Kurzawa and Bożena Cukrowska
Int. J. Mol. Sci. 2024, 25(2), 825; https://doi.org/10.3390/ijms25020825 - 9 Jan 2024
Cited by 3 | Viewed by 2580
Abstract
Individual populations show a variety of sensitization patterns, which may be associated with the geographic region, climate, dietary habits, or ways of preparing food. The purpose of this study was to comprehensively assess the food allergy sensitization profile in Polish children, particularly to [...] Read more.
Individual populations show a variety of sensitization patterns, which may be associated with the geographic region, climate, dietary habits, or ways of preparing food. The purpose of this study was to comprehensively assess the food allergy sensitization profile in Polish children, particularly to eight food allergens (so-called “the Big 8”): cow milk, eggs, wheat, soybeans, fish, crustacean shellfish, tree nuts, and peanuts. To assess the prevalence and serum levels of specific immunoglobulins E (sIgE), we analyzed the results obtained from selected laboratories located in all regions of Poland that used the multiplex ALEX® test in the period from 2019 to 2022. Results from 3715 children were obtained. The mean age of the study population was 7.0 years. The results were stratified by age: <12 months (3.63%), 1–5 years (39.54%), 6–13 years (46.32%), and 14–18 years (10.0%). The final analysis included the sIgE results obtained with 95 food extracts and 77 food allergen molecules. The highest rates of sIgE to food allergen extracts were found for peanut (29.20%), hazel (28.20%), and apple (23.60%), and those to allergenic molecules were found for the PR-10 family of molecules (Cor a 1.0401 (23.77%), Mal d 1 (22.37%), Ara h 8 (16.93%), and globulin 7/8S (Ara h 1; 15.59%)). The lowest rates of sIgE reactivity to extracts were found for strawberry (0.40%), oregano (0.30%), and thornback ray (0.16%), and those to allergenic molecules were found for Mal d 2 (0.27%) (thaumatin-like protein, TLP), Ani s 1 (0.30%) (Kunitz-type serine protease inhibitor), and Che a 1 (0.43%) (Ole e 1 family). The rates of sensitization to storage proteins of the analyzed “the Big 8” molecules decreased significantly (p < 0.05) with age. Conversely, the rates of sensitization to PR-10 family proteins increased significantly with age. The three most common allergens in Poland, regardless of whether IgE was assayed against extracts or molecules of food allergens, were peanut, hazel, and apple (in different order depending on the ranking). A detailed analysis of sensitization to the extracts and molecules of main food allergens based on the results of a multiplex ALEX® test demonstrated the sensitization profile in Polish children (including molecular sensitization, particularly the “the Big 8” food allergen molecules), which shows considerable differences in comparison with those in other countries. Serum sIgE analysis of children from all regions of Poland revealed a food allergen molecular sensitization profile that changes with age. Full article
(This article belongs to the Special Issue Molecular Medicine in Asthma and Allergic Diseases 2.0)
Show Figures

Figure 1

14 pages, 3509 KiB  
Article
An Engineered Heat-Inducible Expression System for the Production of Casbene in Nicotiana benthamiana
by Edith C. F. Forestier, Amy C. Cording, Gary J. Loake and Ian A. Graham
Int. J. Mol. Sci. 2023, 24(14), 11425; https://doi.org/10.3390/ijms241411425 - 13 Jul 2023
Cited by 1 | Viewed by 2619
Abstract
Plants respond to heat stress by producing heat-shock proteins. These are regulated by heat-shock promoters containing regulatory elements, which can be harnessed to control protein expression both temporally and spatially. In this study, we designed heat-inducible promoters to produce the diterpene casbene in [...] Read more.
Plants respond to heat stress by producing heat-shock proteins. These are regulated by heat-shock promoters containing regulatory elements, which can be harnessed to control protein expression both temporally and spatially. In this study, we designed heat-inducible promoters to produce the diterpene casbene in Nicotiana benthamiana, through a multi-step metabolic pathway. To potentially increase gene transcription, we coupled heat-shock elements from Arabidopsis thaliana Hsp101 or Glycine max GmHsp17.3-B promoters, CAAT and TATA boxes from CaMV 35S, and the 5′UTR from the tobacco mosaic virus. The resulting four chimeric promoters fused to a green fluorescent protein (GFP) reporter showed that the variant Ara2 had the strongest fluorescent signal after heat shock. We next created a 4-gene cassette driven by the Ara2 promoter to allow for exogenous synthesis of casbene and transformed this multigene construct along with a selectable marker gene into Nicotiana benthamiana. Metabolic analysis on the transgenic lines revealed that continuous heat outperforms heat shock, with up to 1 μg/mg DW of casbene detected after 32 h of uninterrupted 40 °C heat. These results demonstrate the potential of heat-inducible promoters as synthetic biology tools for metabolite production in plants. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

