Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (126)

Search Parameters:
Keywords = AlSiTiN coating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2670 KiB  
Article
High-Temperature-Resistant High-Entropy Oxide Protective Coatings for Piezoelectric Thin Films
by Huayong Hu, Jie Liu, Liqing Chao, Xiangdong Ma, Jun Zhang, Yanbing Zhang and Bing Yang
Coatings 2025, 15(8), 861; https://doi.org/10.3390/coatings15080861 - 22 Jul 2025
Viewed by 295
Abstract
By introducing oxygen doping, the structure of an AlCrNbSiTiN coating was optimized, and its high-temperature oxidation resistance was improved. As the oxygen content incorporated increases, the coating changes from an FCC structure to an amorphous or spinel structure. Meanwhile, stress relaxation occurred, and [...] Read more.
By introducing oxygen doping, the structure of an AlCrNbSiTiN coating was optimized, and its high-temperature oxidation resistance was improved. As the oxygen content incorporated increases, the coating changes from an FCC structure to an amorphous or spinel structure. Meanwhile, stress relaxation occurred, and the hardness of the coating dropped to 12 gpa. Oxygen-doped coatings exhibit excellent oxidation resistance; this is especially the case for oxidized coatings, whose structure remains stable up to 900 °C in an oxidizing environment. Full article
(This article belongs to the Special Issue Advanced Thin Films of High-Entropy Alloys)
Show Figures

Figure 1

24 pages, 15762 KiB  
Article
Performance of TiSiN/TiAlN-Coated Carbide Tools in Slot Milling of Hastelloy C276 with Various Cooling Strategies
by Ly Chanh Trung and Tran Thien Phuc
Lubricants 2025, 13(7), 316; https://doi.org/10.3390/lubricants13070316 - 19 Jul 2025
Viewed by 475
Abstract
Nickel-based superalloy Hastelloy C276 is widely used in high-performance industries due to its strength, corrosion resistance, and thermal stability. However, these same properties pose substantial challenges in machining, resulting in high tool wear, surface defects, and dimensional inaccuracies. This study investigates methods to [...] Read more.
Nickel-based superalloy Hastelloy C276 is widely used in high-performance industries due to its strength, corrosion resistance, and thermal stability. However, these same properties pose substantial challenges in machining, resulting in high tool wear, surface defects, and dimensional inaccuracies. This study investigates methods to enhance machining performance and surface quality by evaluating the tribological behavior of TiSiN/TiAlN-coated carbide inserts under six cooling and lubrication conditions: dry, MQL with coconut oil, Cryo-LN2, Cryo-LCO2, MQL–Cryo-LN2, and MQL–Cryo-LCO2. Open-slot finishing was performed at constant cutting parameters, and key indicators such as cutting zone temperature, tool wear, surface roughness, chip morphology, and microhardness were analyzed. The hybrid MQL–Cryo-LN2 approach significantly outperformed other methods, reducing cutting zone temperature, tool wear, and surface roughness by 116.4%, 94.34%, and 76.11%, respectively, compared to dry machining. SEM and EDS analyses confirmed abrasive, oxidative, and adhesive wear as the dominant mechanisms. The MQL–Cryo-LN2 strategy also lowered microhardness, in contrast to a 39.7% increase observed under dry conditions. These findings highlight the superior performance of hybrid MQL–Cryo-LN2 in improving machinability, offering a promising solution for precision-driven applications. Full article
(This article belongs to the Special Issue High Performance Machining and Surface Tribology)
Show Figures

