Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (583)

Search Parameters:
Keywords = Anthraquinone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1903 KB  
Article
Chemical Investigation of the Global Regulator veA-Overexpressed Mutant of an Arctic Strain Aspergillus sydowii MNP-2
by Qing Gong, Wei Wang, Yujie Zhao, Xiaoying Wang, Xuelian Bai and Huawei Zhang
Mar. Drugs 2026, 24(1), 34; https://doi.org/10.3390/md24010034 - 9 Jan 2026
Viewed by 96
Abstract
A growing body of evidence indicates that artificial manipulation of transcriptional regulation is a powerful approach to activate cryptic biosynthetic gene clusters (BGCs) of secondary metabolites (SMs) in fungi. In this study, one mutant strain MNP-2-OE::veA was constructed by overexpressing the global [...] Read more.
A growing body of evidence indicates that artificial manipulation of transcriptional regulation is a powerful approach to activate cryptic biosynthetic gene clusters (BGCs) of secondary metabolites (SMs) in fungi. In this study, one mutant strain MNP-2-OE::veA was constructed by overexpressing the global transcription regulator veA in an Arctic-derived strain Aspergillus sydowii MNP-2. Chemical investigation of the mutant OE::veA resulted in the isolation of one novel polyhydroxy anthraquinone (1) together with nine known metabolites (210), which were unambiguously characterized by various spectroscopic methods including 1D and 2D NMR and HR-ESI-MS as well as via comparison with literature data. Biosynthetically, compounds 1 and 10 as new arising chemicals were, respectively, formed by type II polyketide synthase (T2PK) and non-ribosomal peptide synthetase (NRPS), which were silent in the wild-type (WT) strain MNP-2. A bioassay showed that only compound 3 had weak inhibitory effect on human pathogen Candida albicans, with a MIC value of 64 ug/mL, and 4 displayed in vitro weak cytotoxic activity against HCT116 cells (IC50 = 44.47 μM). These results indicate that overexpression of veA effectively awakened the cryptic BGCs in fungal strains and enhanced their structural diversity in natural products. Full article
(This article belongs to the Special Issue Structural Diversity in Marine Natural Products)
Show Figures

Figure 1

14 pages, 1082 KB  
Article
Chemical Composition of Extracts from Fruiting Bodies of Tinder Fungi and Their Effect on the Early Stages of Wheat Development
by Alexander Ermoshin, Marina Byzova, Chaomei Ma and Irina Kiseleva
Appl. Biosci. 2026, 5(1), 3; https://doi.org/10.3390/applbiosci5010003 - 6 Jan 2026
Viewed by 119
Abstract
One of the global challenges is the deficit of food. Food production is highly dependent on the productivity of agricultural plants used by humans and livestock. Various chemical and natural compounds are used to stimulate plant growth and increase their resistance to stress. [...] Read more.
One of the global challenges is the deficit of food. Food production is highly dependent on the productivity of agricultural plants used by humans and livestock. Various chemical and natural compounds are used to stimulate plant growth and increase their resistance to stress. The aim of our study was to analyze the chemical composition of extracts of the most common Ural tinder fungi and their effect on the early stages of wheat growth. Water–alcohol extracts from five wood-destroying fungi contained biologically active compounds (BACs), such as phenolics, free amino acids and reducing sugars. F. pinicola was characterized by the smallest amount of extracted substances. F. fomentarius has the largest amount of phenolic compounds and sugars, and I. obliquus had the highest concentration of free amino acids. Qualitative analysis revealed alkaloids in P. betulinus, and anthraquinones in F. fomentarius. Saponins were found in all tested species, except F. fomentarius. The extracts stimulated the early stages of wheat development at concentrations of 1.0–0.2 g of fungal biomass per liter. Seed germination rate was comparable to the control samples or exceeded it, and the length of roots and shoots increased. Thus, extracts from fruiting bodies of studied fungi can be recommended for priming wheat seeds, and for biotechnological cultivation. Full article
Show Figures