10 pages, 507 KiB  
Article
Risk Factors for Anaphylaxis in Children Allergic to Peanuts
by Tadej Petek, Mija Lajhar, Blažka Krašovec, Matjaž Homšak, Maja Kavalar, Peter Korošec, Brigita Koren, Maja Tomazin, Tina Hojnik and Vojko Berce
Medicina 2023, 59(6), 1037; https://doi.org/10.3390/medicina59061037 - 28 May 2023
Cited by 2 | Viewed by 3563
Abstract
Background and Objectives: A peanut allergy is the most common single cause of anaphylaxis in children. The risk factors for anaphylaxis in children with a peanut allergy are not well defined. Therefore, we aimed to identify epidemiological, clinical, and laboratory characteristics of [...] Read more.
Background and Objectives: A peanut allergy is the most common single cause of anaphylaxis in children. The risk factors for anaphylaxis in children with a peanut allergy are not well defined. Therefore, we aimed to identify epidemiological, clinical, and laboratory characteristics of children with a peanut allergy that may predict the severity of the allergic reaction and anaphylaxis. Materials and Methods: We conducted a cross-sectional study and included 94 children with a peanut allergy. Allergy testing was performed, including skin prick testing and the determination of specific IgE levels to peanuts and their Ara h2 component. In case of discordance between patient history and allergy testing, an oral food challenge with peanuts was performed. Results: Anaphylaxis and moderate and mild reactions to peanuts occurred in 33 (35.1%), 30 (31.9%), and 31 (33.0%) patients, respectively. The severity of the allergic reaction was only weakly correlated (p = 0.04) with the amount of peanuts consumed. The median number of allergic reactions to peanuts was 2 in children with anaphylaxis compared to 1 in other patients (p = 0.04). The median level of specific IgE to Ara h2 was 5.3 IU/mL in children with anaphylaxis compared to 0.6 IU/mL and 10.3 IU/mL in children with mild and moderate peanut allergies (p = 0.06). The optimal cutoff for distinguishing between anaphylaxis and a less severe allergic reaction to peanuts was a specific IgE Ara h2 level of 0.92 IU/mL with 90% sensitivity and 47.5% specificity for predicting anaphylaxis (p = 0.04). Conclusions: Epidemiological and clinical characteristics of the patient cannot predict the severity of the allergic reaction to peanuts in children. Even standard allergy testing, including component diagnostics, is a relatively poor predictor of the severity of an allergic reaction to peanuts. Therefore, more accurate predictive models, including new diagnostic tools, are needed to reduce the need for oral food challenge in most patients. Full article
(This article belongs to the Special Issue Anaphylaxis in Children and Adolescents)
Show Figures