Figure 1

24 pages, 8373 KiB  
Article
Simple Strain Gradient–Divergence Method for Analysis of the Nanoindentation Load–Displacement Curves Measured on Nanostructured Nitride/Carbonitride Coatings
by Uldis Kanders, Karlis Kanders, Artis Kromanis, Irina Boiko, Ernests Jansons and Janis Lungevics
Coatings 2025, 15(7), 824; https://doi.org/10.3390/coatings15070824 - 15 Jul 2025
Viewed by 584
Abstract
This study investigates the fabrication, nanomechanical behavior, and tribological performance of nanostructured superlattice coatings (NSCs) composed of alternating TiAlSiNb-N/TiCr-CN bilayers. Deposited via High-Power Ion-Plasma Magnetron Sputtering (HiPIPMS) onto 100Cr6 steel substrates, the coatings achieved nanohardness values of ~25 GPa and elastic moduli up [...] Read more.
This study investigates the fabrication, nanomechanical behavior, and tribological performance of nanostructured superlattice coatings (NSCs) composed of alternating TiAlSiNb-N/TiCr-CN bilayers. Deposited via High-Power Ion-Plasma Magnetron Sputtering (HiPIPMS) onto 100Cr6 steel substrates, the coatings achieved nanohardness values of ~25 GPa and elastic moduli up to ~415 GPa. A novel empirical method was applied to extract stress–strain field (SSF) gradient and divergence profiles from nanoindentation load–displacement data. These profiles revealed complex, depth-dependent oscillations attributed to alternating strain-hardening and strain-softening mechanisms. Fourier analysis identified dominant spatial wavelengths, DWL, ranging from 4.3 to 42.7 nm. Characteristic wavelengths WL1 and WL2, representing fine and coarse oscillatory modes, were 8.2–9.2 nm and 16.8–22.1 nm, respectively, aligning with the superlattice period and grain-scale features. The hyperfine structure exhibited non-stationary behavior, with dominant wavelengths decreasing from ~5 nm to ~1.5 nm as the indentation depth increased. We attribute the SSF gradient and divergence spatial oscillations to alternating strain-hardening and strain-softening deformation mechanisms within the near-surface layer during progressive loading. This cyclic hardening–softening behavior was consistently observed across all NSC samples, suggesting it represents a general phenomenon in thin film/substrate systems under incremental nanoindentation loading. The proposed SSF gradient–divergence framework enhances nanoindentation analytical capabilities, offering a tool for characterizing thin-film coatings and guiding advanced tribological material design. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Graphical abstract

22 pages, 8571 KiB  
Article
Optimization of Micro-Sandblasting Parameters for Enhanced Adhesion and Wear Resistance of AlTiSiN-Coated Tools
by Junlong Wang, Jiaxuan Du, Zhipeng Liu, Hongliang Qian and Qi Wang
Coatings 2025, 15(7), 757; https://doi.org/10.3390/coatings15070757 - 26 Jun 2025
Viewed by 381
Abstract
Micro-sandblasting pretreatment was applied to AlTiSiN-coated WC–Co tools to enhance cutting performance in 316 L stainless steel milling. An L9(33) Taguchi orthogonal array varied passivation pressure (0.1, 0.2, and 0.3 MPa), gun traverse speed (60, 80, and 100 m/min), [...] Read more.
Micro-sandblasting pretreatment was applied to AlTiSiN-coated WC–Co tools to enhance cutting performance in 316 L stainless steel milling. An L9(33) Taguchi orthogonal array varied passivation pressure (0.1, 0.2, and 0.3 MPa), gun traverse speed (60, 80, and 100 m/min), and tool rotation speed (20, 30, and 40 r/min). Coating thickness varied only from 0.93 to 1.19 μm, and surface roughness remained within 0.044–0.077 μm, confirming negligible thickness and roughness effects. Under optimized conditions, coating adhesion strength and nano-hardness both exhibited significant improvements. A weighted-scoring method balancing these two responses identified the optimal pretreatment parameters as 0.1 MPa, 80 m/min, and 20 r/min. Milling tests at 85 m/min—using flank wear VBₘₐₓ = 0.1 mm as the failure criterion—demonstrated a cutting distance increase from 4.25 m (untreated) to 12.75 m (pretreated), a 200% improvement. Wear progressed through three stages: rapid initial wear, extended steady wear due to Al2O3 protective-film formation and Si-induced oxygen-diffusion suppression, and accelerated wear. Micro-sandblasting further prolonged the steady-wear phase by removing residual cobalt binder, exposing WC grains, and offsetting tensile residual stresses. These findings establish a practical, cost-effective micro-sandblasting pretreatment strategy that significantly enhances coating adhesion, hardness, and tool life, providing actionable guidance for improving the durability and machining performance of coated carbide tools in difficult-to-cut applications. Full article
Show Figures

