MOCVD Growth of Relaxed, Crack-Free AlGaN on Tiled GaN Substrates
Abstract
1. Introduction
2. Materials and Methods
3. Experiment and Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marcinkevičius, S.; Jain, R.; Shatalov, M.; Yang, J.; Shur, M.; Gaska, R. High spectral uniformity of AlGaN with a high Al content evidenced by scanning near-field photoluminescence spectroscopy. Appl. Phys. Lett. 2014, 105, 241108. [Google Scholar] [CrossRef]
- Liu, X.; Lv, Z.; Liao, Z.; Sun, Y.; Zhang, Z.; Sun, K.; Zhou, Q.; Tang, B.; Geng, H.; Qi, S.; et al. Highly efficient AlGaN-based deep-ultraviolet light-emitting diodes: From bandgap engineering to device craft. Microsyst. Nanoeng. 2024, 10, 110. [Google Scholar] [CrossRef]
- Li, C.; Bao, X.; Xu, J.; Zhang, Y.; Li, X. Optical characterization of GaN/AlGaN bilayer by transmission and reflection spectra. J. Appl. Phys. 2010, 108, 063104. [Google Scholar] [CrossRef]
- Moustakas, T.D.; Paiella, R. Optoelectronic device physics and technology of nitride semiconductors from the UV to the terahertz. Rep. Prog. Phys. 2017, 80, 106501. [Google Scholar] [CrossRef] [PubMed]
- Kneissl, M.; Seong, T.Y.; Han, J.; Amano, H. The emergence and prospects of deep-ultraviolet light-emitting diode technologies. Nat. Photon. 2019, 13, 233–244. [Google Scholar] [CrossRef]
- Song, K.; Mohseni, M.; Taghipour, F. Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: A review. Water Res. 2016, 94, 341–349. [Google Scholar] [CrossRef]
- Yao, Y.; Zollner, C.J.; Wang, M.; Iza, M.; Speck, J.S.; DenBaars, S.P.; Nakamura, S. Polarization-Enhanced p-AlGaN Superlattice Optimization for GUV LED. IEEE J. Quantum Electron. 2022, 58, 1–9. [Google Scholar] [CrossRef]
- Sakai, T.; Kushimoto, M.; Zhang, Z.; Sugiyama, N.; Schowalter, L.J.; Honda, Y.; Sasaoka, C.; Amano, H. On-wafer fabrication of etched-mirror UV-C laser diodes with the ALD-deposited DBR. Appl. Phys. Lett. 2020, 116, 122101. [Google Scholar] [CrossRef]
- Alkhazragi, O.; Hu, F.; Zou, P.; Ha, Y.; Kang, C.H.; Mao, Y.; Ng, T.K.; Chi, N.; Ooi, B.S. Gbit/s ultraviolet-C diffuse-line-of-sight communication based on probabilistically shaped DMT and diversity reception. Optic. Express 2020, 28, 9111–9122. [Google Scholar] [CrossRef]
- Rass, J.; Cho, H.K.; Guttmann, M.; Prasai, D.; Ruschel, J.; Kolbe, T.; Einfeldt, S. Enhanced light extraction efficiency of far-ultraviolet-C LEDs by micro-LED array design. Appl. Phys. Lett. 2023, 122, 263508. [Google Scholar] [CrossRef]
- Kaplar, R.J.; Allerman, A.A.; Armstrong, A.M.; Crawford, M.H.; Dickerson, J.R.; Fischer, A.J.; Baca, A.G.; Douglas, E.A. Review—Ultra-Wide-Bandgap AlGaN Power Electronic Devices. ECS J. Solid State Sci. Technol. 2017, 6, Q3061. [Google Scholar] [CrossRef]
- Liang, Y.C.; Samudra, G.S.; Huang, H.; Huang, C.-F.; Chang, T.-F. AlGaN/GaN power HEMT devices for future energy conversion applications. In Proceedings of the 2013 International Symposium on Next-Generation Electronics, Kaohsiung, Taiwan, 25–26 February 2013. [Google Scholar] [CrossRef]