Graphical abstract

11 pages, 1160 KB  
Article
Reuse of Textile Spent Reactive Anthraquinone Dyebaths Following Biological Decolorization Process Under Hypersaline Conditions
by Soogwan Lee and Young Haeng Lee
Processes 2026, 14(1), 32; https://doi.org/10.3390/pr14010032 - 21 Dec 2025
Viewed by 290
Abstract
The textile industry widely uses reactive anthraquinone dyes, which exhibit strong resistance to color removal and generate substantial volumes of wastewater containing significant quantities of residual dye requiring treatment prior to discharge. As part of a study aimed at reusing rather than discharging [...] Read more.
The textile industry widely uses reactive anthraquinone dyes, which exhibit strong resistance to color removal and generate substantial volumes of wastewater containing significant quantities of residual dye requiring treatment prior to discharge. As part of a study aimed at reusing rather than discharging spent reactive anthraquinone dyebaths, Reactive Blue 4 (RB4) dye was used in dyeing cotton, and the generated spent dyebaths were biologically decolorized using a fluidized bed reactor (FBR) operated under hypersaline conditions at a salt concentration of 100 g NaCl/L, which is typically found in commercial spent reactive dyebaths. Across five consecutive runs, the FBR achieved a mean decolorization efficiency of 91.2 ± 2.8% within a 6 h incubation period. The quality of cotton dyed with the treated and reused spent dyebaths was evaluated through shade reproducibility and color consistency assessments. Five repetitive dyeings using the biologically decolorized dyebaths showed that the ΔEcmc fabric color difference values were 0.58~0.80, which were lower than the industry-accepted value of 1.0. This study demonstrates that biologically decolorized spent dyebaths can be effectively reused, offering substantial reductions in water and salt consumption and improving the economic and environmental sustainability of the reactive dyeing process. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Graphical abstract

26 pages, 2519 KB  
Article
Two–Photon Absorption Properties and Structure–Property Relationships of Natural 9,10–Anthraquinones: A Curated RI–CC2 Dataset
by Maciej Spiegel
Int. J. Mol. Sci. 2026, 27(1), 87; https://doi.org/10.3390/ijms27010087 - 21 Dec 2025
Viewed by 290
Abstract
This work provides the first systematic survey of the two–photon properties of 97 natural 9,10–anthraquinones from plants and fungi. A comprehensive computational dataset of two–photon absorption properties calculated using RI–CC2/aug–cc–pVDZ is presented. Single degenerate photon energies required for two–photon excitation span 491.6–1007.9 nm [...] Read more.
This work provides the first systematic survey of the two–photon properties of 97 natural 9,10–anthraquinones from plants and fungi. A comprehensive computational dataset of two–photon absorption properties calculated using RI–CC2/aug–cc–pVDZ is presented. Single degenerate photon energies required for two–photon excitation span 491.6–1007.9 nm across the five lowest singlet states, with all S0→S1 transitions falling within the biological therapeutic window. Remarkably, S3 state exhibits systematically enhanced TPA efficiency, with 60% of compounds surpassing 1 GM and achieving a mean cross–section of 29.9 GM–substantially higher than S1 (mean: 7.5 GM). Three compounds demonstrate exceptional performance: cynodontin (73.6 GM, S2), dermocybin (68.7 GM, S4), and morindone (50.7 GM, S3). Orbital analysis reveals that these excitations possess high configurational purity and diagnostics validating the single–reference treatment. The observed spatial separation between hole and particle NTOs, combined with extreme transition dipole anisotropy along the molecular long axis, indicates dipolar charge–transfer enhancement. Comprehensive structure–property analysis establishes that strategic modification may maximise TPA cross–sections. Comparison with aqueous–phase calculations for three compounds reveals non–systematic solvent–induced redistributions of TPA activity across excited states, indicating that gas–phase outcomes serve primarily as internal benchmarks and intrinsic descriptors of structure–property relationships rather than quantitative predictors of photoactivity. Full article
(This article belongs to the Special Issue Molecular Modeling in Pharmaceutical Sciences)
Show Figures