Figure 1

11 pages, 1391 KiB  
Article
Influence of Thickness on the Structure and Properties of TiAl(Si)N Gradient Coatings
by Alexey Kassymbaev, Alexandr Myakinin, Gulzhas Uazyrkhanova, Farida Belisarova, Amangeldi Sagidugumar and Ruslan Kimossov
Coatings 2025, 15(6), 710; https://doi.org/10.3390/coatings15060710 - 13 Jun 2025
Viewed by 517
Abstract
Enhanced hard coatings with exceptional mechanical and thermal qualities have prompted substantial study into multicomponent nitride systems. TiAl(Si)N coatings have emerged as viable possibilities owing to their remarkable hardness, thermal stability, and oxidation resistance. This work involved the fabrication of thickness-varied TiAl(Si)N gradient [...] Read more.
Enhanced hard coatings with exceptional mechanical and thermal qualities have prompted substantial study into multicomponent nitride systems. TiAl(Si)N coatings have emerged as viable possibilities owing to their remarkable hardness, thermal stability, and oxidation resistance. This work involved the fabrication of thickness-varied TiAl(Si)N gradient coatings using reactive magnetron sputtering, employing a controlled modulation of aluminum and silicon content across the film thickness. Three samples, with thicknesses of ~400 nm, ~600 nm, and ~800 nm, were deposited under uniform Ar/N2 gas flow ratios, and their microstructural, mechanical, and tribological characteristics were rigorously examined. SEM investigation demonstrated a significant change across thicknesses. XRD results validated the emergence of a predominant cubic TiAl(Si)N phase alongside a secondary hexagonal AlN phase, signifying partial phase segregation. The nanoindentation results indicated that Sample 2 exhibited the maximum hardness (~38 GPa) and Young’s modulus (~550 GPa) due to an optimized equilibrium between solid solution strengthening and nanocomposite production. Tribological testing revealed that Sample 1 displayed the lowest and most consistent friction coefficient, corresponding to its superior H/E and H3/E2 ratios, which signify improved elasticity and resistance to plastic deformation. The findings emphasize that the implementation of a compositional gradient, especially in the distribution of Si and Al, markedly affects the microstructure and performance of TiAl(Si)N coatings. Gradient structures enhance the microstructure, optimize hardness, and increase the friction coefficient. Ongoing refinement of gradient profiles and deposition parameters may further improve the characteristics of TiAl(Si)N coatings, facilitating their wider industrial use. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

18 pages, 2426 KiB  
Article
Strain-Hardening and Strain-Softening Phenomena Observed in Thin Nitride/Carbonitride Ceramic Coatings During the Nanoindentation Experiments
by Uldis Kanders, Karlis Kanders, Ernests Jansons, Irina Boiko, Artis Kromanis, Janis Lungevics and Armands Leitans
Coatings 2025, 15(6), 674; https://doi.org/10.3390/coatings15060674 - 1 Jun 2025
Cited by 1 | Viewed by 546
Abstract
This study investigates the nanomechanical and tribological behavior of multilayered nitride/carbonitride nanostructured superlattice type coatings (NTCs) composed of alternating TiAlSiNb-N and TiCr-CN sublayers, deposited via high-power ion-plasma magnetron sputtering (HiPIPMS) technique. Reinforced with refractory elements Cr and Nb, the NTC samples exhibit high [...] Read more.
This study investigates the nanomechanical and tribological behavior of multilayered nitride/carbonitride nanostructured superlattice type coatings (NTCs) composed of alternating TiAlSiNb-N and TiCr-CN sublayers, deposited via high-power ion-plasma magnetron sputtering (HiPIPMS) technique. Reinforced with refractory elements Cr and Nb, the NTC samples exhibit high nanohardness (39–59 GPa), low friction, and excellent wear resistance. A novel analytical approach was introduced to extract stress–strain field (SSF) gradients and divergences from nanoindentation data, revealing alternating strain-hardening and strain-softening cycles beneath the incrementally loaded indenter. The discovered oscillatory behavior, consistent across all samples under the investigation, suggests a general deformation mechanism in thin films under incremental loading. Fourier analysis of the SSF gradient oscillatory pattern revealed a variety of characteristic dominant wavelengths within the length-scale interval (0.84–8.10) nm, indicating multi-scale nanomechanical responses. Additionally, the NTC samples display an anisotropic coating morphology exhibited as unidirectional undulating surface roughness waves, potentially attributed to atomic shadowing, strain-induced instabilities, and limited adatom diffusion. These findings deepen our understanding of nanoscale deformation in advanced PVD coatings and underscore the utility of SSF analysis for probing thin-film mechanics. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