- Okazaki, S. Resolution limits of optical lithography. J. Vac. Sci. Technol. B 1991, 9, 2829–2833. [Google Scholar] [CrossRef]
- Feng, F.; Liu, Y.; Zhang, K.; Yang, H.; Hyun, B.-R.; Xu, K.; Kwok, H.-S.; Liu, Z. High-power AlGaN deep-ultraviolet micro-light-emitting diode displays for maskless photolithography. Nat. Photon. 2025, 19, 101–108. [Google Scholar] [CrossRef]
- Floyd, R.; Hussain, K.; Mamun, A.; Gaevski, M.; Simin, G.; Chandrashekhar, M.V.S.; Khan, A. Photonics integrated circuits using AlxGa1-xN based UVC light-emitting diodes, photodetectors and waveguides. Appl. Phys. Expr. 2020, 13, 022003. [Google Scholar] [CrossRef]
- Liu, C.; Cai, Y.; Jiang, H.; Lau, K.M. Monolithic integration of III-nitride voltage controlled light emitters with dual-wavelength photodiodes by selective-area epitaxy. Opt. Lett. 2018, 43, 3401–3404. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Liu, N.; Gao, Y.; Chen, R.; Zhang, S.; Yuan, H.; Duo, Y.; Xu, J.; Ji, X.; Yan, J.; et al. Monolithically integrated UVC AlGaN-based multiple quantum wells structure and photonic chips for solar-blind communications. Nano Energy 2023, 106, 108038. [Google Scholar] [CrossRef]
- Gündoğdu, S.; Pregnolato, T.; Kolbe, T.; Hagedorn, S.; Pazzagli, S.; Weyers, M. Fabrication of AlGaN Integrated Photonic Devices. In Proceedings of the 2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 26–30 June 2023; p. 1. [Google Scholar] [CrossRef]
- Chen, D.; Liu, Z.; Lu, X.; Wan, L.; Li, R.; Yang, Z.; Li, G. Efficiency improved by monolithic integration of HEMT with vertical-structure LEDs and Mg doping on dry etched GaN. J. Mater. Chem. C 2019, 7, 2823–2828. [Google Scholar] [CrossRef]
- Bethoux, J.-M.; Vennéguès, P.; Natali, F.; Feltin, E.; Tottereau, O.; Nataf, G.; De Mierry, P.; Semond, F. Growth of high quality crack-free AlGaN films on GaN templates using plastic relaxation through buried cracks. J. Appl. Phys. 2003, 94, 6499. [Google Scholar] [CrossRef]
- Liu, R.; Bell, A.; Ponce, F.A.; Amano, H.; Akasaki, I.; Cherns, D. Thick crack-free AlGaN films deposited by facet-controlled epitaxial lateral overgrowth. Phys. Stat. Sol. (c) 2003, 7, 2136–2140. [Google Scholar] [CrossRef]
- Qhalid Fareed, R.S.; Adivarahan, V.; Chen, C.Q.; Rai, S.; Kuokstis, E.; Yang, J.W.; Khan, M.A.; Caissie, J.; Molnar, R.J. Air-bridged lateral growth of crack-free Al0.24Ga0.76N on highly relaxed porous GaN. Appl. Phys. Lett. 2004, 84, 696. [Google Scholar] [CrossRef]
- Wang, T.; Bai, J.; Parbrook, P.J.; Cullis, A.G. Air-bridged lateral growth of an Al0.98Ga0.02N layer by introduction of porosity in an AlN buffer. Appl. Phys. Lett. 2005, 87, 151906. [Google Scholar] [CrossRef]
- Heikman, S.; Keller, S.; Newman, S.; Wu, Y.; Moe, C.; Moran, B.; Schmidt, M.; Mishra, U.K.; Speck, J.S.; DenBaars, S.P. Epitaxial Lateral Overgrowth of High Al Composition AlGaN Alloys on Deep Grooved SiC Substrates. Jpn. J. Appl. Phys. 2005, 44, L405. [Google Scholar] [CrossRef]