Figure 1

14 pages, 1577 KiB  
Article
Cross-Serological Reaction of Glandless Cottonseed Proteins to Peanut and Tree Nut Allergic IgE
by Christopher P. Mattison, Zhongqi He, Dunhua Zhang, Rebecca Dupre and Steven W. Lloyd
Molecules 2023, 28(4), 1587; https://doi.org/10.3390/molecules28041587 - 7 Feb 2023
Cited by 7 | Viewed by 3225
Abstract
Food allergy is a potentially life-threatening health concern caused by immunoglobulin E (IgE) antibodies that mistakenly recognize normally harmless food proteins as threats. Peanuts and tree nuts contain several seed storage proteins that commonly act as allergens. Glandless cottonseed, lacking the toxic compound [...] Read more.
Food allergy is a potentially life-threatening health concern caused by immunoglobulin E (IgE) antibodies that mistakenly recognize normally harmless food proteins as threats. Peanuts and tree nuts contain several seed storage proteins that commonly act as allergens. Glandless cottonseed, lacking the toxic compound gossypol, is a new food source. However, the seed storage proteins in cottonseed may act as allergens. To assess this risk, glandless cottonseed protein extracts were evaluated for IgE binding by peanut and tree nut allergic volunteers. ELISA demonstrated that 25% of 32 samples had significant binding to cottonseed extracts. Immunoblot analysis with pooled sera indicated that IgE recognized a pair of bands migrating at approximately 50 kDa. Excision of these bands and subsequent mass-spectrometric analysis demonstrated peptide matches to cotton C72 and GC72 vicilin and legumin A and B proteins. Further, in silico analysis indicated similarity of the cotton vicilin and legumin proteins to peanut vicilin (Ara h 1) and cashew nut legumin (Ana o 2) IgE-binding epitopes among others. The observations suggest both the cotton vicilin and legumin proteins were recognized by the nut allergic IgE, and they should be considered for future allergen risk assessments evaluating glandless cottonseed protein products. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

21 pages, 4514 KiB  
Article
Changes in Serum Protein–Peptide Patterns in Atopic Children Allergic to Plant Storage Proteins
by Kacper Packi, Joanna Matysiak, Eliza Matuszewska, Anna Bręborowicz and Jan Matysiak
Int. J. Mol. Sci. 2023, 24(2), 1804; https://doi.org/10.3390/ijms24021804 - 16 Jan 2023
Cited by 6 | Viewed by 3211
Abstract
Next to cow’s milk and eggs, plant foods, i.e., legumes, tree nuts and cereal grains, most often sensitise atopic children. Storage proteins constitutes the most relevant protein fraction of plant foods, causing primary sensitisation. They exhibit strong allergenic properties and immunogenicity. Our goal [...] Read more.
Next to cow’s milk and eggs, plant foods, i.e., legumes, tree nuts and cereal grains, most often sensitise atopic children. Storage proteins constitutes the most relevant protein fraction of plant foods, causing primary sensitisation. They exhibit strong allergenic properties and immunogenicity. Our goal was to analyse sensitisation to 26 plant storage proteins in a group of 76 children aged 0–5 years with chronic symptoms of atopic dermatitis using Allergy Explorer ALEX2 and to discover changes in serum protein–peptide patterns in allergic patients with the use of MALDI-TOF-MS. We reported that 25% of children were allergic to 2S albumins, 19.7% to 7S globulins, 13.2% to 11S globulins and 1.3% to cereal prolamins. The most common allergenic molecules were Ara h 1 (18.4%), Ara h 2 (17.1%), Ara h 6 (15.8%) and Ara h 3 (11.8%) from peanuts, and the mean serum sIgE concentrations in allergic patients were 10.93 kUA/L, 15.353 kUA/L, 15.359 kUA/L and 9.038 kUA/L, respectively. In children allergic to storage proteins compared to the other patients (both allergic and non-allergic), the cell cycle control protein 50A, testis-expressed sequence 13B, DENN domain-containing protein 5A and SKI family transcriptional corepressor 2 were altered. Our results indicate that the IgE-mediated allergy to storage proteins is a huge problem in a group of young, atopic children, and show the potential of proteomic analysis in the prediction of primary sensitisation to plant foods. It is the next crucial step for understanding the molecular consequences of allergy to storage proteins. Full article
(This article belongs to the Special Issue Proteomics for the Study of Inflammatory Diseases)
Show Figures