20 pages, 13076 KiB  
Article
Enhancement of a Magnetically Controlled Cathodic Arc Source for the Deposition of Multi-Component Hard Nitride Coatings
by Van-Tien Tang, Yin-Yu Chang and Yi-Ru Chen
Materials 2025, 18(10), 2276; https://doi.org/10.3390/ma18102276 - 14 May 2025
Viewed by 597
Abstract
The creation of coatings by the cathodic arc evaporation method has outstanding advantages: these coatings are highly durable and wear-resistant, especially since the method has an intense ionization process and the atoms can penetrate deep into the surface substrates, resulting in excellent adhesion. [...] Read more.
The creation of coatings by the cathodic arc evaporation method has outstanding advantages: these coatings are highly durable and wear-resistant, especially since the method has an intense ionization process and the atoms can penetrate deep into the surface substrates, resulting in excellent adhesion. Furthermore, this approach provides precise control over the chemical composition and thickness of the coating, ensuring consistent quality across the entire surface. However, uneven evaporation and ejection of molten metal droplets from the cathode during cathode arc deposition produce particles and droplets, resulting in an uneven coating surface. This study presents a new design for a magnetically controlled cathode arc source to effectively reduce particles and droplets during the cathodic arc deposition of multi-component alloy targets for nitride-based hard coatings. The study compares the performance of a new source with a conventional magnetic-controlled arc source for depositing TiAlNbSiN and AlCrSiN films. In the conventional source, the magnetic field is generated by a permanent magnet (PM), whereas in the new source, it is generated and controlled using an electromagnet (EM). Both films are produced using multi-component alloy targets (TiAlNbSi and AlCrSi) with identical composition ratios. The plasma characteristics of the two different arc sources are investigated using an optical emission spectrometer (OES), and the surface morphology, structural characteristics, deposition rate, uniformity, and surface roughness (Sa) are examined using scanning electron microscopy (SEM). When the EM was applied to have high plasma density, the hardness of the TiAlNbSiN film deposited with the novel arc source measured 31.2 ± 1.9 GPa, which is higher than that of the PM arc source (28.3 ± 1.4 GPa). In contrast, the AlCrSiN film created using a typical arc source exhibited a hardness of only 25.5 ± 0.6 GPa. This lower hardness may be due to insufficient ion kinetic energy to enhance stress blocking and increase hardness, or the presence of the h-AlN phase in the film, which was not detected by XRD. The electromagnet arc source, with its adequate ion bombardment velocity, facilitated a complementary effect between grain growth and stress blocking, leading to a remarkable hardness of 32.6 ± 0.5 GPa. Full article
(This article belongs to the Special Issue Advancements in Thin Film Deposition Technologies)
Show Figures

Figure 1

24 pages, 28892 KiB  
Article
Mechanical and Tribological Behavior of TiAlSiN/AlSiN Coatings Depending on the High-Temperature Treatment
by Stefan Kolchev, Lilyana Kolaklieva, Daniela Kovacheva, Genoveva Atanasova, Tetiana Cholakova, Vasiliy Chitanov, Ekaterina Zlatareva, Roumen Kakanakov and Chavdar Pashinski
Coatings 2025, 15(5), 542; https://doi.org/10.3390/coatings15050542 - 30 Apr 2025
Cited by 1 | Viewed by 482
Abstract
TiAlSiN/AlSiN coatings, with 3 and 30 periods, were successfully deposited by cathodic-arc evaporation technology. The composition, structure, mechanical, and tribological properties were studied at thermal treatment from 700 °C to 900 °C. The SEM observation and EDS analysis verified the dense structure and [...] Read more.
TiAlSiN/AlSiN coatings, with 3 and 30 periods, were successfully deposited by cathodic-arc evaporation technology. The composition, structure, mechanical, and tribological properties were studied at thermal treatment from 700 °C to 900 °C. The SEM observation and EDS analysis verified the dense structure and stable element composition in the coating depth at increased temperatures. A limited surface oxidation was identified at 800 °C, which increased moderately at a higher temperature of 900 °C. The coating period displays a nanocomposite structure of TiAl(Si)N and AlN nanograins incorporated in an amorphous Si3N4 matrix obtained by XRD and XPS analyses. The coatings exhibit high hardness of 41.1 GPa and 36.4 GPa for the 3- and 30-period coatings, respectively. The coatings with higher modulation periods demonstrate an excellent high temperature hardness and resistance to elastic and plastic deformations up to 900 °C. The hardness of the coatings with a smaller modulation period reduces to 29.7 GPa at the same temperature, causing a decrease in the H/E and H3/E*2 ratios. The tribological tests found that the high-temperature wear resistance depends strongly on the coating composition and architecture. An oxidation wear mechanism dominates the coatings with a large modulation period, and the wear rate decreases with a temperature increase. Abrasive wear is predominant in coatings with a lower modulation period, leading to an increasing wear rate. Wear rate values of 7.27 × 10−6 mm3/N·m and 8.53 × 10−6 mm3/N·m were determined after annealing at 900 °C for the 3- and 30-period coatings, respectively. Full article
(This article belongs to the Special Issue Tribological and Mechanical Properties of Coatings)
Show Figures