Figure 1

18 pages, 5319 KB  
Article
Comparative Analysis of Anthraquinone Reactive Dyes with Direct Dyes for Papermaking Applicability
by Dimitrina Todorova, Polya Miladinova and Blagovesta Katevska
Appl. Sci. 2025, 15(24), 13216; https://doi.org/10.3390/app152413216 - 17 Dec 2025
Viewed by 268
Abstract
Aiming to compare the applicability and the successfulness of reactive dye printing papers’ coloration, two laboratory-synthesized anthraquinone reactive dyes are studied in comparison with two commercially available anionic and cationic direct dyes. Reactive dye 1 is monochlorotriazine and reactive dye 2 is bifunctional [...] Read more.
Aiming to compare the applicability and the successfulness of reactive dye printing papers’ coloration, two laboratory-synthesized anthraquinone reactive dyes are studied in comparison with two commercially available anionic and cationic direct dyes. Reactive dye 1 is monochlorotriazine and reactive dye 2 is bifunctional (contains two reactive groups—one is a monochlorotriazine atom and one an unsaturated allylic group). The synthesized reactive dyes are investigated through a paper slurry, white waters and paper sample properties comparative analysis. The drainage ability, flocculation volume and sedimentation index of paper slurries are determined. The turbidity, conductivity, pH and dye concentration in the white waters are also examined to ensure dye fixation. Through SEM, the paper structure is evaluated. The strength properties, colorimetric characteristics and stability at accelerated light aging of all 15 paper samples are investigated. The dewatering ability is enhanced, the white waters are clarified, the conductivity and pH level are stable and the dye concentration is on the same levels as for the direct dyes. The paper structure is uniform, the strength is slightly enhanced and color differences are indistinguishable compared to those of the direct dyes, when the ratio of the fixing agent to dye is appropriately optimized. Full article
Show Figures

Figure 1

16 pages, 2727 KB  
Article
γ-Valerolactone Pulping as a Sustainable Route to Micro- and Nanofibrillated Cellulose from Sugarcane Bagasse
by Roxana Giselle González, Nanci Ehman, Fernando Esteban Felissia, María Evangelina Vallejos and María Cristina Area
Processes 2025, 13(12), 4065; https://doi.org/10.3390/pr13124065 - 16 Dec 2025
Viewed by 286
Abstract
The study explores γ-valerolactone (GVL) pulps as a sustainable approach to producing microfibrillated (MFC) and nanofibrillated (NFC) cellulose from sugarcane bagasse, a widely available agro-industrial by-product. Pulp was obtained by acid-catalyzed organosolv delignification with a GVL–water system. MFC was generated through a simple [...] Read more.
The study explores γ-valerolactone (GVL) pulps as a sustainable approach to producing microfibrillated (MFC) and nanofibrillated (NFC) cellulose from sugarcane bagasse, a widely available agro-industrial by-product. Pulp was obtained by acid-catalyzed organosolv delignification with a GVL–water system. MFC was generated through a simple disc refiner, while NFC was produced by TEMPO-mediated oxidation followed by mechanical treatment in a colloidal mill. NFC and MFC produced using the same methodology from a commercial sugarcane totally chlorine-free (TCF) soda–anthraquinone (soda–AQ) pulp served as a reference. Structural and physicochemical characterization involved optical transmittance, turbidity, conductimetry, X-ray diffraction, viscosity, FTIR, carboxyl content, cationic demand, degree of polymerization, and morphology by scanning electron microscopy (SEM). Results demonstrated that xylan and residual lignin contents influenced MFC formation, and the NFC showed properties comparable to those of the commercial pulp with fewer fibrillation passes. The study highlights GVL pulping as a greener, efficient alternative to conventional processes, opening new pathways for producing viscosity-controlled nanocellulose suspensions suitable for advanced applications. Full article
(This article belongs to the Special Issue Sustainable Nanocellulose Processes Toward New Products and Markets)
Show Figures

