Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (137)

Search Parameters:
Keywords = Aldol condensation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1504 KiB  
Article
Tuning the Activity of NbOPO4 with NiO for the Selective Conversion of Cyclohexanone as a Model Intermediate of Lignin Pyrolysis Bio-Oils
by Abarasi Hart and Jude A. Onwudili
Energies 2025, 18(15), 4106; https://doi.org/10.3390/en18154106 - 2 Aug 2025
Viewed by 172
Abstract
Catalytic upgrading of pyrolysis oils is an important step for producing replacement hydrocarbon-rich liquid biofuels from biomass and can help to advance pyrolysis technology. Catalysts play a pivotal role in influencing the selectivity of chemical reactions leading to the formation of main compounds [...] Read more.
Catalytic upgrading of pyrolysis oils is an important step for producing replacement hydrocarbon-rich liquid biofuels from biomass and can help to advance pyrolysis technology. Catalysts play a pivotal role in influencing the selectivity of chemical reactions leading to the formation of main compounds in the final upgraded liquid products. The present work involved a systematic study of solvent-free catalytic reactions of cyclohexanone in the presence of hydrogen gas at 160 °C for 3 h in a batch reactor. Cyclohexanone can be produced from biomass through the selective hydrogenation of lignin-derived phenolics. Three types of catalysts comprising undoped NbOPO4, 10 wt% NiO/NbOPO4, and 30 wt% NiO/NbOPO4 were studied. Undoped NbOPO4 promoted both aldol condensation and the dehydration of cyclohexanol, producing fused ring aromatic hydrocarbons and hard char. With 30 wt% NiO/NbOPO4, extensive competitive hydrogenation of cyclohexanone to cyclohexanol was observed, along with the formation of C6 cyclic hydrocarbons. When compared to NbOPO4 and 30 wt% NiO/NbOPO4, the use of 10 wt% NiO/NbOPO4 produced superior selectivity towards bi-cycloalkanones (i.e., C12) at cyclohexanone conversion of 66.8 ± 1.82%. Overall, the 10 wt% NiO/NbOPO4 catalyst exhibited the best performance towards the production of precursor compounds that can be further hydrodeoxygenated into energy-dense aviation fuel hydrocarbons. Hence, the presence and loading of NiO was able to tune the activity and selectivity of NbOPO4, thereby influencing the final products obtained from the same cyclohexanone feedstock. This study underscores the potential of lignin-derived pyrolysis oils as important renewable feedstocks for producing replacement hydrocarbon solvents or feedstocks and high-density sustainable liquid hydrocarbon fuels via sequential and selective catalytic upgrading. Full article
Show Figures

Figure 1

19 pages, 2630 KiB  
Article
Experimental and Kinetic Modelling Study of the Heterogeneous Catalytic Conversion of Bioethanol into n-Butanol Using MgO–Al2O3 Mixed Oxide Catalyst
by Amosi Makoye, Anna Vikár, András Bence Nacsa, Róbert Barthos, József Valyon, Ferenc Lónyi and Tibor Nagy
Catalysts 2025, 15(8), 709; https://doi.org/10.3390/catal15080709 - 25 Jul 2025
Viewed by 299
Abstract
Ethanol upgrading via catalytic C–C coupling, commonly known as the Guerbet reaction, offers a sustainable route to produce 1-butanol, a high-performance biofuel. To address gaps in the mechanistic understanding of the catalytic reaction, we investigated the process involving a fixed-bed reactor, operated at [...] Read more.
Ethanol upgrading via catalytic C–C coupling, commonly known as the Guerbet reaction, offers a sustainable route to produce 1-butanol, a high-performance biofuel. To address gaps in the mechanistic understanding of the catalytic reaction, we investigated the process involving a fixed-bed reactor, operated at 275–325 °C, 21 bar, and weight hourly space velocities of 0.25–2.5 gEtOH/(gcat·h), using helium as a carrier gas, with a 5:1 He/EtOH molar ratio. The catalyst was a MgO–Al2O3 mixed oxide (Mg/Al = 2:1), derived from a hydrotalcite precursor. A detailed kinetic model was developed, encompassing 15 species and 27 reversible steps (10 sorption and 17 reaction steps), within a 1+1D sorption–reaction–transport framework. Four C4-forming pathways were included: aldol condensation to form crotonaldehyde, semi-direct coupling to form butyraldehyde and crotyl alcohol, and direct coupling to form 1-butanol. To avoid overfitting, Arrhenius parameters were grouped by reaction type, resulting in sixty rate parameters and one active site-specific density parameter. The optimized model achieved high accuracy, with an average prediction error of 1.44 times the experimental standard deviation. The mechanistic analysis revealed aldol condensation as the dominant pathway below 335 °C, with semi-direct coupling to crotyl alcohol prevailing above 340 °C. The resulting model provides a robust framework for understanding and predicting complex reaction networks in ethanol upgrading systems. Full article
(This article belongs to the Special Issue Biomass Catalytic Conversion to Value-Added Chemicals)
Show Figures