Graphical abstract

20 pages, 30192 KiB  
Article
Influence of Nanocomposite PVD Coating on Cutting Tool Wear During Milling of 316L Stainless Steel Under Air Cooling Conditions
by Jarosław Tymczyszyn, Artur Szajna and Grażyna Mrówka-Nowotnik
Materials 2025, 18(9), 1959; https://doi.org/10.3390/ma18091959 - 25 Apr 2025
Cited by 1 | Viewed by 441
Abstract
This study examines the impact of PVD coatings on cutting tool wear during the milling of 316L stainless steel under air cooling conditions. In the experiment, a carbide milling cutter coated with a nanocomposite nACo3 (AlTiSiN) coating was used. The coating was deposited [...] Read more.
This study examines the impact of PVD coatings on cutting tool wear during the milling of 316L stainless steel under air cooling conditions. In the experiment, a carbide milling cutter coated with a nanocomposite nACo3 (AlTiSiN) coating was used. The coating was deposited using a next-generation device, the PLATIT π411PLUS, which features one central and three lateral rotating cathodes. The nanocomposite nACo3 coating obtained with this method exhibits exceptionally high structural density and excellent mechanical properties. The new generation of the nACo3 coating demonstrates improved surface properties and a lower friction coefficient compared to previous generations. The findings indicate that PVD nACo3 coatings significantly enhance wear resistance, extending tool life while maintaining acceptable surface quality. The optimal cutting time was determined to be approximately 90 min, after which a sharp increase in surface roughness and tool wear was observed. After 120 min of machining, substantial deterioration of surface quality parameters was recorded, suggesting increasing cutting forces and cutting edge degradation. SEM and EDS analyses revealed the presence of adhered material on the tool and sulfide inclusions in the microstructure of 316L stainless steel, which influenced the machining process. The nACo3 coating demonstrated high thermal and wear resistance, making it an effective solution for machining difficult-to-cut materials. This study suggests that selecting appropriate cutting parameters, tool geometry, protective coatings, and cooling strategies can significantly affect tool longevity and machining quality. The novelty of this research lies in the application of innovative nanocomposite PVD coatings during the milling of 316L stainless steel under air cooling conditions. These studies indicate potential future research directions, such as the use of minimum quantity lubrication (MQL) or cryogenic cooling as methods to reduce tool wear and improve post-machining surface quality. Full article
Show Figures

Figure 1

17 pages, 49882 KiB  
Article
High-Temperature Oxidation and Wear Resistance of TiAlSiN/AlCrN Multilayer Coatings Prepared by Multi-Arc Ion Plating
by Jie Liu, Haijuan Mei, Junfang Hua, Juan Wang, Yongchao Wang, Genmiao Yi and Xin Deng
Nanomaterials 2025, 15(7), 503; https://doi.org/10.3390/nano15070503 - 27 Mar 2025
Cited by 1 | Viewed by 565
Abstract
TiAlSiN and AlCrN coatings are two representative coatings with excellent properties in TiN-based and CrN-based coatings, respectively. Multilayering is one of the most important directions for coating performance optimization. In this paper, nanoscale monolayer TiAlSiN, AlCrN, and multilayer TiAlSiN/AlCrN coatings were prepared. The [...] Read more.
TiAlSiN and AlCrN coatings are two representative coatings with excellent properties in TiN-based and CrN-based coatings, respectively. Multilayering is one of the most important directions for coating performance optimization. In this paper, nanoscale monolayer TiAlSiN, AlCrN, and multilayer TiAlSiN/AlCrN coatings were prepared. The microstructure, mechanical properties, oxidation resistance, and wear resistance of the above three coatings were investigated. The following properties of the TiAlSiN/AlCrN coating, including phase, nanohardness, elastic modulus, adhesion strength, and oxidation resistance, fall between those of the TiAlSiN and AlCrN coatings and conform to the “law of mixtures”. Due to the interfacial effect of the multilayer coating, the residual stress of the TiAlSiN/AlCrN coating is less than that of the two monolayer coatings. At 500 °C, the order of wear resistance of the three coatings is consistent with the order of H3/E*2 values, i.e., TiAlSiN > TiAlSiN/AlCrN > AlCrN; at 800 °C, the order of wear resistance becomes TiAlSiN/AlCrN > TiAlSiN > AlCrN because TiAlSiN coating has entered the rapid oxidization stage first, reducing its wear resistance. Full article
(This article belongs to the Special Issue Design and Applications of Heterogeneous Nanostructured Materials)
Show Figures