Figure 1

15 pages, 902 KB  
Article
Cytotoxic Curvalarol C and Other Compounds from Marine Fungus Asteromyces cruciatus KMM 4696
by Liliana E. Nesterenko, Ekaterina A. Yurchenko, Olesya I. Zhuravleva, Galina K. Oleinikova, Natalya N. Kirichuk, Roman S. Popov, Viktoria E. Chausova, Konstantin A. Drozdov, Ekaterina A. Chingizova, Marina P. Isaeva and Anton N. Yurchenko
Molecules 2025, 30(24), 4772; https://doi.org/10.3390/molecules30244772 - 14 Dec 2025
Viewed by 352
Abstract
The present study aimed to isolate new specialized metabolites from the obligate marine fungus Asteromyces cruciatus KMM 4696. The strain KMM 4696 was identified based on the 28S rRNA, ITS, and TEF1 molecular genetic markers. Chromatographic separation of the fungal extract obtained from [...] Read more.
The present study aimed to isolate new specialized metabolites from the obligate marine fungus Asteromyces cruciatus KMM 4696. The strain KMM 4696 was identified based on the 28S rRNA, ITS, and TEF1 molecular genetic markers. Chromatographic separation of the fungal extract obtained from KI-containing nutrient media cultivation led to the isolation of undescribed pentanorlanostanes curvalarols C (1) and D (2), as well as an undescribed 6/6/5 anthraquinone acruciquinone D (3), along with eight known metabolites. The structures of the isolated compounds were established based on 1D and 2D NMR and MS data. The cytotoxic activity of curvalarol C (1) was assessed in MCF-10A and MCF-7 cells. Curvalarol C exhibited selective activity against cancer MCF-7 cells and inhibiting colony formation with an IC50 of 4.7 µM. Full article
Show Figures

Figure 1

23 pages, 975 KB  
Review
Senna petersiana (Bolle) Lock: A Review of Its Ethnomedicinal Uses, Phytochemistry, Pharmacological Activities, and Toxicological Profile
by Talita Jessica Mnisi, Mashilo Mash Matotoka and Peter Masoko
Plants 2025, 14(24), 3800; https://doi.org/10.3390/plants14243800 - 13 Dec 2025
Viewed by 360
Abstract
Senna petersiana (Bolle) Lock is a chemically diverse plant widely recognized for its ethnomedicinal applications across various traditional medical systems. It is native to and widely distributed in African countries, including Ethiopia, Cameroon, and South Africa. This review integrates the phytochemical composition, biological [...] Read more.
Senna petersiana (Bolle) Lock is a chemically diverse plant widely recognized for its ethnomedicinal applications across various traditional medical systems. It is native to and widely distributed in African countries, including Ethiopia, Cameroon, and South Africa. This review integrates the phytochemical composition, biological activities, and toxicological effects of S. petersiana. Phytochemical analyses reveal the presence of numerous classes of compounds, including alkaloids, flavonoids, phenolics, anthraquinones, chromones, and sterol glycosides, with variations in concentration across different plant parts. Quantitative studies highlight particularly high levels of phenolics and flavonoids in ethanol, methanol, and acetone extracts, correlating these with enhanced biological activities. Pharmacological investigations demonstrate a spectrum of activities, including antibacterial, antioxidant, anti-inflammatory, antiviral, anthelmintic, and anticancer effects, supporting many of the plant’s traditional uses. Toxicological assessments suggest relative safety at moderate doses, though further evaluation is necessary for specific cell types and high-dose exposures. Despite the promising bioactivities, the mechanisms of action and in vivo efficacy of isolated compounds remain underexplored. Future research should focus on bioassay-guided isolation, detailed pharmacodynamic studies, and comprehensive toxicological profiling to validate and harness the therapeutic potential of S. petersiana. This review highlights the plant’s biochemical complexity and paves the way for its development as a valuable phytopharmaceutical agent. Full article
(This article belongs to the Special Issue Phytochemistry, Pharmacology, and Toxicity of Medicinal Plants)
Show Figures