Figure 1

17 pages, 2605 KiB  
Article
Proteomic Profiling of Major Peanut Allergens and Their Post-Translational Modifications Affected by Roasting
by Teodora Đukić, Katarina Smiljanić, Jelena Mihailović, Ivana Prodić, Danijela Apostolović, Shu-Hua Liu, Michelle M. Epstein, Marianne van Hage, Dragana Stanić-Vučinić and Tanja Ćirković Veličković
Foods 2022, 11(24), 3993; https://doi.org/10.3390/foods11243993 - 9 Dec 2022
Cited by 7 | Viewed by 2983
Abstract
Post-translational modifications (PTMs) are covalent changes occurring on amino acid side chains of proteins and yet are neglected structural and functional aspects of protein architecture. The objective was to detect differences in PTM profiles that take place after roasting using open PTM search. [...] Read more.
Post-translational modifications (PTMs) are covalent changes occurring on amino acid side chains of proteins and yet are neglected structural and functional aspects of protein architecture. The objective was to detect differences in PTM profiles that take place after roasting using open PTM search. We conducted a bottom-up proteomic study to investigate the impact of peanut roasting on readily soluble allergens and their PTM profiles. Proteomic PTM profiling of certain modifications was confirmed by Western blotting with a series of PTM-specific antibodies. In addition to inducing protein aggregation and denaturation, roasting may facilitate change in their PTM pattern and relative profiling. We have shown that Ara h 1 is the most modified major allergen in both samples in terms of modification versatility and extent. The most frequent PTM was methionine oxidation, especially in roasted samples. PTMs uniquely found in roasted samples were hydroxylation (Trp), formylation (Arg/Lys), and oxidation or hydroxylation (Asn). Raw and roasted peanut extracts did not differ in the binding of IgE from the serum of peanut-sensitised individuals done by ELISA. This study provides a better understanding of how roasting impacts the PTM profile of major peanut allergens and provides a good foundation for further exploration of PTMs. Full article
(This article belongs to the Special Issue Structural Characterization of Food Proteins and Peptides)
Show Figures

Figure 1

19 pages, 4972 KiB  
Article
Novel Pectic Polysaccharides Isolated from Immature Honey Pomelo Fruit with High Immunomodulatory Activity
by Tao Hou, Shenglan Guo, Zhuokun Liu, Hongyu Lin, Yu Song, Qiqi Li, Xin Mao, Wencan Wang, Yong Cao and Guo Liu
Molecules 2022, 27(23), 8573; https://doi.org/10.3390/molecules27238573 - 5 Dec 2022
Cited by 6 | Viewed by 2086
Abstract
A novel pectic polysaccharide (HPP-1) with high immunomodulatory activity was extracted and isolated from the immature honey pomelo fruit (Citrus grandis). Characterization of its chemical structure indicated that HPP-1 had a molecular weight of 59,024 D. In addition, HPP-1 was primarily [...] Read more.
A novel pectic polysaccharide (HPP-1) with high immunomodulatory activity was extracted and isolated from the immature honey pomelo fruit (Citrus grandis). Characterization of its chemical structure indicated that HPP-1 had a molecular weight of 59,024 D. In addition, HPP-1 was primarily composed of rhamnose, arabinose, fucose, mannose, and galactose at a molar ratio of 1.00:11.12:2.26:0.56:6.40. Fourier-transform infrared spectroscopy, periodic acid oxidation, and Smith degradation results showed that HPP-1 had α- and β-glycosidic linkages and 1 → 2, 1 → 4, 1 → 6, and 1 → 3 glycosidic bonds. 13C NMR and 1H NMR analyses revealed that the main glycogroups included 1,4-D-GalA, 1,6-β-D-Gal, 1,6-β-D-Man, 1,3-α-L-Ara, and 1,2-α-L-Rha. Immunomodulatory bioactivity analysis using a macrophage RAW264.7 model in vitro revealed that NO, TNF-α, and IL-6 secretions were all considerably increased by HPP-1. Moreover, RT-PCR results showed that HPP-1-induced iNOS, TNF-α, and IL-6 expression was significantly increased in macrophages. HPP-1-mediated activation in macrophages was due to the stimulation of the NF-κB and MAPK signaling pathways based on western blot analyses. HPP-1 extracted from immature honey pomelo fruit has potential applications as an immunomodulatory supplement. Full article
Show Figures