Graphical abstract

6 pages, 1615 KiB  
Short Note
4-[2-(Chlorodiphenylstannyl)phenyl]-4-hydroxybutan-2-one
by Adrian-Alexandru Someșan and Richard A. Varga
Molbank 2025, 2025(2), M1991; https://doi.org/10.3390/M1991 - 9 Apr 2025
Viewed by 470
Abstract
An aldol condensation reaction between [2-(O=CH)C6H4]SnPh2Cl and acetone gave [2-{CH3C(=O)CH2(OH)CH}C6H4]SnPh2Cl (1). The compound was characterized in a solution using multinuclear NMR spectroscopy and HR-MS spectrometry [...] Read more.
An aldol condensation reaction between [2-(O=CH)C6H4]SnPh2Cl and acetone gave [2-{CH3C(=O)CH2(OH)CH}C6H4]SnPh2Cl (1). The compound was characterized in a solution using multinuclear NMR spectroscopy and HR-MS spectrometry and in a solid state using IR spectroscopy and single-crystal X-ray diffraction. The molecular structure revealed the presence of both enantiomers in the crystal. Full article
(This article belongs to the Section Structure Determination)
Show Figures

Graphical abstract

11 pages, 2638 KiB  
Article
Efficient Conversion of Glucose into Lactic Acid over the Lewis Acidity Enhanced Sn-Beta Catalyst
by Fenfen Guo, Yuxuan Wang, Zhicheng Jiang, Youjing Tu, Ruikai Li, Xingyu Zhang, Aoyi Tang, Yuan Liang, Lishi Yan, Hu Luo, Shenggang Li and Lingzhao Kong
Molecules 2025, 30(7), 1457; https://doi.org/10.3390/molecules30071457 - 25 Mar 2025
Viewed by 678
Abstract
The catalytic production of lactic acid from carbohydrates was considered a green way to efficiently utilize renewable biomass resources. In this study, an easy post-synthesis method was used to prepare a Sn-Beta catalyst for the production of lactic acid from glucose at 180 [...] Read more.
The catalytic production of lactic acid from carbohydrates was considered a green way to efficiently utilize renewable biomass resources. In this study, an easy post-synthesis method was used to prepare a Sn-Beta catalyst for the production of lactic acid from glucose at 180 °C, 2 MPa, and 30 min. With optimized reaction time, temperature, pressure, and the ratio of raw material to catalyst, the yield of lactic acid reached an astonishingly high level of 76.0%. In addition, the catalyst characterizations were performed in-depth, revealing the intrinsic relationship between catalyst performance and structure, proving that the 2 wt% Sn was uniformly dispersed in the skeleton of Beta zeolite, which significantly increased the density of Lewis acid. Thus, the enhanced isomerization and retro-aldol condensation processes over the Lewis acid sites led to the high yield of lactic acid. This catalytic system kept stable after five cycles at mild conditions, showing high potential for industrial biomass utilization. Full article
(This article belongs to the Special Issue Recent Advances in Porous Materials, 2nd Edition)
Show Figures