Figure 1

17 pages, 4360 KB  
Article
Carbon Dot-Modified Quercetin Enables Synergistic Enhancement of Charge Transfer and Oxygen Adsorption for Efficient H2O2 Photoproduction
by Haojie Xu, Zenan Li, Jiaxuan Wang, Fan Liao, Hui Huang and Yang Liu
Nanomaterials 2025, 15(24), 1856; https://doi.org/10.3390/nano15241856 - 11 Dec 2025
Viewed by 318
Abstract
Hydrogen peroxide (H2O2) is a widely used green oxidant, yet its conventional industrial production via the anthraquinone process is energy-intensive and environmentally unfriendly. Photocatalytic oxygen reduction reaction (ORR) presents a sustainable alternative for H2O2 synthesis, but [...] Read more.
Hydrogen peroxide (H2O2) is a widely used green oxidant, yet its conventional industrial production via the anthraquinone process is energy-intensive and environmentally unfriendly. Photocatalytic oxygen reduction reaction (ORR) presents a sustainable alternative for H2O2 synthesis, but its practical application is limited by inefficient light absorption, low charge separation efficiency, and sluggish reaction kinetics. In this work, we developed a metal-free carbon-based photocatalyst (QCDs) acquired by modifying quercetin with carbon dots (CDs) for efficient photogeneration of H2O2. The optimized QCDs achieved a H2O2 production rate of 1116.32 μmol·h−1·g−1, which is 40.3% higher than that of pristine quercetin. Comprehensive analysis with transient potential scanning (TPS), transient photovoltage (TPV), and photocurrent transient (TPC) measurements reveal that the photocatalytic ORR follows a two-step single-electron pathway. It is worth noting that CDs not only promote the generation and transfer of photogenerated electrons but also boost oxygen adsorption. Our work demonstrates the synergy of integrating biomass-derived materials with nanostructural engineering and optimizing the system with data-driven approaches for enhanced photocatalysis. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

21 pages, 5282 KB  
Article
Emodin as a Broad-Spectrum Inhibitor of QS-Regulated Pathogenicity and Biofilms: A Non-Antibiotic Strategy Against Microbial Virulence
by Fareha Bano
Micro 2025, 5(4), 56; https://doi.org/10.3390/micro5040056 - 5 Dec 2025
Viewed by 299
Abstract
Antimicrobial resistance (AMR) poses a global health threat, which is becoming more challenging due to the involvement of bacterial virulence mechanisms such as quorum sensing (QS) and biofilm formation. These systems regulate pathogenic traits and shield bacteria from conventional therapies. Phytocompounds offer promising [...] Read more.
Antimicrobial resistance (AMR) poses a global health threat, which is becoming more challenging due to the involvement of bacterial virulence mechanisms such as quorum sensing (QS) and biofilm formation. These systems regulate pathogenic traits and shield bacteria from conventional therapies. Phytocompounds offer promising antivirulence strategies by disrupting QS and biofilms without exerting selective pressure. In this study, emodin, a natural anthraquinone, was evaluated for its anti-QS and antibiofilm efficacy. Emodin inhibited violacein production by 63.86% in C. violaceum 12472. In P. aeruginosa PAO1, it suppressed pyocyanin (68.04%), pyoverdin (48.79%), exoprotease (58.55%), elastase (43.13%), alginate (74.12%), and rhamnolipids (56.37%). In S. marcescens MTCC 97, emodin reduced prodigiosin (55.94%), exoprotease (48.80%), motility (83.27%), and cell surface hydrophilicity (41.20%). Biofilm formation was inhibited by over 50% in all three bacteria, highlighting emodin’s potential as a broad-spectrum antibiofilm agent. Molecular docking analyses indicated that emodin exhibited affinity towards QS regulatory proteins CviR, LasR, and SmaR, implying a possible competitive interaction at their ligand-binding sites. Subsequent molecular dynamics simulations confirmed these observations by demonstrating structural stability in emodin-bound proteins. The collective insights from in vitro assays and computational studies underscore the potential of emodin in interfering with QS-mediated virulence expression and biofilm development. Such findings support the exploration of non-antibiotic QS inhibitors as therapeutic alternatives for managing bacterial infections and reducing dependence on traditional antimicrobial agents. Full article
Show Figures

