Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = AlxGa1−xN

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 16390 KB  
Review
Auger Electron Spectroscopy for Chemical Analysis of Passivated (Al,Ga)N-Based Systems
by Alina Domanowska and Bogusława Adamowicz
Micromachines 2026, 17(1), 47; https://doi.org/10.3390/mi17010047 - 30 Dec 2025
Viewed by 520
Abstract
This review summarizes the use of Auger Electron Spectroscopy (AES) for microchemical analysis of two different types of dielectric/(Al,Ga)N-based systems: (i) extrinsic dielectric PECVD SiO2, ALD Al2O3, and ECR-CVD SiNx films on AlxGa1−x [...] Read more.
This review summarizes the use of Auger Electron Spectroscopy (AES) for microchemical analysis of two different types of dielectric/(Al,Ga)N-based systems: (i) extrinsic dielectric PECVD SiO2, ALD Al2O3, and ECR-CVD SiNx films on AlxGa1−xN/GaN structures in the context of their application in microelectronic power devices and (ii) intrinsic Al2O3 films on AlN epitaxial layers grown by high-temperature oxidation for nanostructured technology of various gas/ion sensors. Particular attention is given to AES depth profiling across complete multilayer cross-sections, combining qualitative analysis of spectral line shape and intensity evolution as well as kinetic energy shifts with quantitative elemental depth distributions. This approach enables identification of chemical states and oxidation-related transformations at dielectric/semiconductor interfaces. Reported results demonstrate that AES provides micro- to nanometer-scale chemical information essential for distinguishing interfacial from the bulk properties. The capabilities and inherent limitations of AES depth profiling, including sputter-induced artifacts are also addressed, highlighting the role of optimized experimental conditions in reliable interface analysis. Full article
(This article belongs to the Special Issue GaN Power Devices: Recent Advances, Applications, and Perspectives)
Show Figures

Figure 1

7 pages, 1267 KB  
Article
MOCVD Growth of Relaxed, Crack-Free AlGaN on Tiled GaN Substrates
by Nirupam Hatui, Henry Collins, Emmanuel Kayede, Feng Wu, Stacia Keller and Umesh K. Mishra
Crystals 2025, 15(11), 965; https://doi.org/10.3390/cryst15110965 - 8 Nov 2025
Viewed by 655
Abstract
AlxGa1-xN layers with up to 53% Al composition and 1.3 µm total thicknesses were grown utilizing step-graded layers on dense arrays of 10 × 10 µm2 GaN tiles. While the layers were fully relaxed and crack-free, the higher [...] Read more.
AlxGa1-xN layers with up to 53% Al composition and 1.3 µm total thicknesses were grown utilizing step-graded layers on dense arrays of 10 × 10 µm2 GaN tiles. While the layers were fully relaxed and crack-free, the higher Al composition sample showed increased X-ray line width, which did not correlate with a lack of increased dislocation density (as measured by TEM). Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

23 pages, 3342 KB  
Article
Tuning Electromagnetically Induced Transparency in a Double GaAs/AlGaAs Quantum Well with Modulated Doping
by C. A. Dagua-Conda, J. A. Gil-Corrales, R. V. H. Hahn, R. L. Restrepo, M. E. Mora-Ramos, A. L. Morales and C. A. Duque
Crystals 2025, 15(3), 248; https://doi.org/10.3390/cryst15030248 - 6 Mar 2025
Cited by 6 | Viewed by 2525
Abstract
Including an n-doped layer in asymmetric double quantum wells restricts confined carriers into V-shaped potential profiles, forming discrete conduction subbands and enabling intersubband transitions. Most studies on doped semiconductor heterostructures focus on how external fields and structural parameters dictate optical absorption. However, [...] Read more.
Including an n-doped layer in asymmetric double quantum wells restricts confined carriers into V-shaped potential profiles, forming discrete conduction subbands and enabling intersubband transitions. Most studies on doped semiconductor heterostructures focus on how external fields and structural parameters dictate optical absorption. However, electromagnetically induced transparency remains largely unexplored. Here, we show that the effect of an n-doped layer GaAs/AlxGa1−xAs in an asymmetric double quantum well system is quite sensitive to the width and position of the doped layer. By self-consistently solving the Poisson and Schrödinger’s equations, we determine the electronic structure using the finite element method within the effective mass approximation. We found that the characteristics of the n-doped layer can modulate the resonance frequencies involved in the electromagnetically induced transparency phenomenon. Our results demonstrate that an n-doped layer can control the electromagnetically induced transparency effect, potentially enhancing its applications in optoelectronic devices. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

