Polyphosphoric Acid-Promoted Efficient Synthesis of Cinnamides via Aldol Condensation of Amide
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. General Procedure for the Synthesis of Cinnamamides 3a–3o
- (E)-N,N-Dimethylcinnamamide (3a). White solid; yield: 79%; m.p.: 100–104 °C. IR (KBr plate): νmax 1654 (C=O), 1648 (C=C), 1141 (C-N), 766 (Ar-H). 1H NMR (600 MHz, CDCl3) δ 7.67–7.63 (dd, J = 15.4, 2.1 Hz, 1H, Ar-CH=), 7.52–7.49 (m, 2H, Ar-H), 7.36–7.32 (m, 3H, Ar-H), 6.89–6.86 (dd, J = 15.4, 2.1 Hz, 1H, CO-CH=), 3.14 (s, 3H, CH3), 3.04 (s, 3H, CH3). 13C NMR (150 MHz, CDCl3) δ 166.7 (C=O), 142.3 (-CH=), 135.4 (Ar-C), 129.6 (Ar-C), 128.8 (Ar-C), 127.8 (Ar-C), 117.4 (-CH=), 37.4 (CH3), 35.9 (CH3). HRMS-ESI (m/z): calcd. for C11H13ONNa [M + Na]+: 198.0889; found: 198.0887.
- (E)-3-(2-Fluorophenyl)-N,N-dimethylacrylamide (3b). White solid; yield: 78%; m.p.: 58–61 °C. IR (KBr plate): νmax 2941 (C-H), 1654 (C=O), 1597 (C=C), 1143 (C-N), 991 (Ar-H), 755 (Ar-H). 1H NMR (600 MHz, CDCl3) δ 7.70 (dd, J = 15.8, 3.1 Hz, 1H, Ar-CH=), 7.49 (q, J = 6.3, 5.5 Hz, 1H, Ar-H), 7.31–7.26 (m, 1H, Ar-H), 7.12 (d, J = 7.3 Hz, 1H, Ar-H), 7.09–6.99 (m, 2H, Ar-H, CO-CH=), 3.14 (s, 3H, CH3), 3.05 (s, 3H, CH3). 13C NMR (150 MHz, CDCl3) δ 166.6 (C=O), 161.3 (1JCF = 253.7, Ar-C), 135.3 (-CH=), 130.8 (3JCF = 9.1, Ar-C), 129.8, 124.3 (3JCF = 3.0, Ar-C), 123.3 (2JCF = 12.1, Ar-C), 120.5 (3JCF = 7.6, -CH=), 116.1 (2JCF = 21.1, Ar-C), 37.4 (CH3), 35.9 (CH3). HRMS-ESI (m/z): calcd. for C11H12ONF [M + Na]+: 216.0795; found: 216.0794.
- (E)-3-(2-Chlorophenyl)-N,N-dimethylacrylamide (3c). White solid; yield: 80%; m.p.: 80–84 °C. IR (KBr plate): νmax 1648 (C=O), 1610 (C=C), 1143 (C-N), 759 (Ar-H). 1H NMR (600 MHz, CDCl3) δ 7.99 (d, J = 15.5 Hz, 1H, Ar-CH=), 7.59–7.57 (m, 1H, Ar-H), 7.40–7.36 (m, 1H, Ar-H), 7.26–7.23 (m, 2H, Ar-H), 6.86 (d, J = 15.5 Hz, 1H, CO-CH=), 3.15 (s, 3H, CH3), 3.05 (s, 3H, CH3). 13C NMR (150 MHz, CDCl3) δ 166.3 (C=O), 138.2 (-CH=), 134.6 (Ar-C), 133.7 (Ar-C), 130.3 (Ar-C), 130.1 (Ar-C), 127.7 (Ar-C), 126.9 (Ar-C), 120.6 (-CH=), 37.5 (CH3), 35.9 (CH3). HRMS-ESI (m/z): calcd. for C11H12NOClNa [M + Na]+: 232.0500; found: 232.0498.