Figure 1

13 pages, 250 KiB  
Review
Exploring the Potential of High-Power Impulse Magnetron Sputtering for Nitride Coatings: Advances in Properties and Applications
by Pooja Sharma, Hongbo Ju, Nuno Miguel Figueiredo and Fábio Ferreira
Coatings 2025, 15(2), 130; https://doi.org/10.3390/coatings15020130 - 23 Jan 2025
Cited by 3 | Viewed by 2270
Abstract
High-Power Impulse Magnetron Sputtering (HiPIMS) has emerged as an excellent technology for producing high-quality nitride coatings, such as aluminum nitride (AlN), titanium nitride (TiN), chromium nitride (CrN), and silicon nitride (SiN), and composite nitride coatings such as titanium aluminum nitride (TiAlN), TiAlNiCN, etc. [...] Read more.
High-Power Impulse Magnetron Sputtering (HiPIMS) has emerged as an excellent technology for producing high-quality nitride coatings, such as aluminum nitride (AlN), titanium nitride (TiN), chromium nitride (CrN), and silicon nitride (SiN), and composite nitride coatings such as titanium aluminum nitride (TiAlN), TiAlNiCN, etc. These coatings are known for their exceptional hardness, thermal stability, and corrosion resistance. These make them ideal for high-performance applications. HiPIMS distinguishes itself by generating highly ionized plasmas that facilitate intense ion bombardment, leading to nitride films with superior mechanical strength, durability, and enhanced thermal properties compared to traditional deposition techniques. Critical HiPIMS parameters, including pulse duration, substrate bias, and ion energy, are analyzed for their influence on enhancing coating density, adhesion, and hardness. The review contrasts HiPIMS with other deposition methods, highlighting its unique ability to create dense, uniform coatings with improved microstructures. While HiPIMS offers substantial benefits, it also poses challenges in scalability and process control. This review addresses these challenges and discusses hybrid, bipolar, and synchronized HiPIMS solutions designed to optimize nitride coating processes. Hybrid HiPIMS, for instance, combines HiPIMS with other sputtering techniques like DCMS or RF sputtering to achieve balanced deposition rates and high-quality film properties. Bipolar HiPIMS enhances process stability and film uniformity by alternating the polarity, which helps mitigate charge accumulation issues. Synchronized HiPIMS controls precise pulse timing to maximize ion energy impact and improve substrate interaction, further enhancing the structural properties of the coatings. Hence, to pave the way for future research and development in this area, insights of the HiPIMS have been presented that underline the role of HiPIMS in meeting the demanding requirements of advanced industrial applications. Overall, this review article comprehensively analyzes the recent strategies and technological innovations in HiPIMS and highlights the significant potential of HiPIMS for advancing the nitride coating field. Full article
(This article belongs to the Special Issue Trends in Coatings and Surface Technology, 2nd Edition)
23 pages, 7326 KiB  
Article
Significance of Tool Coating Properties and Compacted Graphite Iron Microstructure for Tool Selection in Extreme Machining
by Anna Maria Esposito, Qianxi He, Jose M. DePaiva and Stephen C. Veldhuis
Nanomaterials 2025, 15(2), 130; https://doi.org/10.3390/nano15020130 - 16 Jan 2025
Viewed by 1071
Abstract
This study aims to determine the extent to which coating composition and workpiece properties impact machinability and tool selection when turning Compacted Graphite Iron (CGI) under extreme roughing conditions. Two CGI workpieces, differing in pearlite content and graphite nodularity, were machined at a [...] Read more.
This study aims to determine the extent to which coating composition and workpiece properties impact machinability and tool selection when turning Compacted Graphite Iron (CGI) under extreme roughing conditions. Two CGI workpieces, differing in pearlite content and graphite nodularity, were machined at a cutting speed of 180 m/min, feed rate of 0.18 mm/rev, and depth of cut of 3 mm. To assess the impact of tool properties across a wide range of commercially available tools, four diverse multilayered cemented carbide tools were evaluated: Tool A and Tool B with a thin AlTiSiN PVD coating, Tool C with a thick Al2O3-TiCN CVD coating, and Tool D with a thin Al2O3-TiC PVD coating. The machinability of CGI and wear mechanisms were analyzed using pre-cutting characterization, in-process optical microscopy, and post-test SEM analysis. The results revealed that CGI microstructural variations only affected tool life for Tool A, with a 110% increase in tool life between machining CGI Grade B and Grade A, but that the effects were negligible for all other tools. Tool C had a 250% and 70% longer tool life compared to the next best performance (Tool A) for CGI Grade A and CGI Grade B, respectively. With its thick CVD-coating, Tool C consistently outperformed the others due to its superior protection of the flank face and cutting edge under high-stress conditions. The cutting-induced stresses played a more significant role in the tool wear process than minor differences in workpiece microstructure or tool properties, and a thick CVD coating was most effective in addressing the tool wear effects for the extreme roughing conditions. However, differences in tool life for Tool A showed that tool behavior cannot be predicted based on a single system parameter, even for extreme conditions. Instead, tool properties, workpiece properties, cutting conditions, and their interactions should be considered collectively to evaluate the extent that an individual parameter impacts machinability. This research demonstrates that a comprehensive approach such as this can allow for more effective tool selection and thus lead to significant cost savings and more efficient manufacturing operations. Full article
(This article belongs to the Special Issue Mechanical Properties and Applications for Nanostructured Alloys)
Show Figures