24 pages, 6808 KB  
Article
Single-Particle Radiation Sensitivity of Ultrawide-Bandgap Semiconductors to Terrestrial Atmospheric Neutrons
by Daniela Munteanu and Jean-Luc Autran
Crystals 2025, 15(2), 186; https://doi.org/10.3390/cryst15020186 - 15 Feb 2025
Cited by 1 | Viewed by 1006
Abstract
Semiconductors characterized by ultrawide bandgaps (UWBGs), exceeding the SiC bandgap of 3.2 eV and the GaN bandgap of 3.4 eV, are currently under focus for applications in high-power and radio-frequency (RF) electronics, as well as in deep-ultraviolet optoelectronics and extreme environmental conditions. These [...] Read more.
Semiconductors characterized by ultrawide bandgaps (UWBGs), exceeding the SiC bandgap of 3.2 eV and the GaN bandgap of 3.4 eV, are currently under focus for applications in high-power and radio-frequency (RF) electronics, as well as in deep-ultraviolet optoelectronics and extreme environmental conditions. These semiconductors offer numerous advantages, such as a high breakdown field, exceptional thermal stability, and minimized power losses. This study used numerical simulation to investigate, at the material level, the single-particle radiation response of various UWBG semiconductors, such as aluminum gallium nitride alloys (AlxGa1−xN), diamond, and β-phase gallium oxide (β-Ga2O3), when exposed to ground-level neutrons. Through comprehensive Geant4 simulations covering the entire spectrum of atmospheric neutrons at sea level, this study provides an accurate comparison of the neutron radiation responses of these UWBG semiconductors focusing on the interaction processes, the number and nature of secondary ionizing products, their energy distributions, and the production of electron–hole pairs at the origin of single-event effects (SEEs) in microelectronics devices. Full article
Show Figures

Graphical abstract

13 pages, 4441 KB  
Article
Design and Growth of P-Type AlGaN Graded Composition Superlattice
by Yang Liu, Xue Yang, Xiaowei Zhou, Peixian Li, Bo Yang, Zhuang Zhao, Yingru Xiang and Junchun Bai
Micromachines 2024, 15(12), 1420; https://doi.org/10.3390/mi15121420 - 26 Nov 2024
Cited by 3 | Viewed by 1950
Abstract
A graded composition superlattice structure is proposed by combining simulation with experimentation. The structural factors affecting graded symmetric superlattices and graded asymmetric superlattices and their action modes are simulated and analyzed. A Mg-doped graded symmetric superlattice structure with high Al content, excellent structural [...] Read more.
A graded composition superlattice structure is proposed by combining simulation with experimentation. The structural factors affecting graded symmetric superlattices and graded asymmetric superlattices and their action modes are simulated and analyzed. A Mg-doped graded symmetric superlattice structure with high Al content, excellent structural quality, good surface morphology and excellent electrical properties was grown by MOCVD equipment. The AlxGa1−xN superlattice with Al composition of 0.7 in the barrier exhibits a hole concentration of approximately 5 × 1015 cm−3 and a resistivity of 66 Ω·cm. Full article
Show Figures