Figure 1

30 pages, 3776 KiB  
Article
Design and Synthesis of Bis-Chalcones as Curcumin Simplified Analogs and Assessment of Their Antiproliferative Activities Against Human Lung Cancer Cells and Trypanosoma cruzi Amastigotes
by Gabriela Alves de Souza, Lorrane de Souza Chaves, Afonso Santine M. M. Velez, Jorge Lucas F. Lacerda, Paulo Pitasse-Santos, Jayane Clys Conceição dos Santos, Otávio Augusto Chaves, Carlos Serpa, Raphael do Carmo Valente, Leonardo Marques da Fonseca , Marcos André Rodrigues da Costa Santos, Jhenifer Santos dos Reis, Carlos Antônio do Nascimento Santos, Lucia Mendonça-Previato, Jose Osvaldo Previato, Celio Geraldo Freire-de-Lima, Debora Decoté-Ricardo, Leonardo Freire-de-Lima and Marco Edilson Freire de Lima
Pharmaceuticals 2025, 18(4), 456; https://doi.org/10.3390/ph18040456 - 24 Mar 2025
Cited by 1 | Viewed by 879
Abstract
Background: Anticancer therapies represent the primary treatment option for a significant number of cancer patients globally; however, many of these treatments are associated with severe side effects as they target molecular structures present in both cancerous and healthy cells. In a similar context, [...] Read more.
Background: Anticancer therapies represent the primary treatment option for a significant number of cancer patients globally; however, many of these treatments are associated with severe side effects as they target molecular structures present in both cancerous and healthy cells. In a similar context, the treatment of Chagas disease, a neglected tropical illness, is hindered by the high toxicity of the currently available drugs. Researchers are increasingly focusing on the development of safer and more selective alternatives, with natural compounds being studied as potential starting points for the creation of more effective drug candidates with a favorable therapeutic index. Objectives: The aim of this study was to design simplified curcumin-derived structures that preserved or enhanced their therapeutic activity against human lung cancer cell lines and T. cruzi, while also improving bioavailability and minimizing toxicity. Methods: In this study, curcumin and two natural curcuminoids inspired the synthesis of a chalcone and a set of bis-chalcones, compound classes known for their enhanced stability compared with their natural parent derivatives. The synthetic strategy used was the acid-catalyzed aldol condensation reaction. The stability profiles, IC50 values against A549 and H460 tumor cell lines, and trypanocidal activity against T. cruzi amastigotes of these derivatives were assessed. Results: The synthesized derivatives exhibited improved stability compared with the parent compounds, along with lower IC50 values in both A549 and H460 tumor cell lines. Additionally, one of the new analogs showed promising trypanocidal activity against T. cruzi amastigotes. Conclusions: This study provides a potential pathway toward the development of more effective and less toxic treatments for both cancer and Chagas disease. The simplified curcumin derivatives represent a promising foundation for designing new therapeutic agents with improved bioavailability and efficacy. Full article
Show Figures

Graphical abstract

39 pages, 5294 KiB  
Review
Large Scale Synthesis of Carbon Dots and Their Applications: A Review
by Zhujun Huang and Lili Ren
Molecules 2025, 30(4), 774; https://doi.org/10.3390/molecules30040774 - 7 Feb 2025
Cited by 10 | Viewed by 2903
Abstract
Carbon dots (CDs), a versatile class of fluorescent carbon-based nanomaterials, have attracted widespread attention due to their exceptional optical properties, biocompatibility, and cost-effectiveness. Their applications span biomedicine, optoelectronics, and smart food packaging, yet large-scale synthesis remains a significant challenge. This review categorizes large-scale [...] Read more.
Carbon dots (CDs), a versatile class of fluorescent carbon-based nanomaterials, have attracted widespread attention due to their exceptional optical properties, biocompatibility, and cost-effectiveness. Their applications span biomedicine, optoelectronics, and smart food packaging, yet large-scale synthesis remains a significant challenge. This review categorizes large-scale synthesis methods into liquid-phase (hydrothermal/solvothermal, microwave-assisted, magnetic hyperthermia, aldol condensation polymerization), gas-phase (plasma synthesis), solid-phase (pyrolysis, oxidation/carbonization, ball milling), and emerging techniques (microfluidic, ultrasonic, molten-salt). Notably, microwave-assisted and solid-state synthesis methods show promise for industrial production due to their scalability and efficiency. Despite these advances, challenges persist in optimizing synthesis reproducibility, reducing energy consumption, and developing purification methods and quality control strategies. Addressing these issues will be critical for transitioning CDs from laboratory research to real-world applications. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Figure 1