- Sena, H.; Thurston, M.L.S.; Meng, C.; Chowdhury, S. Systematic investigation of AlGaN channels on AlN/sapphire substrates using metal–organic chemical vapor deposition (MOCVD): Toward higher crystallinity and lower surface roughness. APL Mater. 2025, 13, 051111. [Google Scholar] [CrossRef]
- Yao, Y.; Li, H.; Li, P.; Zollner, C.J.; Wang, M.; Iza, M.; Speck, J.S.; DenBaars, S.P.; Nakamura, S. Size dependent characteristics of AlGaN-based ultraviolet micro-LEDs. In Proceedings of the 2023 Device Research Conference (DRC), Santa Barbara, CA, USA, 25–28 June 2023; pp. 1–2. [Google Scholar] [CrossRef]
- Nagasawa, Y.; Hirano, A. A Review of AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes on Sapphire. Appl. Sci. 2018, 8, 1264. [Google Scholar] [CrossRef]
- Khoury, M.; Li, H.; Zhang, H.; Bonef, B.; Wong, M.S.; Wu, F.; Cohen, D.; Mierry, P.D.; Vennéguès, P.; Speck, J.S.; et al. Demonstration of Electrically Injected Semipolar Laser Diodes Grown on Low-Cost and Scalable Sapphire Substrates. ACS Appl. Mater. Interfaces 2019, 11, 47106–47111. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, M.A.; Enslin, J.; Yapparov, R.; Hjort, F.; Wickman, B.; Mercinkevičius, S.; Wernicke, T.; Kneissl, M.; Haglund, Å. Electrochemical etching of AlGaN for the realization of thin-film devices. Appl. Phys. Lett. 2019, 115, 182103. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, B.; Jia, T.; Chu, C.; Fan, C.; Zhang, Y.; Zhang, X.; Liu, N.; Zhang, Z.-H.; Yan, J. Improving the performance for flip-chip AlGaN-based deep ultraviolet light-emitting diodes using surface textured Ga-face n-AlGaN. Opt. Express 2022, 30, 17781–17788. [Google Scholar] [CrossRef]
- Pasayat, S.S.; Hatui, N.; Li, W.; Gupta, C.; Nakamura, S.; DenBaars, S.P.; Keller, S.; Mishra, U.K. Method of growing elastically relaxed crack-free AlGaN on GaN as substrates for ultra-wide bandgap devices using porous GaN. Appl. Phys. Lett. 2020, 117, 062102. [Google Scholar] [CrossRef]
- Hatui, N.; Collins, H.; Kayede, E.; Pasayat, S.S.; Li, W.; Keller, S.; Mishra, U.K. Fully Relaxed, Crack-Free AlGaN with upto 50% Al Composition Grown on Porous GaN Pseudo-Substrate. Crystals 2022, 12, 989. [Google Scholar] [CrossRef]
- Keller, S.; Wu, Y.-F.; Parish, G.; Ziang, N.; Xu, J.J.; Keller, B.P.; DenBaars, S.P.; Mishra, U.K. Gallium nitride based high power heterojunction field effect transistors: Process development and present status at UCSB. IEEE Trans. Electron Devices 2001, 48, 552–559. [Google Scholar] [CrossRef]
- Moram, V.E.; Vickers, M.E. X-ray diffraction of III-nitrides. Rep. Prog. Phys. 2009, 72, 036502. [Google Scholar] [CrossRef]
- Pereira, S.; Correia, M.R.; Pereira, E.; O’Donnell, K.P.; Alves, E.; Sequeira, A.D.; Franco, N.; Watson, I.M.; Deatcher, C.J. Strain and composition distributions in wurtzite InGaN/GaN layers extracted from X-ray reciprocal space mapping. Appl. Phys. Lett. 2002, 80, 3913. [Google Scholar] [CrossRef]