Figure 1

19 pages, 9100 KB  
Article
Deep Ultraviolet Excitation Photoluminescence Characteristics and Correlative Investigation of Al-Rich AlGaN Films on Sapphire
by Zhe Chuan Feng, Ming Tian, Xiong Zhang, Manika Tun Nafisa, Yao Liu, Jeffrey Yiin, Benjamin Klein and Ian Ferguson
Nanomaterials 2024, 14(21), 1769; https://doi.org/10.3390/nano14211769 - 4 Nov 2024
Viewed by 1948
Abstract
AlGaN is attractive for fabricating deep ultraviolet (DUV) optoelectronic and electronic devices of light-emitting diodes (LEDs), photodetectors, high-electron-mobility field-effect transistors (HEMTs), etc. We investigated the quality and optical properties of AlxGa1−xN films with high Al fractions (60–87%) grown on [...] Read more.
AlGaN is attractive for fabricating deep ultraviolet (DUV) optoelectronic and electronic devices of light-emitting diodes (LEDs), photodetectors, high-electron-mobility field-effect transistors (HEMTs), etc. We investigated the quality and optical properties of AlxGa1−xN films with high Al fractions (60–87%) grown on sapphire substrates, including AlN nucleation and buffer layers, by metal–organic chemical vapor deposition (MOCVD). They were initially investigated by high-resolution X-ray diffraction (HR-XRD) and Raman scattering (RS). A set of formulas was deduced to precisely determine x(Al) from HR-XRD data. Screw dislocation densities in AlGaN and AlN layers were deduced. DUV (266 nm) excitation RS clearly exhibits AlGaN Raman features far superior to visible RS. The simulation on the AlGaN longitudinal optical (LO) phonon modes determined the carrier concentrations in the AlGaN layers. The spatial correlation model (SCM) analyses on E2(high) modes examined the AlGaN and AlN layer properties. These high-x(Al) AlxGa1−xN films possess large energy gaps Eg in the range of 5.0–5.6 eV and are excited by a DUV 213 nm (5.8 eV) laser for room temperature (RT) photoluminescence (PL) and temperature-dependent photoluminescence (TDPL) studies. The obtained RTPL bands were deconvoluted with two Gaussian bands, indicating cross-bandgap emission, phonon replicas, and variation with x(Al). TDPL spectra at 20–300 K of Al0.87Ga0.13N exhibit the T-dependences of the band-edge luminescence near 5.6 eV and the phonon replicas. According to the Arrhenius fitting diagram of the TDPL spectra, the activation energy (19.6 meV) associated with the luminescence process is acquired. In addition, the combined PL and time-resolved photoluminescence (TRPL) spectroscopic system with DUV 213 nm pulse excitation was applied to measure a typical AlGaN multiple-quantum well (MQW). The RT TRPL decay spectra were obtained at four wavelengths and fitted by two exponentials with fast and slow decay times of ~0.2 ns and 1–2 ns, respectively. Comprehensive studies on these Al-rich AlGaN epi-films and a typical AlGaN MQW are achieved with unique and significant results, which are useful to researchers in the field. Full article
Show Figures

Figure 1

17 pages, 2698 KB  
Article
Assessment of Optical and Phonon Characteristics in MOCVD-Grown (AlxGa1−x)0.5In0.5P/n+-GaAs Epifilms
by Devki N. Talwar and Zhe Chuan Feng
Molecules 2024, 29(17), 4188; https://doi.org/10.3390/molecules29174188 - 4 Sep 2024
Viewed by 1677
Abstract
Quaternary (AlxGa1−x)yIn1−yP alloys grown on GaAs substrates have recently gained considerable interest in photonics for improving visible light-emitting diodes, laser diodes, and photodetectors. With two degrees of freedom (x, y) and keeping growth on a [...] Read more.
Quaternary (AlxGa1−x)yIn1−yP alloys grown on GaAs substrates have recently gained considerable interest in photonics for improving visible light-emitting diodes, laser diodes, and photodetectors. With two degrees of freedom (x, y) and keeping growth on a lattice-matched GaAs substrate, the (AlxGa1−x)0.5In0.5P alloys are used for tuning structural, phonon, and optical characteristics in different energy regions from far-infrared (FIR) → near-infrared (NIR) → ultraviolet (UV). Despite the successful growth of (AlxGa1−x)0.5In0.5P/n+-GaAs epilayers, limited optical, phonon, and structural characteristics exist. Here, we report our results of carefully examined optical and vibrational properties on highly disordered alloys using temperature-dependent photoluminescence (TD-PL), Raman scattering spectroscopy (RSS), and Fourier-transform infrared reflectivity (FTIR). Macroscopic models were meticulously employed to analyze the TD-PL, RSS, and FTIR data of the (Al0.24Ga0.76)0.5In0.5P/n+-GaAs epilayers to comprehend the energy-dependent characteristics. The Raman scattering and FTIR results of phonons helped analyze the reflectivity spectra in the FIR region. Optical constants were carefully integrated in the transfer matrix method for evaluating the reflectivity R(E) and transmission T(E) spectra in the NIR → UV regions, validating the TD-PL measurements of bandgap energies (EgPL). Full article
(This article belongs to the Special Issue Chemical Research on Photosensitive Materials)
Show Figures