Figure 1

17 pages, 4375 KiB  
Article
Occurrence, Distribution, and Transmission of Alfalfa Viruses in China
by Jin Li, Qiaoxia Shang, Yanqi Liu, Wenting Dai, Xin Li, Shuhua Wei, Guixin Hu, Mark Richard McNeill and Liping Ban
Viruses 2022, 14(7), 1519; https://doi.org/10.3390/v14071519 - 12 Jul 2022
Cited by 16 | Viewed by 3044
Abstract
Alfalfa (Medicago sativa L.) is one of the most important quality forages worldwide and is cultivated throughout China. Alfalfa is susceptible to a variety of viral diseases during its growth, which has caused huge amounts of commercial losses. However, the profile of [...] Read more.
Alfalfa (Medicago sativa L.) is one of the most important quality forages worldwide and is cultivated throughout China. Alfalfa is susceptible to a variety of viral diseases during its growth, which has caused huge amounts of commercial losses. However, the profile of the alfalfa virus in China remains ambiguous and the viruses transmitted by Odontothrips loti (Haliday), dominant insect pests in alfalfa, are also poorly understood. In the present study, virus diversity was investigated in the primary alfalfa-growing areas in China. A total of 18 alfalfa viruses were identified through RNA-sequencing (RNA-seq) and reverse transcription-polymerase chain reaction (RT-PCR). Two new plant viruses, Medicago sativa virus 1 (MsV1) and Medicago sativa luteovirus 1 (MsLV1), were detected for the first time. Another four viruses, including the Alfalfa ringspot-associated virus (ARaV), Alfalfa virus F (AVF), Alfalfa enamovirus 1 (AEV1), and Alfalfa deltaparitivirus (ADPV), were reported in China for the first time as well. Both Alfalfa mosaic virus (AMV) and Medicago sativa alphapartitivirus 2 (MsAPV2) are the dominant pathogens, with an infection incidence of 91.7–100%, and 74.4–97.2%, respectively. Additionally, O. loti with first- and second-instar nymphs were shown to acquire the AMV within 0.25 h of feeding on a virus-infected alfalfa. Transmission by thrips to healthy alfalfa plants was also demonstrated. Additionally, we clarified the dynamic changes in the AMV in pre-adult stages of O. loti, which indicated that the AMV is propagated in the nymph stage of O. loti. These findings provide valuable information for understanding the alfalfa virome, confirm the role thrips O. loti plays in alfalfa virus transmission, and improve our fundamental knowledge and management of diseases in China. Full article
(This article belongs to the Special Issue State-of-the-Art Plant Viruses Research in Asia)
Show Figures

Figure 1

13 pages, 2792 KiB  
Article
Tracking Arachis hypogaea Allergen in Pre-Packaged Foodstuff: A Nanodiamond-Based Electrochemical Biosensing Approach
by Maria Freitas, André Carvalho, Henri P. A. Nouws and Cristina Delerue-Matos
Biosensors 2022, 12(6), 429; https://doi.org/10.3390/bios12060429 - 18 Jun 2022
Cited by 14 | Viewed by 3170
Abstract
The present work reports a nanodiamond-based voltammetric immunosensing platform for the analysis of a food allergen (Ara h 1) present in peanuts (Arachis hypogaea). The possibility of the usage of nanodiamonds (d = 11.2 ± 0.9 nm) on screen-printed carbon [...] Read more.
The present work reports a nanodiamond-based voltammetric immunosensing platform for the analysis of a food allergen (Ara h 1) present in peanuts (Arachis hypogaea). The possibility of the usage of nanodiamonds (d = 11.2 ± 0.9 nm) on screen-printed carbon electrodes (SPCE/ND) in a single-use two-monoclonal antibody sandwich assay was studied. An enhanced electroactive area (~18%) was obtained and the biomolecule binding ability was improved when the 3D carbon-based nanomaterial was used. The antibody-antigen interaction was recognized through the combination of alkaline phosphatase with 3-indoxyl phosphate and silver ions. Linear Sweep Voltammetry (LSV) was applied for fast signal acquisition and scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) support the voltammetric approach and confirm the presence of silver particles on the electrode surface. The proposed immunosensor provided a low limit of detection (0.78 ng·mL−1) and highly precise (RSD < 7.5%) and accurate results. Quantification of Ara h 1 in commercial foodstuffs (e.g., crackers, cookies, protein bars) that refer to the presence of peanuts (even traces) on the product label was successfully achieved. The obtained data were in accordance with recovery results (peanut addition, %) and the foodstuff label. Products with the preventive indication “may contain traces” revealed the presence of peanuts lower than 0.1% (m/m). The method’s results were validated by comparison with an enzyme-linked immunosorbent assay. This allows confident information about the presence of allergens (even at trace levels) that leads to profitable conditions for both industry and consumers. Full article
Show Figures