Figure 1

30 pages, 1235 KB  
Article
Untargeted Metabolomics for Profiling of Cascara, Senna, Rhubarb, and Frangula Metabolites
by Paola Nezi, Alessia Lucia Prete, Filippo Costanti, Vittoria Cicaloni, Mattia Cicogni, Laura Tinti, Laura Salvini and Monica Bianchini
Metabolites 2025, 15(12), 779; https://doi.org/10.3390/metabo15120779 - 3 Dec 2025
Viewed by 387
Abstract
Background/Objectives: Natural products containing hydroxyanthracene derivatives (HADs) such as Cascara (Rhamnus purshiana), Frangula (Rhamnus frangula), Rhubarb (Rheum palmatum), and Senna (Cassia angustifolia) have long been used for their laxative properties, but also raise safety concerns [...] Read more.
Background/Objectives: Natural products containing hydroxyanthracene derivatives (HADs) such as Cascara (Rhamnus purshiana), Frangula (Rhamnus frangula), Rhubarb (Rheum palmatum), and Senna (Cassia angustifolia) have long been used for their laxative properties, but also raise safety concerns due to reported genotoxic and carcinogenic potential. Most studies have focused on quantifying HADs, whereas the broader secondary metabolite landscape of these herbal drugs remains underexplored. We aimed to generate an untargeted metabolomic fingerprint of these four species and to explore their chemical diversity using AI-based structural classification. Methods: Four commercial botanical raw materials were extracted with 60% methanol and analysed by UPLC–HRMS/MS in positive and negative ion modes. Features were processed in Compound Discoverer and annotated by accurate mass and MS/MS matching against spectral databases, then assigned to structural classes using a graph neural network classifier. Multivariate analyses (PCA, HCA) were used to compare metabolic patterns across species. Results: In total, 93, 83, 83 and 51 metabolites were annotated in cascara, frangula, rhubarb, and senna, respectively, spanning flavonoids, anthraquinones, phenylpropanoids and other classes. Only four flavonoids were shared by all species, indicating marked biochemical divergence. Several putatively species-enriched features were observed, including pavine in cascara and frangula, vicenin-2 in senna, and piceatannol in rhubarb. Senna displayed the most distinct metabolic profile, whereas cascara and frangula clustered closely. Conclusions: This work provides a chemistry-centred metabolomic fingerprint of four HAD-containing herbal drugs using graph-based neural networks for natural product classification, supporting future studies on the pharmacological potential, bioavailability and safety of their metabolites. Full article
(This article belongs to the Special Issue Metabolism of Bioactives and Natural Products: 2nd Edition)
Show Figures