Figure 1

11 pages, 7214 KB  
Article
Enhancing GaN/AlxGa1−xN-Based Heterojunction Phototransistors: The Role of Graded Base Structures in Performance Improvement
by Lingxia Zhang, Hualong Wu, Chenguang He, Kang Zhang, Yunzhou Liu, Qiao Wang, Longfei He, Wei Zhao and Zhitao Chen
Micromachines 2024, 15(6), 778; https://doi.org/10.3390/mi15060778 - 13 Jun 2024
Viewed by 1291
Abstract
This research explores the architecture and efficacy of GaN/AlxGa1−xN-based heterojunction phototransistors (HPTs) engineered with both a compositionally graded and a doping-graded base. Employing theoretical analysis along with empirical fabrication techniques, HPTs configured with an aluminum compositionally graded base were [...] Read more.
This research explores the architecture and efficacy of GaN/AlxGa1−xN-based heterojunction phototransistors (HPTs) engineered with both a compositionally graded and a doping-graded base. Employing theoretical analysis along with empirical fabrication techniques, HPTs configured with an aluminum compositionally graded base were observed to exhibit a substantial enhancement in current gain. Specifically, theoretical models predicted a 12-fold increase, while experimental evaluations revealed an even more pronounced improvement of approximately 27.9 times compared to conventional GaN base structures. Similarly, HPTs incorporating a doping-graded base demonstrated significant gains, with theoretical predictions indicating a doubling of current gain and experimental assessments showing a 6.1-fold increase. The doping-graded base implements a strategic modulation of hole concentration, ranging from 3.8 × 1016 cm−3 at the base–emitter interface to 3.8 × 1017 cm−3 at the base–collector junction. This controlled gradation markedly contributes to the observed enhancements in current gain. The principal mechanism driving these improvements is identified as the increased electron drift within the base, propelled by the intrinsic electric field inherent to both the compositionally and doping-graded structures. These results highlight the potential of such graded base designs in enhancing the performance of GaN/AlxGa1−xN HPTs and provide crucial insights for the advancement of future phototransistor technologies. Full article
(This article belongs to the Special Issue GaN Heterostructure Devices: From Materials to Application)
Show Figures

Figure 1

11 pages, 1913 KB  
Article
Enhanced Hole Injection in AlGaN-Based Ga-Polar Ultraviolet Light-Emitting Diodes with Polarized Electric-Field Reservoir Electron Barrier
by Zhuang Zhao, Yang Liu, Peixian Li, Xiaowei Zhou, Bo Yang and Yingru Xiang
Micromachines 2024, 15(6), 762; https://doi.org/10.3390/mi15060762 - 6 Jun 2024
Cited by 4 | Viewed by 1690
Abstract
In this study, we propose a polarized electron blocking layer (EBL) structure using AlxGa1−xN/AlxGa1−xN to enhance the internal quantum efficiency (IQE) of AlGaN-based ultraviolet light-emitting diodes (UV LEDs). Our findings indicate that this polarized EBL [...] Read more.
In this study, we propose a polarized electron blocking layer (EBL) structure using AlxGa1−xN/AlxGa1−xN to enhance the internal quantum efficiency (IQE) of AlGaN-based ultraviolet light-emitting diodes (UV LEDs). Our findings indicate that this polarized EBL structure significantly improves IQE compared to conventional EBLs. Additionally, we introduce an electric-field reservoir (EFR) optimization method to maximize IQE. Specifically, optimizing the polarized EBL structure of AlxGa1−xN/AlxGa1−xN enhances the hole drift rate, resulting in an IQE improvement of 19% and an optical output power increase of 186 mW at a current of 210 mA. Full article
Show Figures