- (E)-3-(2,4-Dichlorophenyl)-N,N-dimethylacrylamide (3d). White solid; yield: 67%; m.p.: 138–141 °C. IR (KBr plate): νmax 2935 (C-H), 1650 (C=O), 1602 (C=C), 1141 (C-N), 768 (Ar-H). 1H NMR (600 MHz, CDCl3) δ 7.93 (d, J = 15.4 Hz, 1H, Ar-CH=), 7.53 (d, J = 8.4 Hz, 1H, Ar-H), 7.42 (d, J = 2.1 Hz, 1H, Ar-H), 7.24 (dd, J = 8.4, 2.1 Hz, 1H, Ar-H), 6.86 (d, J = 15.4 Hz, 1H, CO-CH=), 3.17 (s, 3H, CH3), 3.07 (s, 3H, CH3). 13C NMR (150 MHz, CDCl3) δ 166.1 (C=O), 137.1 (-CH=), 135.4 (Ar-C), 135.2 (Ar-C), 132.4 (Ar-C), 129.9 (Ar-C), 128.4 (Ar-C), 127.4 (Ar-C), 121.0 (-CH=), 37.5 (CH3), 36.0 (CH3). HRMS-ESI (m/z): calcd. for C11H11ONCl2Na [M + Na]+: 266.0110; found: 266.0108.
- (E)-3-(4-Bromophenyl)-N,N-dimethylacrylamide (3e). White solid; yield: 69%; m.p.: 127–130 °C. IR (KBr plate): νmax 1648 (C=O), 1595 (C=C), 1147 (C-N), 751 (Ar-H). 1H NMR (600 MHz, CDCl3) δ 7.59 (d, J = 15.4 Hz, 1H, Ar-CH=), 7.49 (d, J = 8.3 Hz, 2H, Ar-H), 7.38 (d, J = 8.4 Hz, 2H, Ar-H), 6.87 (d, J = 15.4 Hz, 1H, CO-CH=), 3.16 (s, 3H, CH3), 3.06 (s, 3H, CH3). 13C NMR (150 MHz, CDCl3) δ 166.4 (C=O), 141.1 (-CH=), 134.3 (Ar-C), 132.0 (Ar-C), 129.2 (Ar-C), 123.6 (Ar-C), 118.1 (-CH=), 37.4 (CH3), 36.0 (CH3). HRMS-ESI (m/z): calcd. for C11H13ONBr [M + H]+: 254.0175; found: 254.0173.
- (E)-N,N-Dimethyl-3-(4-(trifluoromethyl)phenyl)acrylamide (3f). White solid; yield: 66%; m.p.: 110–112 °C. IR (KBr plate): νmax 2935 (C-H), 1656 (C=O), 1607 (C=C), 818 (Ar-H). 1H NMR (600 MHz, CDCl3) δ 7.63–7.57 (m, 1H, Ar-CH=), 7.56–7.50 (m, 4H, Ar-H), 6.92 (dd, J = 15.5, 3.7 Hz, 1H, CO-CH=), 3.13–3.08 (m, 3H, CH3), 3.02–2.97 (m, 3H, CH3). 13C NMR (150 MHz, CDCl3) δ 166.0 (C=O), 140.5 (-CH=), 138.7 (Ar-C), 130.9(2JCF = 30.2, Ar-C), 127.9 (Ar-C), 125.6 (Ar-C), 123.9 (1CF = 271.8, CF3), 120.0 (-CH=), 37.3 (CH3), 35.9 (CH3). HRMS-ESI (m/z): calcd. for C12H12ONF3Na [M + Na]+: 266.0763; found: 266.0762.