- Tsai, Y.-L.; Wang, C.-L.; Lin, P.-H.; Liao, W.-T.; Gong, J.-R. Observation of compositional pulling phenomenon in AlxGa1-xN (0.4 < x < 1.0) films grown on (0001) sapphire substrates. Appl. Phys. Lett. 2003, 82, 31. [Google Scholar]
- Chen, Z.; Pei, Y.; Newman, S.; Brown, D.; Chung, R.; Keller, S.; DenBaars, S.P.; Nakamura, S.; Mishra, U.K. Growth of AlGaN/GaN/AlGaN double heterojunction field-effect transistors and the observation of a compositional pulling effect. Appl. Phys. Lett. 2009, 94, 171117. [Google Scholar] [CrossRef]
- Touré, A.; Halidou, I.; Benzarti, Z.; Fouzri, A.; Bchetnia, A.; El Jani, B. Characterization of low Al content AlxGa1−xN epitaxial films grown by atmospheric-pressure MOVPE. Phys. Status Solidi A 2012, 209, 977–983. [Google Scholar] [CrossRef]
- Zollner, C.J.; Almogbel, A.; Yao, Y.; SaifAddin, B.K.; Wu, F.; Iza, M.; DenBaars, S.P.; Speck, J.S.; Nakamura, S. Reduced dislocation density and residual tension in AlN grown on SiC by metalorganic chemical vapor deposition. Appl. Phys. Lett. 2019, 115, 161101. [Google Scholar] [CrossRef]
- Bryan, I.; Bryan, Z.; Mita, S.; Rice, A.; Hussey, L.; Shelton, C.; Tweedie, J.; Maria, J.-P.; Collazo, R.; Sitar, Z. The role of surface kinetics on composition and quality of AlGaN. J. Cryst. Growth 2016, 451, 65. [Google Scholar] [CrossRef]
- Uesugi, K.; Shojiki, K.; Tezen, Y.; Hayashi, Y.; Miyake, H. Suppression of dislocation-induced spiral hillocks in MOVPE-grown AlGaN on face-to-face annealed sputter deposited AlN template. Appl. Phys. Lett. 2020, 116, 062101. [Google Scholar] [CrossRef]
- Wurm, C.; Collins, H.; Hatui, N.; Li, W.; Pasayat, S.; Hamwey, R.; Sun, K.; Sayed, I.; Khan, K.; Ahmadi, E.; et al. Demonstration of device-quality 60% relaxed In0.2Ga0.8N on porous GaN pseudo-substrates grown by PAMBE. J. Appl. Phys. 2022, 131, 015701. [Google Scholar] [CrossRef]
- Li, X.; Sundaram, S.; Disseix, P.; Le Gac, G.; Bouchoule, S.; Patriarche, G.; Réveret, F.; Leymarie, J.; El Gmili, Y.; Moudakir, T.; et al. AlGaN-based MQWs grown on a thick relaxed AlGaN buffer on AlN templates emitting at 285 nm. Opt. Mater. Express 2015, 5, 380–392. [Google Scholar] [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hatui, N.; Collins, H.; Kayede, E.; Wu, F.; Keller, S.; Mishra, U.K. MOCVD Growth of Relaxed, Crack-Free AlGaN on Tiled GaN Substrates. Crystals 2025, 15, 965. https://doi.org/10.3390/cryst15110965
Hatui N, Collins H, Kayede E, Wu F, Keller S, Mishra UK. MOCVD Growth of Relaxed, Crack-Free AlGaN on Tiled GaN Substrates. Crystals. 2025; 15(11):965. https://doi.org/10.3390/cryst15110965
Chicago/Turabian StyleHatui, Nirupam, Henry Collins, Emmanuel Kayede, Feng Wu, Stacia Keller, and Umesh K. Mishra. 2025. "MOCVD Growth of Relaxed, Crack-Free AlGaN on Tiled GaN Substrates" Crystals 15, no. 11: 965. https://doi.org/10.3390/cryst15110965
APA StyleHatui, N., Collins, H., Kayede, E., Wu, F., Keller, S., & Mishra, U. K. (2025). MOCVD Growth of Relaxed, Crack-Free AlGaN on Tiled GaN Substrates. Crystals, 15(11), 965. https://doi.org/10.3390/cryst15110965