Figure 1

25 pages, 6718 KB  
Article
Edge-Terminated AlGaN/GaN/AlGaN Multi-Quantum Well Impact Avalanche Transit Time Sources for Terahertz Wave Generation
by Monisha Ghosh, Shilpi Bhattacharya Deb, Aritra Acharyya, Arindam Biswas, Hiroshi Inokawa, Hiroaki Satoh, Amit Banerjee, Alexey Y. Seteikin and Ilia G. Samusev
Nanomaterials 2024, 14(10), 873; https://doi.org/10.3390/nano14100873 - 17 May 2024
Cited by 7 | Viewed by 2326
Abstract
In our pursuit of high-power terahertz (THz) wave generation, we propose innovative edge-terminated single-drift region (SDR) multi-quantum well (MQW) impact avalanche transit time (IMPATT) structures based on the AlxGa1−xN/GaN/AlxGa1−xN material system, with a [...] Read more.
In our pursuit of high-power terahertz (THz) wave generation, we propose innovative edge-terminated single-drift region (SDR) multi-quantum well (MQW) impact avalanche transit time (IMPATT) structures based on the AlxGa1−xN/GaN/AlxGa1−xN material system, with a fixed aluminum mole fraction of x = 0.3. Two distinct MQW diode configurations, namely p+-n junction-based and Schottky barrier diode structures, were investigated for their THz potential. To enhance reverse breakdown characteristics, we propose employing mesa etching and nitrogen ion implantation for edge termination, mitigating issues related to premature and soft breakdown. The THz performance is comprehensively evaluated through steady-state and high-frequency characterizations using a self-consistent quantum drift-diffusion (SCQDD) model. Our proposed Al0.3Ga0.7N/GaN/Al0.3Ga0.7N MQW diodes, as well as GaN-based single-drift region (SDR) and 3C-SiC/Si/3C-SiC MQW-based double-drift region (DDR) IMPATT diodes, are simulated. The Schottky barrier in the proposed diodes significantly reduces device series resistance, enhancing peak continuous wave power output to approximately 300 mW and DC to THz conversion efficiency to nearly 13% at 1.0 THz. Noise performance analysis reveals that MQW structures within the avalanche zone mitigate noise and improve overall performance. Benchmarking against state-of-the-art THz sources establishes the superiority of our proposed THz sources, highlighting their potential for advancing THz technology and its applications. Full article
(This article belongs to the Special Issue Nanomaterials for Terahertz Technology Applications)
Show Figures

Figure 1

14 pages, 4529 KB  
Article
Optical and Electrical Properties of AlxGa1−xN/GaN Epilayers Modulated by Aluminum Content
by Wenwang Wei, Yanlian Yang, Yi Peng, Mudassar Maraj and Wenhong Sun
Molecules 2024, 29(5), 1152; https://doi.org/10.3390/molecules29051152 - 5 Mar 2024
Cited by 4 | Viewed by 2014
Abstract
AlGaN-based LEDs are promising for many applications in deep ultraviolet fields, especially for water-purification projects, air sterilization, fluorescence sensing, etc. However, in order to realize these potentials, it is critical to understand the factors that influence the optical and electrical properties of the [...] Read more.
AlGaN-based LEDs are promising for many applications in deep ultraviolet fields, especially for water-purification projects, air sterilization, fluorescence sensing, etc. However, in order to realize these potentials, it is critical to understand the factors that influence the optical and electrical properties of the device. In this work, AlxGa1−xN (x = 0.24, 0.34, 0.47) epilayers grown on c-plane patterned sapphire substrate with GaN template by the metal organic chemical vapor deposition (MOCVD). It is demonstrated that the increase of the aluminum content leads to the deterioration of the surface morphology and crystal quality of the AlGaN epitaxial layer. The dislocation densities of AlxGa1−xN epilayers were determined from symmetric and asymmetric planes of the ω-scan rocking curve and the minimum value is 1.01 × 109 cm−2. The (101¯5) plane reciprocal space mapping was employed to measure the in-plane strain of the AlxGa1−xN layers grown on GaN. The surface barrier heights of the AlxGa1−xN samples derived from XPS are 1.57, 1.65, and 1.75 eV, respectively. The results of the bandgap obtained by PL spectroscopy are in good accordance with those of XRD. The Hall mobility and sheet electron concentration of the samples are successfully determined by preparing simple indium sphere electrodes. Full article
Show Figures