- (E)-3-(4-Cyanophenyl)-N,N-dimethylacrylamide (3g). White solid; yield: 77%; m.p.: 149–154 °C. IR (KBr plate): νmax 1650 (C=O), 1608 (C=C), 1143 (C-N), 834 (Ar-H), 824 (Ar-H). 1H NMR (600 MHz, CDCl3) δ 7.63 (m, 2H, Ar-CH=, Ar-H), 7.58 (d, J = 8.1 Hz, 3H, Ar-H), 6.96 (d, J = 15.4 Hz, 1H, CO-CH=), 3.16 (d, J = 4.8 Hz, 3H, CH3), 3.05–3.03 (m, 3H, CH3). 13C NMR (150 MHz, CDCl3) δ 165.8 (C=O), 140.1 (-CH=), 139.7 (Ar-C), 132.6 (Ar-C), 128.20 (Ar-C), 121.1 (CN), 118.6 (-CH=), 112.6 (Ar-C), 37.5 (CH3), 36.0 (CH3). HRMS-ESI (m/z): calcd. for C12H12ON2Na [M + Na]+: 223.0842; found: 223.0840.
- (E)-N,N-Dimethyl-3-(3-phenoxyphenyl)acrylamide (3h). White solid; yield: 81%; m.p.: 71–73 °C. IR (KBr plate): νmax 3024 (C-H), 2927 (C-H), 1651 (C=O), 1607 (C=C), 1164 (C-N), 754 (Ar-H). 1H NMR (600 MHz, CDCl3) δ 7.62 (d, J = 15.4 Hz, 1H, Ar-CH=), 7.35 (dt, J = 14.8, 7.9 Hz, 3H, Ar-H), 7.27 (d, J = 7.8 Hz, 1H, Ar-H), 7.20 (s, 1H, Ar-H), 7.13 (t, J = 7.4 Hz, 1H, Ar-H), 7.03 (d, J = 8.4 Hz, 2H, Ar-H), 6.99 (dd, J = 8.1, 2.5 Hz, 1H, Ar-H), 6.86 (d, J = 15.4 Hz, 1H, CO-CH=), 3.16 (s, 3H, CH3), 3.07 (s, 3H, CH3). 13C NMR (150 MHz, CDCl3) δ 166.5 (C=O), 157.6 (Ar-C), 156.9 (Ar-C), 141.7 (-CH=), 137.2 (Ar-C), 130.1 (Ar-C), 129.9 (Ar-C), 123.5 (Ar-C), 123.0 (Ar-C), 119.8 (Ar-C), 118.9 (Ar-C), 118.2 (-CH=), 117.7 (Ar-C), 37.5 (CH3), 36.0 (CH3). HRMS-ESI (m/z): calcd. for C17H17O2NNa [M + Na]+: 290.1152; found: 290.1148.
- (E)-N,N-Dimethyl-3-(p-tolyl)acrylamide (3i). White solid; yield: 85%; m.p.: 112–117 °C. IR (KBr plate): νmax 2935 (C-H), 1650 (C=O), 1602 (C=C), 1141 (C-N), 768 (Ar-H). 1H NMR (600 MHz, CDCl3) δ 7.64 (d, J = 15.4 Hz, 1H, Ar-CH=), 7.42 (d, J = 8.0 Hz, 2H, Ar-H), 7.17 (d, J = 7.8 Hz, 2H, Ar-H), 6.84 (d, J = 15.4 Hz, 1H, CO-CH=), 3.15 (s, 3H, CH3), 3.05 (s, 3H, CH3), 2.35 (s, 3H, Ar-CH3). 13C NMR (150 MHz, CDCl3) δ 166.9 (C=O), 142.3 (-CH=), 139.8 (Ar-C), 132.6 (Ar-C), 129.5 (Ar-C), 127.8 (Ar-C), 116.3 (-CH=), 37.4 (CH3), 35.9 (CH3), 21.4 (CH3). HRMS-ESI (m/z): calcd. for C12H15ONNa [M + Na]+: 212.1046; found: 212.1044.