Figure 1

11 pages, 2000 KiB  
Article
Characterization of l-Arabinose Isomerase from Klebsiella pneumoniae and Its Application in the Production of d-Tagatose from d-Galactose
by Kyung-Chul Shin, Min-Ju Seo, Sang Jin Kim, Yeong-Su Kim and Chang-Su Park
Appl. Sci. 2022, 12(9), 4696; https://doi.org/10.3390/app12094696 - 7 May 2022
Cited by 7 | Viewed by 3117
Abstract
d-Tagatose, a functional sweetener, is converted from d-galactose by l-arabinose isomerase, which catalyzes the conversion of l-arabinose to l-ribulose. In this study, the araA gene encoding l-arabinose isomerase from Klebsiella pneumoniae was cloned and expressed in Escherichia [...] Read more.
d-Tagatose, a functional sweetener, is converted from d-galactose by l-arabinose isomerase, which catalyzes the conversion of l-arabinose to l-ribulose. In this study, the araA gene encoding l-arabinose isomerase from Klebsiella pneumoniae was cloned and expressed in Escherichia coli, and the expressed enzyme was purified and characterized. The purified l-arabinose isomerase, a soluble protein with 11.6-fold purification and a 22% final yield, displayed a specific activity of 1.8 U/mg for d-galactose and existed as a homohexamer of 336 kDa. The enzyme exhibited maximum activity at pH 8.0 and 40 °C in the presence of Mn2+ and relative activity for pentoses and hexoses in the order l-arabinose > d-galactose > l-ribulose > d-xylulose > d-xylose > d-tagatose > d-glucose. The thermal stability of recombinant E. coli cells expressing l-arabinose isomerase from K. pneumoniae was higher than that of the enzyme. Thus, the reaction conditions of the recombinant cells were optimized to pH 8.0, 50 °C, and 4 g/L cell concentration using 100 g/L d-galactose with 1 mM Mn2+. Under these conditions, 33.5 g/L d-tagatose was produced from d-galactose with 33.5% molar yield and 67 g/L/h productivity. Our findings will help produce d-tagatose using whole-cell reactions, extending its industrial application. Full article
(This article belongs to the Special Issue Biotransformation and Analysis of Functional Foods and Ingredients)
Show Figures

Figure 1

11 pages, 1377 KiB  
Proceeding Paper
Reduced-Immunogenicity Wheat and Peanut Lines for People with Foodborne Disorders
by Sachin Rustgi, Tariq Alam, Zachary Tyler Jones, Amanpreet Kaur Brar and Samneet Kashyap
Chem. Proc. 2022, 10(1), 67; https://doi.org/10.3390/IOCAG2022-12221 - 10 Feb 2022
Cited by 1 | Viewed by 2422
Abstract
Sensitivity to wheat and peanut proteins is widespread and is not restricted to geographical areas where wheat and peanuts are produced. It emphasizes the importance of these crops as a source of energy and proteins to populations globally. An uptick in the number [...] Read more.
Sensitivity to wheat and peanut proteins is widespread and is not restricted to geographical areas where wheat and peanuts are produced. It emphasizes the importance of these crops as a source of energy and proteins to populations globally. An uptick in the number of individuals diagnosed with celiac disease, an autoimmune disorder, and peanut allergy was observed in the last two decades. According to a recent estimate, ~1.4% of the world population is diagnosed with celiac disease, and ~2% of the Western population is diagnosed with peanut allergies. Unfortunately, there is no therapy available for these sensitivities other than an abstinent diet, with a need to maintain an immunogen-free environment to prevent sensitive individuals’ accidental exposure to the antigen. Given this knowledge, we focused our research on developing reduced-immunogenicity wheat and peanut genotypes that can significantly reduce the scope of severe reaction to accidental exposure to wheat/peanut proteins. Working in this direction, we undertook two approaches to develop reduced-immunogenicity wheat/peanut genotypes: (1) Use wheat/peanut germplasm screening for genotypes with reduced immunogen content, to crossbreed them to develop reduced to non-immunogenic wheat/peanut lines. (2) Use genetic engineering to silence genes encoding immunogenic proteins. To achieve the first objective, we screened wheat landraces/mutants and peanut-mini-core collections. Similarly, for gene silencing, RNA-interference constructs for the wheat DEMETER gene or guide RNAs from the wheat-gluten-gene sequences and the peanut Ara h1, Ara h2, Ara h3, and Ara h6 gene sequences were developed and assembled in single guide-RNA modules. The progress made towards the target is discussed below. Full article
Show Figures