Figure 1

10 pages, 4262 KB  
Article
Controlling GaN-Based Laser Diode Performance by Variation of the Al Content of an Inserted AlGaN Electron Blocking Layer
by Yuhui Chen, Daiyi Jiang, Chunmiao Zeng, Chuanxiong Xu, Haoran Sun, Yufei Hou and Mei Zhou
Nanomaterials 2024, 14(5), 449; https://doi.org/10.3390/nano14050449 - 29 Feb 2024
Cited by 4 | Viewed by 2021
Abstract
The leakage of the electronic current of a laser diode (LD) has some significant influences on the performance of the LD. In this study, commercial simulation software LASTIP is used to numerically evaluate the performances of LDs by using different wavelengths and Al [...] Read more.
The leakage of the electronic current of a laser diode (LD) has some significant influences on the performance of the LD. In this study, commercial simulation software LASTIP is used to numerically evaluate the performances of LDs by using different wavelengths and Al contents of the electron blocking layer (EBL). These LDs a adopt multilayer structure, which contains cladding layers, waveguide layers, multiple quantum well layers, contact layers and an AlxGa1−xN EBL. The influence mechanism of EBL is theoretically examined by analyzing the simulated performances. It is found that for short-wavelength violet LDs, the electrical and optical properties of the LD will reach the optimum state when the Al content (x) in the EBL is nearly 0.25. For long-wavelength green LDs, it will achieve optimum electrical and optical properties when the Al content in the EBL is as low as possible. We also compare the simulation results of LDs with emission wavelengths in the range of violet and green, including blue cyan, for a more general evaluation. According to the simulated results, it is verified that the influence of the EBL’s Al content on LD performance enhances as the wavelength increases. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

45 pages, 10823 KB  
Review
Progress in Gallium Oxide Field-Effect Transistors for High-Power and RF Applications
by Ory Maimon and Qiliang Li
Materials 2023, 16(24), 7693; https://doi.org/10.3390/ma16247693 - 18 Dec 2023
Cited by 19 | Viewed by 5801
Abstract
Power electronics are becoming increasingly more important, as electrical energy constitutes 40% of the total primary energy usage in the USA and is expected to grow rapidly with the emergence of electric vehicles, renewable energy generation, and energy storage. New materials that are [...] Read more.
Power electronics are becoming increasingly more important, as electrical energy constitutes 40% of the total primary energy usage in the USA and is expected to grow rapidly with the emergence of electric vehicles, renewable energy generation, and energy storage. New materials that are better suited for high-power applications are needed as the Si material limit is reached. Beta-phase gallium oxide (β-Ga2O3) is a promising ultra-wide-bandgap (UWBG) semiconductor for high-power and RF electronics due to its bandgap of 4.9 eV, large theoretical breakdown electric field of 8 MV cm−1, and Baliga figure of merit of 3300, 3–10 times larger than that of SiC and GaN. Moreover, β-Ga2O3 is the only WBG material that can be grown from melt, making large, high-quality, dopable substrates at low costs feasible. Significant efforts in the high-quality epitaxial growth of β-Ga2O3 and β-(AlxGa1−x)2O3 heterostructures has led to high-performance devices for high-power and RF applications. In this report, we provide a comprehensive summary of the progress in β-Ga2O3 field-effect transistors (FETs) including a variety of transistor designs, channel materials, ohmic contact formations and improvements, gate dielectrics, and fabrication processes. Additionally, novel structures proposed through simulations and not yet realized in β-Ga2O3 are presented. Main issues such as defect characterization methods and relevant material preparation, thermal studies and management, and the lack of p-type doping with investigated alternatives are also discussed. Finally, major strategies and outlooks for commercial use will be outlined. Full article
(This article belongs to the Special Issue Ultra-Wide Bandgap Semiconductor Materials and Devices)
Show Figures