- (E)-N,N-Dimethyl-3-(naphthalen-2-yl)acrylamide (3j). Light yellow solid; yield: 78%; m.p.: 158–161 °C. IR (KBr plate): νmax 2934 (C-H), 1648 (C=O), 1601 (C=C), 1138 (C-N), 822 (Ar-H). 1H NMR (600 MHz, CDCl3) δ 7.91 (s, 1H, Ar-H), 7.82 (m, 4H, Ar-CH=, Ar-H), 7.67 (d, J = 8.6 Hz, 1H, Ar-H), 7.48 (dd, J = 6.2, 3.2 Hz, 2H, Ar-H), 6.99 (d, J = 15.4 Hz, 1H, CO-CH=), 3.19 (s, 3H, CH3), 3.08 (s, 3H, CH3). 13C NMR (150 MHz, CDCl3) δ 166.6 (C=O), 142.4 (-CH=), 133.9 (Ar-C), 133.4 (Ar-C), 132.8 (Ar-C), 129.2 (Ar-C), 128.5 (Ar-C), 128.5 (Ar-C), 127.7 (Ar-C), 126.9 (Ar-C), 126.6 (Ar-C), 123.7 (Ar-C), 117.6 (-CH=), 37.5 (CH3), 36.0 (CH3). HRMS-ESI (m/z): calcd. for C15H15ONNa [M + Na]+: 248.1046; found: 248.1045.
- (E)-3-Cyclohexyl-N,N-dimethylacrylamide (3k). Light yellow solid; yield: 89%; m.p.: 96–100 °C. IR (KBr plate): νmax 1647 (C=O), 1602 (C=C), 1140 (C-N). 1H NMR (600 MHz, CDCl3) δ 6.80 (dd, J = 15.2, 7.0 Hz, 1H, Ar-CH=), 6.17 (d, J = 15.2 Hz, 1H, CO-CH=), 3.05 (s, 3H, CH3), 2.98 (s, 3H, CH3), 2.14–2.08 (m, 1H, Cy-H), 1.76–1.71 (m, 4H, Cy-H), 1.65 (m, 1H, Cy-H), 1.26 (m, 2H, Cy-H), 1.14 (m, 3H, Cy-H). 13C NMR (150 MHz, CDCl3) δ 167.2 (C=O), 151.3 (-CH=), 117.6 (-CH=), 40.7 (Cy-C), 37.3 (CH3), 35.7 (CH3), 32.0 (Cy-C), 25.9 (Cy-C), 25.7 (Cy-C). HRMS-ESI (m/z): calcd. for C11H20ON [M + H]+: 182.1539; found: 182.1539.
- (E)-N,N-Dimethylhept-2-enamide (3l). White oil; yield: 74%; IR (KBr plate): νmax 2938 (C-H), 1654 (C=O), 1611 (C=C), 1143 (C-N). 1H NMR (600 MHz, CDCl3) δ 6.88 (dt, J = 14.5, 7.0 Hz, 1H, Ar-CH=), 6.25 (d, J = 15.1 Hz, 1H, CO-CH=), 3.09 (s, 3H, CH3), 3.01 (s, 3H, CH3), 2.22 (q, J = 7.4 Hz, 2H, CH2), 1.46 (t, J = 7.7 Hz, 2H, CH2), 1.36 (q, J = 7.4 Hz, 2H, CH2), 0.92 (t, J = 7.3 Hz, 3H, CH3). 13C NMR (150 MHz, CDCl3) δ 167.0 (C=O), 146.4 (-CH=), 120.1 (-CH=), 37.4 (CH3), 35.7 (CH3), 32.2 (CH2), 30.5 (CH2), 22.3 (CH2), 13.9 (CH3). HRMS-ESI (m/z): calcd. for C9H17ONNa [M + Na]+: 178.1202; found: 178.1200.