Figure 1

20 pages, 3992 KB  
Article
Emodin Enhances Rosiglitazone’s Therapeutic Profile by Dual Modulation of SREBP1-Mediated Adipogenesis and PPARγ-Driven Thermogenesis
by Meng Li, Yi-Rong Wang, Xue Wang, Xiao-Li Xiao, Yun-Hong Sun, Sheng-An Zhang, Yan-Qi Dang, Kai Wang and Wen-Jun Zhou
Pharmaceuticals 2025, 18(12), 1810; https://doi.org/10.3390/ph18121810 - 27 Nov 2025
Viewed by 447
Abstract
Background/Objectives: Rosiglitazone (RSG), a potent PPARγ agonist for type 2 diabetes mellitus (T2DM), induces adverse adipogenic effects that limit clinical use. We investigated whether emodin (1,3,8-trihydroxy-6-methylanthraquinone, EMO), a natural anthraquinone, mitigates RSG-induced complications while enhancing its insulin-sensitizing benefits in severe obesity. Methods: Male [...] Read more.
Background/Objectives: Rosiglitazone (RSG), a potent PPARγ agonist for type 2 diabetes mellitus (T2DM), induces adverse adipogenic effects that limit clinical use. We investigated whether emodin (1,3,8-trihydroxy-6-methylanthraquinone, EMO), a natural anthraquinone, mitigates RSG-induced complications while enhancing its insulin-sensitizing benefits in severe obesity. Methods: Male ob/ob mice with established obesity and diabetes were treated for 4 weeks with RSG (10 mg kg−1 day−1), EMO (200 or 400 mg kg−1 day−1) or their combination. Metabolic profiling, organ function, and adipose histology were analyzed. RNA sequencing and mechanistic studies (Western blot, RT-qPCR, luciferase assays) in inguinal subcutaneous adipose tissue (iSAT), epididymal white adipose tissue (eWAT), and 3T3-L1 adipocytes were used to define EMO’s actions. Results: EMO co-treatment dose-dependently reduced RSG-induced weight gain, visceral adiposity (iSAT and eWAT mass, p < 0.05), and ectopic lipid deposition while ameliorating hepatorenal dysfunction. EMO synergistically enhanced RSG’s glucose-lowering effects. Mechanistically, EMO suppressed sterol regulatory element-binding protein 1 (SREBP1)-mediated lipogenesis (Srebp1, Acc, Fasn, Scd1; p < 0.05) and enhanced PPARγ-peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α)-driven thermogenesis via enhanced PPARγ transactivation and nuclear translocation. Thermogenic genes (Ucp1, Ppargc1a, Cidea; p < 0.05) were upregulated, with maximal uncoupling protein 1 (UCP1) induction in iSAT at 400 mg/kg EMO. Conclusions: EMO selectively enhances RSG’s glycemic benefits while attenuating its adipogenic effects in severe obesity by dual PPARγ modulation-inhibiting adipogenic pathways while amplifying thermogenesis. This strategy mitigates RSG’s adverse effects while improving insulin sensitivity, supporting the potential of EMO as a PPARγ adjunct therapy. Full article
Show Figures

Figure 1

15 pages, 2211 KB  
Article
Structural and Spectroscopic Study of Benzoperimidines Derived from 1-Aminoanthraquinone and Their Application to Bioimaging
by Elena Kirilova, Armands Maļeckis, Muza Kirjušina, Ligita Mežaraupe, Ilze Rubeniņa, Aija Brakovska, Veronika Pavlova, Sanita Kecko, Inta Umbraško, Vladimir Kiyan, Lyudmila Lider, Aleksandrs Pučkins and Sergey Belyakov
Molecules 2025, 30(22), 4472; https://doi.org/10.3390/molecules30224472 - 19 Nov 2025
Viewed by 439
Abstract
In this research, we studied the synthesis and characterization of a novel amidine derivative of benzoperimidine derived from 1-aminoanthraquinone, focusing on its emission properties and potential applications in confocal laser scanning microscopy. The synthesized compound exhibited pronounced solvatochromic behavior in various solvents. Spectroscopic [...] Read more.
In this research, we studied the synthesis and characterization of a novel amidine derivative of benzoperimidine derived from 1-aminoanthraquinone, focusing on its emission properties and potential applications in confocal laser scanning microscopy. The synthesized compound exhibited pronounced solvatochromic behavior in various solvents. Spectroscopic analysis, including 1H-, 13C-, and mass spectrometry, confirmed the chemical structure. The structure of three compounds was also determined using X-ray diffraction analysis; this study revealed the structural features of these substances in the solid state. The compound’s antimicrobial activity was evaluated using the agar diffusion method with the bacterium Bacillus subtilis subsp. Spizizenii. Furthermore, the study introduces a dye designed for imaging of the parasitic flatworm Opisthorchis felineus, demonstrating its potential in visualizing biological specimens. Full article
Show Figures