Figure 1

9 pages, 2141 KB  
Article
Nanotribological Characteristics of the Al Content of AlxGa1−xN Epitaxial Films
by Hua-Chiang Wen, Ssu-Kuan Wu, Cheng-Wei Liu, Jin-Ji Dai and Wu-Ching Chou
Nanomaterials 2023, 13(21), 2884; https://doi.org/10.3390/nano13212884 - 31 Oct 2023
Viewed by 1536
Abstract
The nanotribological properties of aluminum gallium nitride (AlxGa1−xN) epitaxial films grown on low-temperature-grown GaN/AlN/Si substrates were investigated using a nanoscratch system. It was confirmed that the Al compositions played an important role, which was directly influencing the strength of [...] Read more.
The nanotribological properties of aluminum gallium nitride (AlxGa1−xN) epitaxial films grown on low-temperature-grown GaN/AlN/Si substrates were investigated using a nanoscratch system. It was confirmed that the Al compositions played an important role, which was directly influencing the strength of the bonding forces and the shear resistance. It was verified that the measured friction coefficient (μ) values of the AlxGa1−xN films from the Al compositions (where x = 0.065, 0.085, and 0.137) were in the range of 0.8, 0.5, and 0.3, respectively, for Fn = 2000 μN and 0.12, 0.9, and 0.7, respectively, for Fn = 4000 μN. The values of μ were found to decrease with the increases in the Al compositions. We concluded that the Al composition played an important role in the reconstruction of the crystallites, which induced the transition phenomenon of brittleness to ductility in the AlxGa1−xN system. Full article
(This article belongs to the Special Issue Thermophysical and Tribological Properties of Nanomaterials)
Show Figures

Figure 1

18 pages, 5108 KB  
Article
Investigations of Nanoscale Columnar AlxGa1-xN/AlN Heterostructures Grown on Silicon Substrates with Different Modifications of the Surface
by Pavel Vladimirovich Seredin, Nikolay Kurilo, Dmitry L. Goloshchapov, Vladimir Kashkarov, Aleksandr S. Lenshin, Nikita Buylov, Dmitry Nesterov, Andrey Mizerov, Sergey A. Kukushkin, S. Timoshnev, K. Yu. Shubina and M. S. Sobolev
Photonics 2023, 10(11), 1209; https://doi.org/10.3390/photonics10111209 - 30 Oct 2023
Cited by 1 | Viewed by 1580
Abstract
The growth of nanoscale columnar AlxGa1-xN/AlN heterostructures on the surface of silicon substrates using plasma-activated nitrogen molecular-beam epitaxy was investigated in this work. Silicon substrates include atomic-smooth cSi substrate, Si substrate with a transition layer of porous silicon porSi/cSi [...] Read more.
The growth of nanoscale columnar AlxGa1-xN/AlN heterostructures on the surface of silicon substrates using plasma-activated nitrogen molecular-beam epitaxy was investigated in this work. Silicon substrates include atomic-smooth cSi substrate, Si substrate with a transition layer of porous silicon porSi/cSi and a hybrid substrate involving a silicon carbide layer grown with matched substitution of the atoms on the surface of porous silicon SiC/porSi/cSi. A complex analysis performed using a set of structural and spectroscopic techniques demonstrated that the epitaxial growth of the nuclear AlN layer on all types of the substrates in a N-enriched environment resulted in the formation of AlxGa1-xN/AlN heterostructures with a Ga-polar surface, which was realized only on the SiC/porSi/cSi substrate. The layer of AlxGa1-xN on cSi and porSi/cSi substrates was in the state of disordered alloy with an excess of gallium atom content. It was shown that a great difference in the lattice parameters of a substrate–film pair resulted not only in the appearance of a number of various defects but also in a considerable effect on the chemical process of the formation of the alloys, in our case, the AlxGa1-xN alloy. It was shown that nanoscale columns of AlxGa1-xN formed on SiC/porSi/cSi substrate were inclined relative to the c-axis, which was connected with the features of the formation of a SiC layer by the matched substitution of the atoms on the porous Si substrate, resulting in the formation of the inclined (111) SiC facets at the boundary of the (111) Si surface and pores in Si. Optical studies of the grown samples demonstrated that the optical band-to-band transition for the AlxGa1-xN alloy with Eg = 3.99 eVB was observed only for the heterostructure grown on the SiC/porSi/cSi substrate. A qualitative model is proposed to explain the difference in the formation of AlxGa1-xN layers on the substrates of cSi, porSi/cSi and SiC/porSi/cSi. The results obtained in our work demonstrate the availability of using SiC/porSi/cSi substrates for the integration of silicon technology and that used for the synthesis of nanoscale columnar AlxGa1-xN heterostructures using plasma-activated molecular-beam epitaxy with a nitrogen source. Full article
(This article belongs to the Special Issue III-V Semiconductors Optoelectronic Materials and Devices)
Show Figures

Figure 1

Back to TopTop