Efficient Conversion of Glucose into Lactic Acid over the Lewis Acidity Enhanced Sn-Beta Catalyst
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalytic Performance of Sn-Beta for Glucose Conversion
2.2. Characterization of Sn-Beta Catalyst
3. Experimental
3.1. Chemicals and Materials
3.2. Synthesis of Sn-Beta Catalyst
3.3. Reactions and Liquid Phase Product Analysis
3.4. Catalyst Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Queneau, Y.; Han, B. Biomass: Renewable carbon resource for chemical and energy industry. Innovation 2022, 3, 100184. [Google Scholar] [CrossRef] [PubMed]
- Ge, L.; Zuo, M.; Wang, Y.; Wang, R.; Rong, N.; Qi, Z.; Zhao, C.; Zhang, Y.; Chang, X. A review of comprehensive utilization of biomass to synthesize carbon nanotubes: From chemical vapor deposition to microwave pyrolysis. J. Anal. Appl. Pyrol. 2024, 177, 106320. [Google Scholar] [CrossRef]
- Zhang, W.; Qiu, X.; Wang, C.; Zhong, L.; Fu, F.; Zhu, J.; Zhang, Z.; Qin, Y.; Yang, D.; Xu, C. Lignin derived carbon materials: Current status and future trends. Carbon Res. 2022, 1, 14. [Google Scholar] [CrossRef]
- Pattnaik, F.; Tripathi, S.; Patra, B.R.; Nanda, S.; Naik, S. Catalytic conversion of lignocellulosic polysaccharides to commodity biochemicals: A review. Environ. Chem. Lett. 2021, 19, 4119–4136. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, L.; Zhang, W.; Liu, H. Recyclable Cu Salt-derived Brønsted acids for hydrolytic hydrogenation of cellulose on Ru catalyst. CCS Chem. 2022, 4, 3162–3169. [Google Scholar]
- Morales, G.; Iglesias, J.; Melero, J.A. Sustainable catalytic conversion of biomass for the production of biofuels and bioproducts. Catalysts 2020, 10, 581. [Google Scholar] [CrossRef]
- Deng, W.; Feng, Y.; Fu, J.; Guo, H.; Guo, Y.; Han, B.; Jiang, Z.; Kong, L.; Li, C.; Liu, H. Catalytic conversion of lignocellulosic biomass into chemicals and fuels. Green Energy Environ. 2023, 8, 10–114. [Google Scholar]
- Tomishige, K.; Yabushita, M.; Cao, J.; Nakagawa, Y. Hydrodeoxygenation of potential platform chemicals derived from biomass to fuels and chemicals. Green Chem. 2022, 24, 5652–5690. [Google Scholar] [CrossRef]
- Deng, W.; Wang, Y.; Yan, N. Production of organic acids from biomass resources. Curr. Opin. Green Sust. 2016, 2, 54–58. [Google Scholar] [CrossRef]
- Yang, L.; Su, J.; Carl, S.; Lynam, J.G.; Yang, X.; Lin, H. Catalytic conversion of hemicellulosic biomass to lactic acid in pH neutral aqueous phase media. Appl. Catal. B Environ. 2015, 162, 149–157. [Google Scholar]
- Liu, C.; Lu, X.; Yu, Z.; Xiong, J.; Bai, H. Production of levulinic acid from cellulose and cellulosic biomass in different catalytic systems. Catalysts 2020, 10, 1006. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, D.; Sun, Z.; Xue, L.; Wang, X.; Jiang, Z. Highly efficient preparation of HMF from cellulose using temperature-responsive heteropolyacid catalysts in cascade reaction. Appl. Catal. B Environ. 2016, 196, 50–56. [Google Scholar]
- Yan, L.; Wang, G.; Xiang, D.; Zhang, Y.; Deng, W. Reductive amination of bio-platform molecules to nitrogen-containing chemicals. Carbon Neutrality 2024, 3, 24. [Google Scholar]
- Yang, R.; Chen, P.; Zhong, H.; Jin, F. Highly efficient base-catalyzed valorization of food waste into lactic acid at mild conditions with the pretreatment using HCl recovered from PVC. ACS Sustain. Chem. Eng. 2023, 11, 16279–16287. [Google Scholar] [CrossRef]
- Shen, Z.; Kong, L.; Zhang, W.; Gu, M.; Xia, M.; Zhou, X.; Zhang, Y. Surface amino-functionalization of Sn-Beta zeolite catalyst for lactic acid production from glucose. RSC Adv. 2019, 9, 18989–18995. [Google Scholar]
- Xu, S.; Wu, Y.; Li, J.; Gu, M.; Xia, M.; Zhou, X.; Zhang, Y. Directing the simultaneous conversion of hemicellulose and cellulose in raw biomass to lactic acid. ACS Sustain. Chem. Eng. 2020, 8, 4244–4255. [Google Scholar]