11 pages, 2464 KiB  
Communication
Thioureas Derived from (S)-1-(2-pyridyl)ethylamine Enantiomer: Synthesis and Selected Applications as an Organocatalyst
by Jacek Chrzanowski, Luca Sancineto, Malgorzata Deska, Michal Rachwalski and Jozef Drabowicz
Symmetry 2025, 17(2), 216; https://doi.org/10.3390/sym17020216 - 31 Jan 2025
Viewed by 1082
Abstract
In order to expand the group of chiral thiourea structures, several optically active thioureas derived from the (S)-1-(2-pyridyl)ethylamine enantiomer were prepared via its reaction with achiral or optically active isothiocyanates. To show their synthetic potential as chiral auxiliaries the isolated thioureas [...] Read more.
In order to expand the group of chiral thiourea structures, several optically active thioureas derived from the (S)-1-(2-pyridyl)ethylamine enantiomer were prepared via its reaction with achiral or optically active isothiocyanates. To show their synthetic potential as chiral auxiliaries the isolated thioureas were tested as an optically active organocatalyst in the asymmetric version of the selected aldol condensation and addition of diethylzinc to benzaldehyde. The observation of asymmetric induction in these model reactions encourages further research on the use of this group of thioureas in asymmetric versions of multicomponent reactions and cycloadditions. The mechanistic aspects of the reactions under study are also briefly discussed. Full article
Show Figures

Scheme 1

24 pages, 2538 KiB  
Article
Synthesis and Anticancer Evaluation of O-Alkylated (E)-Chalcone Derivatives: A Focus on Estrogen Receptor Inhibition
by Alwah R. Al-Ghamdi, Wahid U. Ahmed, Reem I. Al-Wabli, Maha S. Al-Mutairi and A. F. M. Motiur Rahman
Int. J. Mol. Sci. 2025, 26(2), 833; https://doi.org/10.3390/ijms26020833 - 20 Jan 2025
Cited by 2 | Viewed by 1484
Abstract
Cancer remains a leading cause of morbidity and mortality worldwide, highlighting the urgent need for novel therapeutic agents. This study investigated the synthesis and biological evaluation of O-alkyl (E)-chalcone derivatives (4a4v) as potential anticancer agents. The [...] Read more.
Cancer remains a leading cause of morbidity and mortality worldwide, highlighting the urgent need for novel therapeutic agents. This study investigated the synthesis and biological evaluation of O-alkyl (E)-chalcone derivatives (4a4v) as potential anticancer agents. The compounds were synthesized via aldol condensation of substituted aldehydes and acetophenones, with structures confirmed by IR, NMR, and mass spectrometry. In vitro cytotoxicity assays revealed varying effectiveness, with compounds 4a, 4b, 4q, and 4v exhibiting potent activity against MDA-MB-231 and MCF-7, showing IC50 values between 2.08 and 13.58 µM, besides HCT-116 and HeLa cancer cell lines (IC50 values between 6.59 and 22.64 µM). Notably, compound 4b displayed remarkable selectivity, with an IC50 of 54.59 µM against the non-cancerous WI-38 cell line. Additionally, protein kinase inhibition assays indicated that compounds 4b and 4q effectively inhibited EGFR and VEGFR-2, with 4b outperforming the standard inhibitor erlotinib. Molecular docking studies of compound 4q showed strong binding affinities in the ATP-binding pockets of EGFR, HER2, VEGFR2, and CDK2. In silico analyses further highlighted the favorable pharmacokinetic properties of compound 4q, underscoring its potential as a selective tyrosine kinase inhibitor. These findings suggest the therapeutic promise of O-alkyl (E)-chalcone derivatives in cancer treatment. Full article
(This article belongs to the Special Issue New Agents and Novel Drugs Use for the Oncological Diseases Treatment)
Show Figures