- (E)-N,N-Dimethyl-3-(thiophen-2-yl)acrylamide (3m). Light yellow solid; yield: 71%; m.p.: 98–101 °C. IR (KBr plate): νmax 2930 (C-H), 1643 (C=O), 1601 (C=C), 1140 (C-N), 705 (Th-H). 1H NMR (600 MHz, CDCl3) δ 7.79 (d, J = 15.1 Hz, 1H, Ar-CH=), 7.31 (d, J = 5.1 Hz, 1H, CO-CH=), 7.22 (d, J = 3.6 Hz, 1H, Th-H), 7.03 (dd, J = 5.0, 3.6 Hz, 1H, Th-H), 6.69 (d, J = 15.1 Hz, 1H, Th-H), 3.15 (s, 3H, CH3), 3.06 (s, 3H, CH3). 13C NMR (150 MHz, CDCl3) δ 166.4 (C=O), 140.5 (-CH=), 135.2 (Th-C), 130.3 (Th-C), 128.0 (Th-C), 127.2 (Th-C), 116.1 (-CH=), 37.4 (CH3), 36.0 (CH3). HRMS-ESI (m/z): calcd. for C9H11ONNaS [M + Na]+: 204.0454; found: 204.0453.
- (E)-3-(Benzo[c][1,2,5]oxadiazol-4-yl)-N,N-dimethylacrylamide (3n). Light yellow solid; yield: 65%; m.p.: 154–160 °C. IR (KBr plate): νmax 2931 (C-H), 1651 (C=O), 1612 (C=C), 1143 (C-N), 812 (Ar-H), 766 (Ar-H). 1H NMR (600 MHz, CDCl3) δ 7.94 (d, J = 15.3 Hz, 1H, Ar-CH=), 7.82 (d, J = 8.6 Hz, 1H, Ar-H), 7.76 (d, J = 15.2 Hz, 1H, CO-CH=), 7.49–7.44 (m, 2H, Ar-H), 3.28 (s, 3H, CH3), 3.12 (s, 3H, CH3). 13C NMR (150 MHz, CDCl3) δ 166.2 (C=O), 149.6 (Ar-C), 147.5 (-CH=), 136.5 (Ar-C), 133.7 (Ar-C), 131.7 (Ar-C), 126.2 (Ar-C), 125.3 (Ar-C), 117.0 (-CH=), 37.5 (CH3), 36.0 (CH3). HRMS-ESI (m/z): calcd. for C11H11O2N3Na [M + Na]+: 240.0743; found: 240.0741.
- (2E, 4E)-N,N-Dimethyl-5-phenylpenta-2,4-dienamide (3o). White solid; yield: 74%; m.p.: 108–113 °C. IR (KBr plate): νmax 1643 (C=O), 1624 (C=C), 1125 (C-N), 812 (Ar-H), 758 (Ar-H). 1H NMR (600 MHz, CDCl3) δ 7.46–7.41 (m, 3H, Ar-CH=, Ar-H, -CH=), 7.33 (t, J = 7.6 Hz, 2H, Ar-H), 7.27 (d, J = 7.3 Hz, 1H, -CH=), 6.92–6.83 (m, 2H, Ar-H), 6.45 (d, J = 14.7 Hz, 1H, CO-CH=), 3.10 (s, 3H, CH3), 3.03 (s, 3H, CH3). 13C NMR (150 MHz, CDCl3) δ 166.8 (C=O), 142.5 (-CH=), 139.0 (-CH=), 136.4 (Ar-C), 128.8 (Ar-C), 128.7 (Ar-C), 127.0 (Ar-C), 126.9 (-CH=), 120.6 (-CH=), 37.4 (CH3), 35.9 (CH3). HRMS-ESI (m/z): calcd. for C13H16ON [M + H]+: 202.1226; found: 202.1224.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harrold, M.W.; Wallace, R.A.; Farooqui, T.; Wallace, L.J.; Uretsky, N.; Miller, D.D. Synthesis and D2 dopaminergic activity of pyrrolidinium, tetrahydrothiophenium, and tetrahydrothiophene analogs of sulpiride. J. Med. Chem. 1989, 32, 874–880. [Google Scholar] [CrossRef] [PubMed]
- Pardin, C.; Pelletier, J.N.; Lubell, W.D.; Keillor, J.W. Cinnamoyl inhibitors of tissue transglutaminase. J. Org. Chem. 2008, 73, 5766–5775. [Google Scholar] [CrossRef]
- Kanemasa, S.; Yamamoto, H.; Kobayashi, S. dl-Selective reductive coupling/dieckmann condensation sequence of α,β-unsaturated amides with samarium (II) iodide/HMPA. Synthesis of a new ligand, trans-1,2-cyclopentanediyl-2,2′-biphenol. Tetrahedron Lett. 1996, 37, 8505–8506. [Google Scholar] [CrossRef]