- Saulnier-Bellemare, T.; Patience, G.S. Homogeneous and heterogeneous catalysis of glucose to lactic acid and lactates: A review. ACS Omega 2024, 9, 23121–23137. [Google Scholar] [CrossRef]
- Pidko, E.A.; Tempelman, C.H.L.; Hensen, E.J.M.; van der Graaff, W.N.P. Influence of pore topology on synthesis and reactivity of Sn-modified zeolite catalysts for carbohydrate conversions. Catal. Sci. Technol. 2017, 7, 3151–3162. [Google Scholar]
- Bayu, A.; Abudula, A.; Guan, G. Reaction pathways and selectivity in chemo-catalytic conversion of biomass-derived carbohydrates to high-value chemicals: A review. Fuel Process. Technol. 2019, 196, 10662. [Google Scholar]
- Li, Y.; Liu, X.; Zhang, K.; Zhao, S.; Wu, L.; Guo, Q.; Du, H. One-pot conversion of cellulosic sugars into methyl lactate using hierarchical Sn-MFI zeolite with intracrystalline mesoporosity. Green Carbon 2024, 2, 383–394. [Google Scholar]
- Holm, M.S.; Saravanamurugan, S.; Taarning, E. Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts. Science 2010, 328, 602–605. [Google Scholar] [PubMed]
- Sun, Y.; Shi, L.; Wang, H.; Miao, G.; Kong, L.; Li, S.; Sun, Y. Efficient production of lactic acid from sugars over Sn-Beta zeolite in water: Catalytic performance and mechanistic insights. Sustain. Energ. Fuels 2019, 3, 1163–1171. [Google Scholar]
- Zhang, Y.; Luo, H.; Kong, L.; Zhao, X.; Miao, G.; Zhu, L.; Li, S.; Sun, Y. Highly efficient production of lactic acid from xylose using Sn-beta catalysts. Green Chem. 2020, 22, 7333–7336. [Google Scholar]
- Zhao, X.; Zhou, Z.; Luo, H.; Zhang, Y.; Liu, W.; Miao, G.; Zhu, L.; Kong, L.; Li, S.; Sun, Y. γ-Valerolactone-introduced controlled-isomerization of glucose for lactic acid production over an Sn-Beta catalyst. Green Chem. 2021, 23, 2634–2639. [Google Scholar]
- Liu, W.; Zhou, Z.; Guo, Z.; Wei, Z.; Zhang, Y.; Zhao, X.; Miao, G.; Zhu, L.; Luo, H.; Sun, M. Microwave-induced controlled-isomerization during glucose conversion into lactic acid over a Sn-beta catalyst. Sustain. Energy Fuels 2022, 6, 1264–1268. [Google Scholar]
- Tang, B.; Li, S.; Song, W.-C.; Yang, E.C.; Li, L. Fabrication of hierarchical Sn-Beta zeolite as efficient catalyst for conversion of cellulosic sugar to methyl lactate. ACS Sustain. Chem. Eng. 2020, 8, 3796–3808. [Google Scholar]
- Si, J.; Guo, R.; Qiu, F.; Ning, W.; Sun, Y.; Li, W.; Tao, Q.; Miao, S. Vapor-assisted synthesis of nanosized Beta-zeolite from natural ores and using as efficient catalysts for Baeyer-Villiger oxidation. ACS Appl. Nano Mater. 2024, 7, 9314–9323. [Google Scholar]
- Fernandez, S.; Ostraat, M.L.; Zhang, K. Toward rational design of hierarchical beta zeolites: An overview and beyond. AIChE J. 2020, 66, 16943–16959. [Google Scholar]
- You, X.; Xu, Y.; Lu, T.; Tang, N.; Luo, W.; Yang, X.; Liu, Z. Catalytic oppenauer oxidation of secondary alcohols over post-synthesized Sn-Beta. Catal. Sci. Technol. 2023, 13, 2551–2558. [Google Scholar]
- Popovych, N.O.; Kyriienko, P.I.; Millot, Y.; Valentin, L.; Dzwigaj, S. Sn-BEA zeolites prepared by two-step postsynthesis method: Physicochemical properties and catalytic activity in processes based on MPV reduction. Micropor. Mesopor. Mat. 2018, 268, 178–188. [Google Scholar]
- Yao, J.; Fu, K.; Wang, Y.C.; Li, T.; Liu, H.; Wang, J. Hierarchically porous Sn-β zeolites via an OSDA-free synthesis. Green Chem. 2017, 19, 3214–3218. [Google Scholar]
- Zheng, K.; Liu, B.; Huang, J.; Zhang, K.; Xi, H. Cationic surfactant-directed synthesis of hollow Beta zeolite with hierarchical structure. Inorg. Chem. Commun. 2019, 107, 107468. [Google Scholar]
- Lu, Y.; Li, W.; Zhu, Y.; Zhang, T.; Zhang, Q.; Liu, Q. One-pot synthesis of high value-added chemicals from furfural over bimetal-doped Beta zeolite and carbon solid acid catalysts. BioResources 2018, 13, 5925–5941. [Google Scholar]