Figure 1

14 pages, 2115 KiB  
Article
Organocatalytic Packed-Bed Reactors for the Enantioselective Flow Synthesis of Quaternary Isotetronic Acids by Direct Aldol Reactions of Pyruvates
by Lorenzo Poletti, Carmela De Risi, Daniele Ragno, Graziano Di Carmine, Riccardo Tassoni, Alessandro Massi and Paolo Dambruoso
Molecules 2025, 30(2), 296; https://doi.org/10.3390/molecules30020296 - 13 Jan 2025
Viewed by 871
Abstract
The utilization of the homogeneous (S)-2-pyrrolidine-tetrazole organocatalyst (Ley catalyst) in the self-condensation of ethyl pyruvate and cross-aldol reactions of ethyl pyruvate donor with non-enolizable pyruvate acceptors, namely the sterically hindered ethyl 3-methyl-2-oxobutyrate or the highly electrophilic methyl 3,3,3-trifluoropyruvate, is described as [...] Read more.
The utilization of the homogeneous (S)-2-pyrrolidine-tetrazole organocatalyst (Ley catalyst) in the self-condensation of ethyl pyruvate and cross-aldol reactions of ethyl pyruvate donor with non-enolizable pyruvate acceptors, namely the sterically hindered ethyl 3-methyl-2-oxobutyrate or the highly electrophilic methyl 3,3,3-trifluoropyruvate, is described as the key enantioselective step toward the synthesis of the corresponding biologically relevant isotetronic acids featuring a quaternary carbon functionalized with ester and alkyl groups. The transition from homogeneous to heterogeneous flow conditions is also investigated, detailing the fabrication and operation of packed-bed reactors filled with a silica-supported version of the pyrrolidine-tetrazole catalyst (SBA-15 as the matrix). Full article
(This article belongs to the Special Issue Catalytic Approaches in Flow Chemistry)
Show Figures

Graphical abstract

24 pages, 1983 KiB  
Article
Synthesis and hLDHA Inhibitory Activity of New Stiripentol-Related Compounds of Potential Use in Primary Hyperoxaluria
by Mario Rico-Molina, Juan Ortega-Vidal, Juan Molina-Canteras, Justo Cobo, Joaquín Altarejos and Sofía Salido
Int. J. Mol. Sci. 2024, 25(24), 13266; https://doi.org/10.3390/ijms252413266 - 10 Dec 2024
Viewed by 1272
Abstract
Human lactate dehydrogenase A (hLDHA) is a homotetrameric isozyme involved in the conversion of glyoxylate into oxalate in the cytosol of liver cells (hepatocytes) and partially responsible for the overproduction of oxalate in patients with the rare disease called primary hyperoxaluria [...] Read more.
Human lactate dehydrogenase A (hLDHA) is a homotetrameric isozyme involved in the conversion of glyoxylate into oxalate in the cytosol of liver cells (hepatocytes) and partially responsible for the overproduction of oxalate in patients with the rare disease called primary hyperoxaluria (PH). Recently, hLDHA inhibition has been validated as a safe therapeutic method to try to control the PH disease. Stiripentol (STP) is an approved drug used in the treatment of seizures associated with Dravet’s syndrome (a severe form of epilepsy in infancy) which, in addition, has been drawing interest in recent years also for potentially treating PH, due to its hLDHA inhibitory activity. In this work, several new STP-related compounds have been synthesized and their hLDHA inhibitory activity has been compared to that of STP. The synthesis of these analogues to STP was accomplished using crossed-aldol condensation guided by lithium enolate chemistry and a successive regioselective reduction of the resulting α,β-unsaturated ketones. The target molecules were obtained as racemates, which were separated into their enantiomers by chiral HPLC. The absolute configurations of pure enantiomers were determined by the modified Mosher’s method and electronic circular dichroism (ECD) spectroscopy. For the inhibitory effect over the hLDHA catalytic activity, a kinetic spectrofluorometric assay was used. All the new synthesized compounds turned out to be more active at 500 μM (46–72% of inhibition percentage) than STP (10%), which opens a new line of study on the possible capacity of these analogues to reduce urinary oxalate levels in vivo more efficiently. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Graphical abstract