- Nahm, M.R.; Potnick, J.R.; White, P.S.; Johnson, J.S. Metallophosphite-catalyzed asymmetric acylation of α,β-unsaturated amides. J. Am. Chem. Soc. 2006, 128, 2751–2756. [Google Scholar] [CrossRef] [PubMed]
- Nemoto, T.; Kakei, H.; Gnanadesikan, V.; Tosaki, S.Y.; Ohshima, T.; Shibasaki, M. Catalytic asymmetric epoxidation of α,β-unsaturated amides: Efficient synthesis of β-aryl α-hydroxy amides using a one-pot tandem catalytic asymmetric epoxidation-pd-catalyzed epoxide opening process. J. Am. Chem. Soc. 2002, 124, 14544–14545. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.E.; Yun, J. Catalytic asymmetric boration of acyclic α,β-unsaturated esters and nitriles. Angew. Chem. Int. Ed. 2008, 120, 151–153. [Google Scholar] [CrossRef]
- Jiang, X.F.; Zhen, Y.S. Cinnamamide, an antitumor agent with low cytotoxicity acting on matrix metalloproteinase. Anti-Cancer Drugs 2000, 11, 49–54. [Google Scholar] [CrossRef]
- De, P.; Baltas, M.; Bedos-Belval, F. Cinnamic acid derivatives as anticancer agents-a review. Curr. Med. Chem. 2011, 18, 1672–1703. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.Q.; Wu, D.; Wei, C.X.; Quan, Z.S. Synthesis and antidepressant-like action of N-(2-hydroxyethyl) cinnamamide derivatives in mice. Med. Chem. Res. 2011, 20, 1273–1279. [Google Scholar] [CrossRef]
- Surendran, S.; Babu, M.; Joseph, J.; Padma, U.D. Facilitatory effect of piperine on the anticonvulsant effect of sodium valproate against pentylenetetrazole induced seizures in mice. Res. J. Pharm. Technol. 2020, 13, 651–652. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, M.; Zhong, Y.; Wu, B. Synthesis, crystal structure, hirshfeld surface analyses and biological activity of novel cinnamide derivatives as neuroprotective drugs. Polycycl. Aromat. Compd. 2023, 44, 5138–5149. [Google Scholar] [CrossRef]
- Zhong, Y.; Xu, Y.; Tan, X.Z.; Wang, Y.Y.; Ma, S.Y.; Gao, M.J.; Wu, B. Design, synthesis, and biological evaluation of novel cinnamide derivatives as neuroprotective agents for the treatment of cerebral ischemia. Curr. Med. Chem. 2024, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Khan, T.A.; Al Nasr, I.S.; Koko, W.S.; Ma, J.; Eckert, S.; Brehm, L.; Said, R.S.B.; Daoud, I.; Hanachi, R.; Rahali, S.; et al. Evaluation of the antiparasitic and antifungal activities of new synthetic piperlongumine-type cinnamide derivatives: Booster effect by halogen substituents. ChemMedChem 2023, 18, e202300132. [Google Scholar] [CrossRef] [PubMed]
- Valeur, E.; Bradley, M. Amide bond formation: Beyond the myth of coupling reagents. Chem. Soc. Rev. 2009, 38, 606–631. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Karuo, Y.; Tsukada, Y.; Kunishima, M. Mild amide-cleavage reaction mediated by electrophilic benzylation. Chem.—Eur. J. 2016, 22, 14042–14047. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Chang, S. Borane-catalyzed reductive α-silylation of conjugated esters and amides leaving carbonyl groups intact. Angew. Chem. Int. Ed. 2016, 55, 218–222. [Google Scholar] [CrossRef]