Figure 1

23 pages, 15156 KiB  
Article
Wear Resistance of Ceramic Cutting Inserts Using Nitride Coatings and Microtexturing by Electrical Discharge Machining
by Marina A. Volosova, Anna A. Okunkova, Elena Y. Kropotkina, Enver S. Mustafaev and Khasan I. Gkhashim
Eng 2025, 6(1), 11; https://doi.org/10.3390/eng6010011 - 9 Jan 2025
Cited by 1 | Viewed by 1295
Abstract
Today, the machining of heat-resistant alloys based on triple, quad, or penta equilibria high-entropy alloy systems of elements (ternary, quaternary, quinary iron-, titanium-, or nickel-rich alloys), including dual-phase by Gibb’s phase rule, steels of the austenite class, and nickel- and titanium-based alloys, are [...] Read more.
Today, the machining of heat-resistant alloys based on triple, quad, or penta equilibria high-entropy alloy systems of elements (ternary, quaternary, quinary iron-, titanium-, or nickel-rich alloys), including dual-phase by Gibb’s phase rule, steels of the austenite class, and nickel- and titanium-based alloys, are highly relevant for the airspace and aviation industry, especially for the production of gas turbine engines. Cutting tools in contact with those alloys should withstand intensive mechanical and thermal loads (tense state of 1.38·108–1.54·108 N/m2, temperature up to 900–1200 °C). The most spread material for those tools is cutting ceramics based on oxides, nitrides of the transition and post-transition metals, and metalloids. This work considers the wear resistance of the cutting insert of silicon nitride with two unique development coatings — titanium–zirconium nitride coating (Ti,Zr)N and complex quad nitride coating with TiN content up to 70% (Ti,Al,Cr,Si)N with a thickness of 3.8–4.0 µm on which microtextures were produced by the assisted electric discharge machining with the electrode-tool of ø0.25 mm. The microtextures were three parallel microgrooves of R0.13+0.02 mm at a depth of 0.025−0.05. The operational life was increased by ~1.33 when the failure criterion in turning nickel alloy was 0.4 mm. Full article
(This article belongs to the Section Materials Engineering)
Show Figures