Figure 1

12 pages, 1029 KB  
Article
The Effect and Mechanism of AQDS Promoting Anaerobic Cr(VI) Bio-Reduction Under a Sulfate-Rich Environment
by Zhujun Wang, Liuzhu Zhao, Chunlin Huang, Duyang Yao, Yayi Wang and Min Wu
Water 2025, 17(22), 3287; https://doi.org/10.3390/w17223287 - 18 Nov 2025
Viewed by 505
Abstract
Hexavalent chromium (Cr(VI)) is a highly toxic and carcinogenic pollutant commonly found in industrial wastewater. To address the challenge of sulfate inhibition on biological methods for treating chromium-containing wastewater, this study investigated the enhancement effect and mechanism of anthraquinone-2,6-disulfonate (AQDS) on the anaerobic [...] Read more.
Hexavalent chromium (Cr(VI)) is a highly toxic and carcinogenic pollutant commonly found in industrial wastewater. To address the challenge of sulfate inhibition on biological methods for treating chromium-containing wastewater, this study investigated the enhancement effect and mechanism of anthraquinone-2,6-disulfonate (AQDS) on the anaerobic bio-reduction of Cr(VI). At an AQDS dosage of 30 mg/L, Cr(VI) reduction efficiency increased by 7.8-fold compared to the group with only sulfate. AQDS demonstrated remarkable performance of Cr(VI) bio-reduction by reducing intracellular Cr(VI) penetration, lowering reactive oxygen species (ROS) levels, and maintaining optimal NADH/NAD+ ratios. Importantly, AQDS restores Cr(VI) reduction efficiency by directing electron flow toward Cr(VI) reduction through enhanced extracellular electron transfer, thereby mitigating the competitive inhibitory effect of sulfate. It concluded that AQDS effectively enhances Cr(VI) bio-reduction, offering a promising strategy for the environmental remediation of Cr(VI)-contaminated wastewater under sulfate-rich conditions. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

15 pages, 919 KB  
Article
Resonant Soft X-Ray Scattering Reveals Chromophore Domains in Polymer Doped with Disperse Orange 11 Dye
by Elliot Steissberg, Acacia Patterson, Carson Beyers, Melanie Santiago, Mark G. Kuzyk and Brian A. Collins
Appl. Sci. 2025, 15(22), 12006; https://doi.org/10.3390/app152212006 - 12 Nov 2025
Viewed by 1262
Abstract
Chromophore domains were proposed in a previous work as the mediators of self-healing of optical properties in dye-doped polymers. A statistical mechanical model based on domains matches all observed self-healing dynamics as a function of dye concentration, temperature and light intensity. This suggests [...] Read more.
Chromophore domains were proposed in a previous work as the mediators of self-healing of optical properties in dye-doped polymers. A statistical mechanical model based on domains matches all observed self-healing dynamics as a function of dye concentration, temperature and light intensity. This suggests that domains are responsible. However, there is no direct observation of domains, nor has their physical morphology been determined. This work reports the first observation of domains in a self-healing polymer using resonant soft X-ray scattering (RSoXS), which gives a domain size in the range of 39.3 Å to 62.8 Å. This range includes the domain model’s prediction of an average domain size of roughly 30 molecules, which is about 56 Å, if the molecules form a loosely packed ball. X-ray scattering of samples of concentration spanning from neat polymer to the saturation limit of disperse orange 11 (DO11) dye in poly(methyl methacrylate) (PMMA) polymer shows domains in the expected size scales, with the mode of the effective scattering width varying little with concentration. However, for constant domain shape, the mode peak would decrease in q with increasing concentration, according to the domain model. This work suggests that the domain shape might change with concentration, which warrants further investigations of domain topology and geometry. The important evidence presented in this work is the direct experimental observation of domains, which is central to self-healing models. Full article
(This article belongs to the Special Issue Self-Healing Materials and Applications)
Show Figures

Figure 1

Back to TopTop