- Zhang, J.R.; Liao, Y.Y.; Deng, J.C.; Tang, Z.L.; Xu, Y.L.; Xu, L.; Tang, R.Y. DABCO-Promoted decarboxylative acylation: Synthesis of α-keto and α,β-unsaturated amides or esters. Asian J. Org. Chem. 2017, 6, 305–312. [Google Scholar] [CrossRef]
- Fujihara, T.; Katafuchi, Y.; Iwai, T.; Terao, J.; Tsuji, Y. Palladium-catalyzed intermolecular addition of formamides to alkynes. J. Am. Chem. Soc. 2010, 132, 2094–2098. [Google Scholar] [CrossRef]
- Kumar, P.S.; Kumar, G.S.; Kumar, R.A.; Reddy, N.V.; Rajender Reddy, K. Copper-catalyzed oxidative coupling of carboxylic acids with N,N-dialkylformamides: An approach to the synthesis of amides. Eur. J. Org. Chem. 2013, 2013, 1218–1222. [Google Scholar] [CrossRef]
- Priyadarshini, S.; Joseph, P.A.; Kantam, M.L. Copper catalyzed cross-coupling reactions of carboxylic acids: An expedient route to amides, 5-substituted γ-lactams and α-acyloxy esters. RSC Adv. 2013, 3, 18283–18287. [Google Scholar] [CrossRef]
- Woodbury, R.P.; Rathke, M.W. Formation of the lithium enolate of N,N-dimethyl-2-trimethylsilylacetamide. Reaction with carbonyl compounds and epoxides. J. Org. Chem. 1978, 43, 1947–1949. [Google Scholar] [CrossRef]
- Böhm, V.P.; Herrmann, W.A. Nonaqueous Ionic Liquids: Superior reaction media for the catalytic Heck-vinylation of chloroarenes. Chem.—Eur. J. 2000, 6, 1017–1025. [Google Scholar] [CrossRef]
- Saberi, D.; Mahdudi, S.; Cheraghi, S.; Heydari, A. Cu(II)-acetylacetone complex covalently anchored onto magnetic nanoparticles: Synthesis, characterization and catalytic evaluation in amide bond formation via oxidative coupling of carboxylic acids with N,N-dialkylformamides. J. Organomet. Chem. 2014, 772, 222–228. [Google Scholar] [CrossRef]
- Yang, X.H.; Wei, W.T.; Li, H.B.; Song, R.J.; Li, J.H. Oxidative coupling of alkenes with amides using peroxides: Selective amide C(sp3)-H versus C(sp2)-H functionalization. Chem. Commun. 2014, 50, 12867–12869. [Google Scholar] [CrossRef] [PubMed]
- Lai, M.; Wu, Z.; Su, F.; Yu, Y.; Jing, Y.; Kong, J.; Wang, Z.; Wang, S.; Zhao, M. Synthesis of cinnamides via amidation reaction of cinnamic acids with tetraalkylthiuram disulfides under simple condition. Eur. J. Org. Chem. 2020, 2, 198–208. [Google Scholar] [CrossRef]
- Weidlich, T.; Prokeš, L.; Růžička, A.; Padělková, Z. Condensation of aromatic aldehydes with N,N-dimethylacetamide in presence of dialkyl carbonates as dehydrating agents. Monatshefte Chem.-Chem. Mon. 2010, 141, 205–211. [Google Scholar] [CrossRef]
- Foo, S.W.; Oishi, S.; Saito, S. Aldol condensation of amides using phosphazene-based catalysis. Tetrahedron Lett. 2012, 53, 5445–5448. [Google Scholar] [CrossRef]
- Yang, T.; Lu, M.; Lin, Z.; Huang, M.; Cai, S. Visible-light-promoted oxidation/condensation of benzyl alcohols with dialkylacetamides to cinnamides. Org. Biomol. Chem. 2019, 17, 449–453. [Google Scholar] [CrossRef]