Figure 1

22 pages, 8218 KiB  
Article
Effect of Al and Ta Impurities on Si Adsorption on (001) and (111) Surfaces of B1-TiN
by Yury M. Koroteev, Leonid A. Svyatkin, Sergey O. Ognev and Vyacheslav M. Silkin
Crystals 2025, 15(1), 37; https://doi.org/10.3390/cryst15010037 - 30 Dec 2024
Viewed by 833
Abstract
Nowadays, the application of protective multicomponent coatings based on hard metal nitrides is increasingly used to increase the resistance of structures and tools to wear, corrosion, and oxidation. In the present work, the multicomponent system Ti-Al-Ta-Si-N is studied, which has high hardness and [...] Read more.
Nowadays, the application of protective multicomponent coatings based on hard metal nitrides is increasingly used to increase the resistance of structures and tools to wear, corrosion, and oxidation. In the present work, the multicomponent system Ti-Al-Ta-Si-N is studied, which has high hardness and crack resistance combined with thermal stability and oxidation resistance. The process of formation of the nanocrystalline structure of the coating during its deposition on materials plays a key role in the optimization of these properties. The nanocrystalline structure of the coating is formed due to Si impurity, which is poorly soluble in the Ti1−x−yAlxTayN system based on B1-TiN and segregates mainly along grain boundaries, forming grain boundary amorphous phases of SizN type. In order to find the optimal composition of multicomponent coatings with improved physical and mechanical properties, it is necessary to understand the peculiarities of interaction of Si impurity with the surface of B1-TiN phase in the presence of Al and Ta substitutional impurities. In the present work, with the help of first-principles calculations of electronic and atomic structure of (001) and (111) surfaces of the Ti1−x−yAlxTayN system with adsorbed Si atom and the interatomic bond study apparatus based on the calculation of a crystal orbital Hamilton population and a crystal orbital bond index, the nature of the bonds between adsorbed Si and the N, Ti, Al, and Ta atoms of the Ti1−x−yAlxTayN surface system has been studied. It was found that the binding energy of Si with the Ti1−x−yAlxTayN surface system can be both higher and lower than the binding energy of its bonding with the surface of the binary TiN compound depending on the position of the Al and Ta substitution atoms in the surface layers. The Si bonding with the atoms of the Ti1−x−yAlxTayN surface is ionic–covalent in nature. It is shown that the Si-Ta interaction has the highest degree of covalency and strength, and the Si-Al interaction is predominantly ionic in most cases considered and is weaker than the Si-Ti and Si-N bonds. Impurity atoms of Al or Ta have very little effect on the Si-Ti and Si-N bonds due to the local nature of the bonds in the Ti1−x−yAlxTayN surface system with adsorbed silicon atoms. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

18 pages, 18179 KiB  
Article
Improving the Wear and Corrosion Resistance of Titanium Alloy Parts via the Deposition of DLC Coatings
by Alexander Metel, Catherine Sotova, Sergey Fyodorov, Valery Zhylinski, Vadzim Chayeuski, Filipp Milovich, Anton Seleznev, Yuri Bublikov, Kirill Makarevich and Alexey Vereschaka
C 2024, 10(4), 106; https://doi.org/10.3390/c10040106 - 16 Dec 2024
Cited by 4 | Viewed by 2005
Abstract
This article compares the properties of the diamond-like carbon (DLC) coating with those of ZrN and (Zr,Hf)N coatings deposited on the Ti-6Al-4V titanium alloy substrate. To improve substrate adhesion during the deposition of the DLC coating, preliminary etching with chromium ions was conducted, [...] Read more.
This article compares the properties of the diamond-like carbon (DLC) coating with those of ZrN and (Zr,Hf)N coatings deposited on the Ti-6Al-4V titanium alloy substrate. To improve substrate adhesion during the deposition of the DLC coating, preliminary etching with chromium ions was conducted, ensuring the formation of a chromium-saturated diffusion surface layer in the substrate. A Si-DLC layer followed by a pure DLC layer was then deposited. The hardness of the coatings, their surface morphology, fracture strength in the scratch test, and tribological properties and wear resistance in the pin-on-disk test in contact with Al2O3 and steel indenters were investigated. The structure of the DLC coating was studied using transmission electron microscopy, and its corrosion resistance in an environment simulating blood plasma was also investigated. In the pin-on-disk test in contact with Al2O3 and AISI 52100 indenters, the DLC-coated sample demonstrates a much lower friction coefficient and significantly better wear resistance compared to the nitride-coated and uncoated samples. Both nitride coatings—(Zr,Hf)N and ZrN—and the DLC coating slow down the corrosive dissolution of the base compared to the uncoated sample. The corrosion currents of the (Zr,Hf)N-coated samples are 37.01 nA/cm2, 20% higher than those of the ZrN-coated samples. The application of (Zr,Hf)N, ZrN, and DLC coatings on the Ti-6Al-4V alloy significantly inhibits dissolution currents (by 30–40%) and increases polarization resistance 1.5–2.0-fold compared to the uncoated alloy in 0.9% NaCl at 40 °C. Thus, the DLC coating of the described structure simultaneously provides effective wear and corrosion resistance in an environment simulating blood plasma. This coating can be considered in the manufacture of medical products (in particular, implants) from titanium alloys, including those functioning in the human body and subject to mechanical wear (e.g., knee joint endoprostheses). Full article
(This article belongs to the Special Issue High-Performance Carbon Materials and Their Composites)
Show Figures

Figure 1

Back to TopTop