- Dijkmans, J.; Dusselier, M.; Gabriëls, D.; Houthoofd, K.; Magusin, P.C.M.M.; Huang, S.; Pontikes, Y.; Trekels, M.; Vantomme, A.; Giebeler, L.; et al. Cooperative catalysis for multistep biomass conversion with Sn/Al Beta zeolite. ACS Catal. 2015, 5, 928–940. [Google Scholar]
- Zhang, J.; Wang, L.; Wang, G.; Chen, F.; Zhu, J.; Wang, C.; Bian, C.; Pan, S.; Xiao, F.S. Hierarchical Sn-Beta Zeolite Catalyst for the Conversion of Sugars to Alkyl Lactates. ACS Sustain. Chem. Eng. 2017, 5, 3123–3131. [Google Scholar]
- Nie, Y.; Ma, Y.; Hu, J.; Zhou, L. Synthesis of Al-containing Sn-Beta with tunable Brønsted and Lewis acidity for conversion of glucose to 5-hydroxymethylfurfural. Micropor. Mesopor. Mat. 2024, 374, 1131157. [Google Scholar]
- Saenluang, K.; Thivasasith, A.; Dugkhuntod, P.; Pornsetmetakul, P.; Wattanakit, C. In situ synthesis of Sn-Beta zeolite nanocrystals for Glucose to hydroxymethylfurfural (HMF). Catalysts 2020, 10, 1249. [Google Scholar] [CrossRef]
- Li, L.; Stroobants, C.; Lin, K.; Jacobs, P.A.; Sels, B.F.; Pescarmona, P.P. Selective conversion of trioses to lactates over Lewis acid heterogeneous catalysts. Green Chem. 2011, 13, 1175–1181. [Google Scholar]
- Zhang, W.; Shen, Z.; Kong, L.; Chen, W.; Gu, M.; Xia, M.; Dong, W.; Zhang, Y. Sn doping on partially dealuminated Beta zeolite by solid state ion exchange for 5-hydroxymethylfurfural (5-HMF) production from glucose. J. Chem. Technol. Biot. 2022, 98, 773–781. [Google Scholar]
- Xia, M.; Shen, Z.; Xiao, S.; Gu, M.; Zhang, Y. Synergistic effects of bimetals and hierarchical structures in Mg–Sn-Beta-H zeolites for lactic acid synthesis from biomass-derived carbohydrates. Catal. Sci. Technol. 2023, 13, 3974–3986. [Google Scholar]
- Zhang, B.; Zhu, X.; Gao, J.; Zhu, Y.; Ma, W. Zn modification of Beta zeolite: Effect on acid sites and propylene oxide rearrangement. Chem. Phys. 2020, 539, 110983. [Google Scholar]
- Bai, J.; Ling, W.; Chen, W.; Liu, Y.; Sun, P.; Wang, H.; Wang, C. The role of aluminum in Sn-Al-beta zeolite catalyzing the conversion of glucose to methyl lactate. Mol. Catal. 2023, 541, 113071. [Google Scholar]
- Xia, M.; Dong, W.; Shen, Z.; Xiao, S.; Chen, W.; Gu, M.; Zhang, Y. Efficient production of lactic acid from biomass-derived carbohydrates under synergistic effects of indium and tin in In-Sn-Beta zeolites. Sustain. Energ. Fuels 2020, 4, 5327–5338. [Google Scholar]
- Van der Graaff, W.N.; Tempelman, C.H.L.; Li, G.; Mezari, B.; Kosinov, N.; Pidko, E.A.; Hensen, E.J.M. Competitive adsorption of substrate and solvent in Sn-Beta zeolite during sugar isomerization. ChemSusChem 2016, 9, 3145–3149. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, F.; Wang, Y.; Jiang, Z.; Tu, Y.; Li, R.; Zhang, X.; Tang, A.; Liang, Y.; Yan, L.; Luo, H.; et al. Efficient Conversion of Glucose into Lactic Acid over the Lewis Acidity Enhanced Sn-Beta Catalyst. Molecules 2025, 30, 1457. https://doi.org/10.3390/molecules30071457
Guo F, Wang Y, Jiang Z, Tu Y, Li R, Zhang X, Tang A, Liang Y, Yan L, Luo H, et al. Efficient Conversion of Glucose into Lactic Acid over the Lewis Acidity Enhanced Sn-Beta Catalyst. Molecules. 2025; 30(7):1457. https://doi.org/10.3390/molecules30071457
Chicago/Turabian StyleGuo, Fenfen, Yuxuan Wang, Zhicheng Jiang, Youjing Tu, Ruikai Li, Xingyu Zhang, Aoyi Tang, Yuan Liang, Lishi Yan, Hu Luo, and et al. 2025. "Efficient Conversion of Glucose into Lactic Acid over the Lewis Acidity Enhanced Sn-Beta Catalyst" Molecules 30, no. 7: 1457. https://doi.org/10.3390/molecules30071457
APA StyleGuo, F., Wang, Y., Jiang, Z., Tu, Y., Li, R., Zhang, X., Tang, A., Liang, Y., Yan, L., Luo, H., Li, S., & Kong, L. (2025). Efficient Conversion of Glucose into Lactic Acid over the Lewis Acidity Enhanced Sn-Beta Catalyst. Molecules, 30(7), 1457. https://doi.org/10.3390/molecules30071457