- Liu, H.; Liu, H.; Wang, E.; Li, L.; Luo, Z.; Cao, J.; Chen, J.; Yang, L.; Yang, X. Hydrogen bond assisted three-component tandem reactions to access N-alkyl-4-quinolones. Molecules 2023, 28, 2304. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.; Yang, L.; Yang, Q.; Yang, F.; Luo, J.; Gan, M.; Wang, X.; Song, S.; Lei, Y.; Yang, X. Polyphosphoric acid-promoted one-pot synthesis and neuroprotective effects of flavanones against NMDA-induced injury in PC12 cells. RSC Adv. 2022, 12, 28098–28103. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, E.; Fan, Y.; Yang, J.; Luo, Z.; Wang, Y.; Peng, M.; Deng, T.; Yang, X. One-pot synthesis of (E)-3-benzylideneflavanones from 2-hydroxyacetophenones and aromatic aldehydes. Tetrahedron Lett. 2020, 61, 151180. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, Y.; Yang, J.; Wu, Y.; Li, L.; Chen, F.; Wang, E.; Li, L.; Yang, Y.; Yan, Y.; et al. Activation of phenolic oxygen atom using polyphosphoric acid: Synthesis of carbonyl-containing dihydrobenzofurans/dihydrobenzopyrans. Synth. Commun. 2021, 51, 1723–1730. [Google Scholar] [CrossRef]
Entry | PPA (Equiv.) | T (°C) | t (h) | Solvent | 3a (%) b |
---|---|---|---|---|---|
1 | 2 | reflux | 4 | DMF | 46 |
2 | 1.5 | reflux | 4 | DMF | 45 |
3 | 1 | reflux | 4 | DMF | 50 |
4 | 0.5 | reflux | 4 | DMF | 22 |
5 | 1 | 140 | 4 | DMF | 13 |
6 | 1 | reflux | 5 | DMF | 64 |
7 | 1 | reflux | 6 | DMF | 79 |
8 | 1 | reflux | 7 | DMF | 77 |
9 | 1 | reflux | 6 | 1,4-Dioxane | 6 |
10 | 1 | reflux | 6 | THF | / |
11 | 1 | reflux | 6 | Toluene | 15 |
12 | 1 | reflux | 6 | DCE | / |
13 | 1 | reflux | 6 | DMSO | / |
14 | 1 | reflux | 6 | EtOH | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, E.; Yang, L.; He, L.; Yang, Q.; Wang, X.; Liu, Y.; Li, M.; Lei, Y.; Yang, X. Polyphosphoric Acid-Promoted Efficient Synthesis of Cinnamides via Aldol Condensation of Amide. Molecules 2024, 29, 4632. https://doi.org/10.3390/molecules29194632
Wang E, Yang L, He L, Yang Q, Wang X, Liu Y, Li M, Lei Y, Yang X. Polyphosphoric Acid-Promoted Efficient Synthesis of Cinnamides via Aldol Condensation of Amide. Molecules. 2024; 29(19):4632. https://doi.org/10.3390/molecules29194632
Chicago/Turabian StyleWang, Enhua, Lishou Yang, Lanfeng He, Qian Yang, Xue Wang, Yunlu Liu, Manxiang Li, Yang Lei, and Xiaosheng Yang. 2024. "Polyphosphoric Acid-Promoted Efficient Synthesis of Cinnamides via Aldol Condensation of Amide" Molecules 29, no. 19: 4632. https://doi.org/10.3390/molecules29194632
APA StyleWang, E., Yang, L., He, L., Yang, Q., Wang, X., Liu, Y., Li, M., Lei, Y., & Yang, X. (2024). Polyphosphoric Acid-Promoted Efficient Synthesis of Cinnamides via Aldol Condensation of Amide. Molecules, 29(19), 4632. https://doi.org/10.3390/molecules29194632