16 pages, 2806 KiB  
Article
Tuning of Acid/Base Functionalities in the MgAlO System for Ethanol Upgrade to n-Butanol
by Adrian M. Hucal, Wei Tian, Pierre-Christof Ascherl and José E. Herrera
Catalysts 2024, 14(12), 868; https://doi.org/10.3390/catal14120868 - 28 Nov 2024
Cited by 1 | Viewed by 951
Abstract
Hydrotalcite-derived mixed metal oxides (MgAlO)-based catalysts are used for the catalytic upgrade of ethanol to butanol which adjust the catalyst structure and number of relevant active sites through changes in the Mg/Al ratio. By performing a series of reaction activity tests, kinetic experiments, [...] Read more.
Hydrotalcite-derived mixed metal oxides (MgAlO)-based catalysts are used for the catalytic upgrade of ethanol to butanol which adjust the catalyst structure and number of relevant active sites through changes in the Mg/Al ratio. By performing a series of reaction activity tests, kinetic experiments, FTIR characterization, CO2-TGA analysis, and in situ active center titration, qualitative and quantitative relationships between catalyst structure and catalytic performance are obtained. We found the MgAlO mixed metal oxide system can catalyze the ethanol-to-butanol process through a Guerbet reaction pathway, though the process is kinetically limited. The data suggest that strong basic centers hosted in Mg-O sites are the most catalytically relevant function in the MgAlO material, as they control enolate formation, which is likely the rate limiting step of the aldol condensation stage in the Guerbet reaction. Full article
(This article belongs to the Special Issue Catalyzing the Sustainable Process Paradigm)
Show Figures

Figure 1

29 pages, 10746 KiB  
Review
Selective Control of Catalysts for Glycerol and Cellulose Hydrogenolysis to Produce Ethylene Glycol and 1,2-Propylene Glycol: A Review
by Jihuan Song, Dan Wang, Qiyuan Wang, Chenmeng Cui and Ying Yang
Catalysts 2024, 14(10), 685; https://doi.org/10.3390/catal14100685 - 2 Oct 2024
Cited by 1 | Viewed by 2019
Abstract
The bioconversion of cellulose and the transformation of glycerol can yield various diols, aligning with environmental sustainability goals by reducing dependence on fossil fuels, lowering raw material costs, and promoting sustainable development. However, in the selective hydrogenolysis of glycerol to ethylene glycol (EG) [...] Read more.
The bioconversion of cellulose and the transformation of glycerol can yield various diols, aligning with environmental sustainability goals by reducing dependence on fossil fuels, lowering raw material costs, and promoting sustainable development. However, in the selective hydrogenolysis of glycerol to ethylene glycol (EG) and 1,2-propylene glycol (1,2-PG), challenges such as low selectivity of catalytic systems, poor stability, limited renewability, and stringent reaction conditions remain. The production of diols from cellulose involves multiple reaction steps, including hydrolysis, isomerization, retro-aldol condensation, hydrogenation, and dehydration. Consequently, the design of highly efficient catalysts with multifunctional active sites tailored to these specific reaction steps remains a significant challenge. This review aims to provide a comprehensive overview of the selective regulation of catalysts for producing EG and 1,2-PG from cellulose and glycerol. It discusses the reaction pathways, process methodologies, catalytic systems, and the performance of catalysts, focusing on active site characteristics. By summarizing the latest research in this field, we aim to offer a detailed understanding of the state-of-the-art in glycerol and cellulose conversion to diols and provide valuable guidance for future research and industrial applications. Through this review, we seek to clarify the current advancements and selective control strategies in diol production from glycerol or cellulose, thereby offering critical insights for future investigations and industrial scale-up. Full article
Show Figures

Graphical abstract

11 pages, 1551 KiB  
Article
Polyphosphoric Acid-Promoted Efficient Synthesis of Cinnamides via Aldol Condensation of Amide
by Enhua Wang, Lishou Yang, Lanfeng He, Qian Yang, Xue Wang, Yunlu Liu, Manxiang Li, Yang Lei and Xiaosheng Yang
Molecules 2024, 29(19), 4632; https://doi.org/10.3390/molecules29194632 - 29 Sep 2024
Viewed by 1196
Abstract
Cinnamides are common core structures that exist in a great number of pharmaceuticals and natural products. The development of efficient methods for preparing cinnamides is in great need. We report herein an efficient polyphosphoric acid (PPA)-promoted direct aldol condensation of an amide for [...] Read more.
Cinnamides are common core structures that exist in a great number of pharmaceuticals and natural products. The development of efficient methods for preparing cinnamides is in great need. We report herein an efficient polyphosphoric acid (PPA)-promoted direct aldol condensation of an amide for the convenient and straightforward preparation of cinnamides. A variety of cinnamides were obtained in moderate-to-excellent yields (65–89%). This strategy features the use of equivalent amides and a short reaction time. Full article
Show Figures