Figure 1

15 pages, 1835 KiB  
Article
Regulation of Phosphorus Supply on Nodulation and Nitrogen Fixation in Soybean Plants with Dual-Root Systems
by Hongyu Li, Xiangxiang Wang, Quanxi Liang, Xiaochen Lyu, Sha Li, Zhenping Gong, Shoukun Dong, Chao Yan and Chunmei Ma
Agronomy 2021, 11(11), 2354; https://doi.org/10.3390/agronomy11112354 - 20 Nov 2021
Cited by 20 | Viewed by 4503
Abstract
Phosphorus (P) is an important nutrient affecting nodulation and nitrogen fixation in soybeans. To further investigate the relationship of phosphorus with soybean nodulation and nitrogen fixation, the seedling grafting technique was applied in this study to prepare dual-root soybean systems for a sand [...] Read more.
Phosphorus (P) is an important nutrient affecting nodulation and nitrogen fixation in soybeans. To further investigate the relationship of phosphorus with soybean nodulation and nitrogen fixation, the seedling grafting technique was applied in this study to prepare dual-root soybean systems for a sand culture experiment. From the unfolded cotyledon stage to the initial flowering stage, one side of each dual-root soybean system was irrigated with nutrient solution containing 1 mg/L, 31 mg/L, or 61 mg/L of phosphorus (phosphorus-application side), and the other side was irrigated with a phosphorus-free nutrient solution (phosphorus-free side), to study the effect of local phosphorus supply on nodulation and nitrogen fixation in soybean. The results are described as follows: (1) Increasing the phosphorus supply increased the nodules weight, nitrogenase activity, ureide content, number of bacteroids, number of infected cells, and relative expression levels of nodule nitrogen fixation key genes (GmEXPB2, GmSPX5, nifH, nifD, nifK, GmALN1, GmACP1, GmUR5, GmPUR5, and GmHIUH5) in root nodules on the phosphorus-application side. Although the phosphorus-application and phosphorus-free sides demonstrated similar changing trends, the phosphorus-induced increases were more prominent on the phosphorus-application side, which indicated that phosphorus supply systematically regulates nodulation and nitrogen fixation in soybean. (2) When the level of phosphorus supply was increased from 1 mg/L to 31 mg/L, the increase on the P– side root was significant, and nodule phosphorus content increased by 57.14–85.71% and 68.75–75.00%, respectively; ARA and SNA were 218.64–383.33% and 11.41–16.11%, respectively, while ureide content was 118.18–156.44%. When the level of phosphorus supply was increased from 31mg/L to 61mg/L, the increase in the regulation ability of root and nodule phosphorus content, ARA, SNA, and ureide content were low for roots, and the value for nodules was lower than when the phosphorus level increased from 1 mg/L to 31 mg/L. (3) A high-concentration phosphorus supply on one side of a dual-root soybean plant significantly increased the phosphorus content in the aboveground tissues, as well as the roots and nodules on both sides. In the roots on the phosphorus-free side, the nodules were prioritized for receiving the phosphorus transported from the aboveground tissues to maintain their phosphorus content and functionality. Full article
(This article belongs to the Special Issue The Role of Mineral Elements in the Crop Growth and Production)
Show Figures

Figure 1

Back to TopTop