Figure 1

13 pages, 2772 KiB  
Article
Low-Cost Ni-W Catalysts Supported on Glucose/Carbon Nanotube Hybrid Carbons for Sustainable Ethylene Glycol Synthesis
by Rafael G. Morais, Lucília S. Ribeiro, José J. M. Órfão and Manuel Fernando R. Pereira
Molecules 2024, 29(16), 3962; https://doi.org/10.3390/molecules29163962 - 22 Aug 2024
Cited by 4 | Viewed by 1307
Abstract
The production of ethylene glycol (EG) from cellulose has garnered significant attention in recent years as an attractive alternative to fossil fuels due to the potential of cellulose as a renewable and sustainable feedstock. In this work, to the best of our knowledge, [...] Read more.
The production of ethylene glycol (EG) from cellulose has garnered significant attention in recent years as an attractive alternative to fossil fuels due to the potential of cellulose as a renewable and sustainable feedstock. In this work, to the best of our knowledge, a series of low-cost Ni-W bimetallic catalysts supported on glucose/carbon nanotube hybrid carbons were synthesised for the first time and employed to transform cellulose into EG. Two different strategies were combined for the preparation of the carbons: the activation and addition of carbon nanotubes (CNTs) to obtain a hybrid material (AG-CNT). The catalytic conversion process proceeded through cellulose hydrolysis to glucose, followed by glucose retro-aldol condensation to glycolaldehyde and its subsequent hydrogenation to EG. Through the optimisation of the catalyst’s properties, particularly the metals’ content, a good synergistic effect of C-C bond cleavage and hydrogenation capabilities was assured, resulting in the highly selective production of EG. The balance between Ni and W active sites was confirmed to be a crucial parameter. Thus, total cellulose conversion (100%) was achieved with EG yields of 60–62%, which are amongst the best yields ever reported for the catalytic conversion of cellulose into EG via carbon-supported catalysts. Full article
Show Figures

Graphical abstract

12 pages, 2148 KiB  
Article
Aqueous Phase Hydrogenation of 4-(2-Furyl)-3-buten-2-one over Different Re Phases
by Claudio Ignacio C. Díaz, Claudio Araya-López, A. B. Dongil and Nestor Escalona
Molecules 2024, 29(16), 3853; https://doi.org/10.3390/molecules29163853 - 14 Aug 2024
Cited by 2 | Viewed by 1167
Abstract
4-(2-furyl)-3-buten-2-one (FAc) is obtained by aldol condensation of furfural and acetone and has been used in hydrodeoxygenation reactions to obtain fuel products using noble metal catalysts. The hydrogenation of FAc in the aqueous phase using metallic- and Re oxide-supported catalysts on graphite was [...] Read more.
4-(2-furyl)-3-buten-2-one (FAc) is obtained by aldol condensation of furfural and acetone and has been used in hydrodeoxygenation reactions to obtain fuel products using noble metal catalysts. The hydrogenation of FAc in the aqueous phase using metallic- and Re oxide-supported catalysts on graphite was studied, within a temperature range of 200–240 °C, in a batch reactor over a 6 h reaction period. The catalysts were characterized using N2 adsorption–desorption, TPR-H2, TPD-NH3, XRD, and XPS analyses. Catalytic reactions revealed that metallic rhenium and rhenium oxide-supported catalysts are active for the hydrogenation and Piancatelli rearrangement of FAc. Notably, metallic rhenium exhibited a fourfold higher initial rate than rhenium oxide, which was attributed to the higher dispersion of Re in the Re/G catalyst over graphite. Re/G and ReOx/G catalysts tended to rearrange and hydrogenate FAc to 2-(2-oxopropyl)cyclopenta-1-one in water. Full article
Show Figures

Figure 1

Back to TopTop